1 //
2 // Copyright 2019 The Abseil Authors.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15
16 #ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
17 #define ABSL_FLAGS_INTERNAL_FLAG_H_
18
19 #include <stddef.h>
20 #include <stdint.h>
21
22 #include <atomic>
23 #include <cstring>
24 #include <memory>
25 #include <string>
26 #include <type_traits>
27 #include <typeinfo>
28
29 #include "absl/base/attributes.h"
30 #include "absl/base/call_once.h"
31 #include "absl/base/casts.h"
32 #include "absl/base/config.h"
33 #include "absl/base/optimization.h"
34 #include "absl/base/thread_annotations.h"
35 #include "absl/flags/commandlineflag.h"
36 #include "absl/flags/config.h"
37 #include "absl/flags/internal/commandlineflag.h"
38 #include "absl/flags/internal/registry.h"
39 #include "absl/flags/internal/sequence_lock.h"
40 #include "absl/flags/marshalling.h"
41 #include "absl/meta/type_traits.h"
42 #include "absl/strings/string_view.h"
43 #include "absl/synchronization/mutex.h"
44 #include "absl/utility/utility.h"
45
46 namespace absl {
47 ABSL_NAMESPACE_BEGIN
48
49 ///////////////////////////////////////////////////////////////////////////////
50 // Forward declaration of absl::Flag<T> public API.
51 namespace flags_internal {
52 template <typename T>
53 class Flag;
54 } // namespace flags_internal
55
56 template <typename T>
57 using Flag = flags_internal::Flag<T>;
58
59 template <typename T>
60 ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
61
62 template <typename T>
63 void SetFlag(absl::Flag<T>* flag, const T& v);
64
65 template <typename T, typename V>
66 void SetFlag(absl::Flag<T>* flag, const V& v);
67
68 template <typename U>
69 const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag<U>& f);
70
71 ///////////////////////////////////////////////////////////////////////////////
72 // Flag value type operations, eg., parsing, copying, etc. are provided
73 // by function specific to that type with a signature matching FlagOpFn.
74
75 namespace flags_internal {
76
77 enum class FlagOp {
78 kAlloc,
79 kDelete,
80 kCopy,
81 kCopyConstruct,
82 kSizeof,
83 kFastTypeId,
84 kRuntimeTypeId,
85 kParse,
86 kUnparse,
87 kValueOffset,
88 };
89 using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
90
91 // Forward declaration for Flag value specific operations.
92 template <typename T>
93 void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
94
95 // Allocate aligned memory for a flag value.
Alloc(FlagOpFn op)96 inline void* Alloc(FlagOpFn op) {
97 return op(FlagOp::kAlloc, nullptr, nullptr, nullptr);
98 }
99 // Deletes memory interpreting obj as flag value type pointer.
Delete(FlagOpFn op,void * obj)100 inline void Delete(FlagOpFn op, void* obj) {
101 op(FlagOp::kDelete, nullptr, obj, nullptr);
102 }
103 // Copies src to dst interpreting as flag value type pointers.
Copy(FlagOpFn op,const void * src,void * dst)104 inline void Copy(FlagOpFn op, const void* src, void* dst) {
105 op(FlagOp::kCopy, src, dst, nullptr);
106 }
107 // Construct a copy of flag value in a location pointed by dst
108 // based on src - pointer to the flag's value.
CopyConstruct(FlagOpFn op,const void * src,void * dst)109 inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
110 op(FlagOp::kCopyConstruct, src, dst, nullptr);
111 }
112 // Makes a copy of flag value pointed by obj.
Clone(FlagOpFn op,const void * obj)113 inline void* Clone(FlagOpFn op, const void* obj) {
114 void* res = flags_internal::Alloc(op);
115 flags_internal::CopyConstruct(op, obj, res);
116 return res;
117 }
118 // Returns true if parsing of input text is successful.
Parse(FlagOpFn op,absl::string_view text,void * dst,std::string * error)119 inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
120 std::string* error) {
121 return op(FlagOp::kParse, &text, dst, error) != nullptr;
122 }
123 // Returns string representing supplied value.
Unparse(FlagOpFn op,const void * val)124 inline std::string Unparse(FlagOpFn op, const void* val) {
125 std::string result;
126 op(FlagOp::kUnparse, val, &result, nullptr);
127 return result;
128 }
129 // Returns size of flag value type.
Sizeof(FlagOpFn op)130 inline size_t Sizeof(FlagOpFn op) {
131 // This sequence of casts reverses the sequence from
132 // `flags_internal::FlagOps()`
133 return static_cast<size_t>(reinterpret_cast<intptr_t>(
134 op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
135 }
136 // Returns fast type id corresponding to the value type.
FastTypeId(FlagOpFn op)137 inline FlagFastTypeId FastTypeId(FlagOpFn op) {
138 return reinterpret_cast<FlagFastTypeId>(
139 op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
140 }
141 // Returns fast type id corresponding to the value type.
RuntimeTypeId(FlagOpFn op)142 inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
143 return reinterpret_cast<const std::type_info*>(
144 op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
145 }
146 // Returns offset of the field value_ from the field impl_ inside of
147 // absl::Flag<T> data. Given FlagImpl pointer p you can get the
148 // location of the corresponding value as:
149 // reinterpret_cast<char*>(p) + ValueOffset().
ValueOffset(FlagOpFn op)150 inline ptrdiff_t ValueOffset(FlagOpFn op) {
151 // This sequence of casts reverses the sequence from
152 // `flags_internal::FlagOps()`
153 return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
154 op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
155 }
156
157 // Returns an address of RTTI's typeid(T).
158 template <typename T>
GenRuntimeTypeId()159 inline const std::type_info* GenRuntimeTypeId() {
160 #ifdef ABSL_INTERNAL_HAS_RTTI
161 return &typeid(T);
162 #else
163 return nullptr;
164 #endif
165 }
166
167 ///////////////////////////////////////////////////////////////////////////////
168 // Flag help auxiliary structs.
169
170 // This is help argument for absl::Flag encapsulating the string literal pointer
171 // or pointer to function generating it as well as enum descriminating two
172 // cases.
173 using HelpGenFunc = std::string (*)();
174
175 template <size_t N>
176 struct FixedCharArray {
177 char value[N];
178
179 template <size_t... I>
FromLiteralStringFixedCharArray180 static constexpr FixedCharArray<N> FromLiteralString(
181 absl::string_view str, absl::index_sequence<I...>) {
182 return (void)str, FixedCharArray<N>({{str[I]..., '\0'}});
183 }
184 };
185
186 template <typename Gen, size_t N = Gen::Value().size()>
HelpStringAsArray(int)187 constexpr FixedCharArray<N + 1> HelpStringAsArray(int) {
188 return FixedCharArray<N + 1>::FromLiteralString(
189 Gen::Value(), absl::make_index_sequence<N>{});
190 }
191
192 template <typename Gen>
HelpStringAsArray(char)193 constexpr std::false_type HelpStringAsArray(char) {
194 return std::false_type{};
195 }
196
197 union FlagHelpMsg {
FlagHelpMsg(const char * help_msg)198 constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
FlagHelpMsg(HelpGenFunc help_gen)199 constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
200
201 const char* literal;
202 HelpGenFunc gen_func;
203 };
204
205 enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
206
207 struct FlagHelpArg {
208 FlagHelpMsg source;
209 FlagHelpKind kind;
210 };
211
212 extern const char kStrippedFlagHelp[];
213
214 // These two HelpArg overloads allows us to select at compile time one of two
215 // way to pass Help argument to absl::Flag. We'll be passing
216 // AbslFlagHelpGenFor##name as Gen and integer 0 as a single argument to prefer
217 // first overload if possible. If help message is evaluatable on constexpr
218 // context We'll be able to make FixedCharArray out of it and we'll choose first
219 // overload. In this case the help message expression is immediately evaluated
220 // and is used to construct the absl::Flag. No additional code is generated by
221 // ABSL_FLAG Otherwise SFINAE kicks in and first overload is dropped from the
222 // consideration, in which case the second overload will be used. The second
223 // overload does not attempt to evaluate the help message expression
224 // immediately and instead delays the evaluation by returning the function
225 // pointer (&T::NonConst) generating the help message when necessary. This is
226 // evaluatable in constexpr context, but the cost is an extra function being
227 // generated in the ABSL_FLAG code.
228 template <typename Gen, size_t N>
HelpArg(const FixedCharArray<N> & value)229 constexpr FlagHelpArg HelpArg(const FixedCharArray<N>& value) {
230 return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral};
231 }
232
233 template <typename Gen>
HelpArg(std::false_type)234 constexpr FlagHelpArg HelpArg(std::false_type) {
235 return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc};
236 }
237
238 ///////////////////////////////////////////////////////////////////////////////
239 // Flag default value auxiliary structs.
240
241 // Signature for the function generating the initial flag value (usually
242 // based on default value supplied in flag's definition)
243 using FlagDfltGenFunc = void (*)(void*);
244
245 union FlagDefaultSrc {
FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)246 constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
247 : gen_func(gen_func_arg) {}
248
249 #define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \
250 T name##_value; \
251 constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {} // NOLINT
252 ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE)
253 #undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE
254
255 void* dynamic_value;
256 FlagDfltGenFunc gen_func;
257 };
258
259 enum class FlagDefaultKind : uint8_t {
260 kDynamicValue = 0,
261 kGenFunc = 1,
262 kOneWord = 2 // for default values UP to one word in size
263 };
264
265 struct FlagDefaultArg {
266 FlagDefaultSrc source;
267 FlagDefaultKind kind;
268 };
269
270 // This struct and corresponding overload to InitDefaultValue are used to
271 // facilitate usage of {} as default value in ABSL_FLAG macro.
272 // TODO(rogeeff): Fix handling types with explicit constructors.
273 struct EmptyBraces {};
274
275 template <typename T>
InitDefaultValue(T t)276 constexpr T InitDefaultValue(T t) {
277 return t;
278 }
279
280 template <typename T>
InitDefaultValue(EmptyBraces)281 constexpr T InitDefaultValue(EmptyBraces) {
282 return T{};
283 }
284
285 template <typename ValueT, typename GenT,
286 typename std::enable_if<std::is_integral<ValueT>::value, int>::type =
287 ((void)GenT{}, 0)>
DefaultArg(int)288 constexpr FlagDefaultArg DefaultArg(int) {
289 return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord};
290 }
291
292 template <typename ValueT, typename GenT>
DefaultArg(char)293 constexpr FlagDefaultArg DefaultArg(char) {
294 return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc};
295 }
296
297 ///////////////////////////////////////////////////////////////////////////////
298 // Flag storage selector traits. Each trait indicates what kind of storage kind
299 // to use for the flag value.
300
301 template <typename T>
302 using FlagUseValueAndInitBitStorage =
303 std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
304 std::is_default_constructible<T>::value &&
305 (sizeof(T) < 8)>;
306
307 template <typename T>
308 using FlagUseOneWordStorage =
309 std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
310 (sizeof(T) <= 8)>;
311
312 template <class T>
313 using FlagUseSequenceLockStorage =
314 std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
315 (sizeof(T) > 8)>;
316
317 enum class FlagValueStorageKind : uint8_t {
318 kValueAndInitBit = 0,
319 kOneWordAtomic = 1,
320 kSequenceLocked = 2,
321 kHeapAllocated = 3,
322 };
323
324 // This constexpr function returns the storage kind for the given flag value
325 // type.
326 template <typename T>
StorageKind()327 static constexpr FlagValueStorageKind StorageKind() {
328 return FlagUseValueAndInitBitStorage<T>::value
329 ? FlagValueStorageKind::kValueAndInitBit
330 : FlagUseOneWordStorage<T>::value
331 ? FlagValueStorageKind::kOneWordAtomic
332 : FlagUseSequenceLockStorage<T>::value
333 ? FlagValueStorageKind::kSequenceLocked
334 : FlagValueStorageKind::kHeapAllocated;
335 }
336
337 // This is a base class for the storage classes used by kOneWordAtomic and
338 // kValueAndInitBit storage kinds. It literally just stores the one word value
339 // as an atomic. By default, it is initialized to a magic value that is unlikely
340 // a valid value for the flag value type.
341 struct FlagOneWordValue {
UninitializedFlagOneWordValue342 constexpr static int64_t Uninitialized() {
343 return static_cast<int64_t>(0xababababababababll);
344 }
345
FlagOneWordValueFlagOneWordValue346 constexpr FlagOneWordValue() : value(Uninitialized()) {}
FlagOneWordValueFlagOneWordValue347 constexpr explicit FlagOneWordValue(int64_t v) : value(v) {}
348 std::atomic<int64_t> value;
349 };
350
351 // This class represents a memory layout used by kValueAndInitBit storage kind.
352 template <typename T>
353 struct alignas(8) FlagValueAndInitBit {
354 T value;
355 // Use an int instead of a bool to guarantee that a non-zero value has
356 // a bit set.
357 uint8_t init;
358 };
359
360 // This class implements an aligned pointer with two options stored via masks
361 // in unused bits of the pointer value (due to alignment requirement).
362 // - IsUnprotectedReadCandidate - indicates that the value can be switched to
363 // unprotected read without a lock.
364 // - HasBeenRead - indicates that the value has been read at least once.
365 // - AllowsUnprotectedRead - combination of the two options above and indicates
366 // that the value can now be read without a lock.
367 // Further details of these options and their use is covered in the description
368 // of the FlagValue<T, FlagValueStorageKind::kHeapAllocated> specialization.
369 class MaskedPointer {
370 public:
371 using mask_t = uintptr_t;
372 using ptr_t = void*;
373
RequiredAlignment()374 static constexpr int RequiredAlignment() { return 4; }
375
MaskedPointer(ptr_t rhs)376 constexpr explicit MaskedPointer(ptr_t rhs) : ptr_(rhs) {}
377 MaskedPointer(ptr_t rhs, bool is_candidate);
378
Ptr()379 void* Ptr() const {
380 return reinterpret_cast<void*>(reinterpret_cast<mask_t>(ptr_) &
381 kPtrValueMask);
382 }
AllowsUnprotectedRead()383 bool AllowsUnprotectedRead() const {
384 return (reinterpret_cast<mask_t>(ptr_) & kAllowsUnprotectedRead) ==
385 kAllowsUnprotectedRead;
386 }
387 bool IsUnprotectedReadCandidate() const;
388 bool HasBeenRead() const;
389
390 void Set(FlagOpFn op, const void* src, bool is_candidate);
391 void MarkAsRead();
392
393 private:
394 // Masks
395 // Indicates that the flag value either default or originated from command
396 // line.
397 static constexpr mask_t kUnprotectedReadCandidate = 0x1u;
398 // Indicates that flag has been read.
399 static constexpr mask_t kHasBeenRead = 0x2u;
400 static constexpr mask_t kAllowsUnprotectedRead =
401 kUnprotectedReadCandidate | kHasBeenRead;
402 static constexpr mask_t kPtrValueMask = ~kAllowsUnprotectedRead;
403
404 void ApplyMask(mask_t mask);
405 bool CheckMask(mask_t mask) const;
406
407 ptr_t ptr_;
408 };
409
410 // This class implements a type erased storage of the heap allocated flag value.
411 // It is used as a base class for the storage class for kHeapAllocated storage
412 // kind. The initial_buffer is expected to have an alignment of at least
413 // MaskedPointer::RequiredAlignment(), so that the bits used by the
414 // MaskedPointer to store masks are set to 0. This guarantees that value starts
415 // in an uninitialized state.
416 struct FlagMaskedPointerValue {
FlagMaskedPointerValueFlagMaskedPointerValue417 constexpr explicit FlagMaskedPointerValue(MaskedPointer::ptr_t initial_buffer)
418 : value(MaskedPointer(initial_buffer)) {}
419
420 std::atomic<MaskedPointer> value;
421 };
422
423 // This is the forward declaration for the template that represents a storage
424 // for the flag values. This template is expected to be explicitly specialized
425 // for each storage kind and it does not have a generic default
426 // implementation.
427 template <typename T,
428 FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
429 struct FlagValue;
430
431 // This specialization represents the storage of flag values types with the
432 // kValueAndInitBit storage kind. It is based on the FlagOneWordValue class
433 // and relies on memory layout in FlagValueAndInitBit<T> to indicate that the
434 // value has been initialized or not.
435 template <typename T>
436 struct FlagValue<T, FlagValueStorageKind::kValueAndInitBit> : FlagOneWordValue {
437 constexpr FlagValue() : FlagOneWordValue(0) {}
438 bool Get(const SequenceLock&, T& dst) const {
439 int64_t storage = value.load(std::memory_order_acquire);
440 if (ABSL_PREDICT_FALSE(storage == 0)) {
441 // This assert is to ensure that the initialization inside FlagImpl::Init
442 // is able to set init member correctly.
443 static_assert(offsetof(FlagValueAndInitBit<T>, init) == sizeof(T),
444 "Unexpected memory layout of FlagValueAndInitBit");
445 return false;
446 }
447 dst = absl::bit_cast<FlagValueAndInitBit<T>>(storage).value;
448 return true;
449 }
450 };
451
452 // This specialization represents the storage of flag values types with the
453 // kOneWordAtomic storage kind. It is based on the FlagOneWordValue class
454 // and relies on the magic uninitialized state of default constructed instead of
455 // FlagOneWordValue to indicate that the value has been initialized or not.
456 template <typename T>
457 struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
458 constexpr FlagValue() : FlagOneWordValue() {}
459 bool Get(const SequenceLock&, T& dst) const {
460 int64_t one_word_val = value.load(std::memory_order_acquire);
461 if (ABSL_PREDICT_FALSE(one_word_val == FlagOneWordValue::Uninitialized())) {
462 return false;
463 }
464 std::memcpy(&dst, static_cast<const void*>(&one_word_val), sizeof(T));
465 return true;
466 }
467 };
468
469 // This specialization represents the storage of flag values types with the
470 // kSequenceLocked storage kind. This storage is used by trivially copyable
471 // types with size greater than 8 bytes. This storage relies on uninitialized
472 // state of the SequenceLock to indicate that the value has been initialized or
473 // not. This storage also provides lock-free read access to the underlying
474 // value once it is initialized.
475 template <typename T>
476 struct FlagValue<T, FlagValueStorageKind::kSequenceLocked> {
477 bool Get(const SequenceLock& lock, T& dst) const {
478 return lock.TryRead(&dst, value_words, sizeof(T));
479 }
480
481 static constexpr int kNumWords =
482 flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t);
483
484 alignas(T) alignas(
485 std::atomic<uint64_t>) std::atomic<uint64_t> value_words[kNumWords];
486 };
487
488 // This specialization represents the storage of flag values types with the
489 // kHeapAllocated storage kind. This is a storage of last resort and is used
490 // if none of other storage kinds are applicable.
491 //
492 // Generally speaking the values with this storage kind can't be accessed
493 // atomically and thus can't be read without holding a lock. If we would ever
494 // want to avoid the lock, we'd need to leak the old value every time new flag
495 // value is being set (since we are in danger of having a race condition
496 // otherwise).
497 //
498 // Instead of doing that, this implementation attempts to cater to some common
499 // use cases by allowing at most 2 values to be leaked - default value and
500 // value set from the command line.
501 //
502 // This specialization provides an initial buffer for the first flag value. This
503 // is where the default value is going to be stored. We attempt to reuse this
504 // buffer if possible, including storing the value set from the command line
505 // there.
506 //
507 // As long as we only read this value, we can access it without a lock (in
508 // practice we still use the lock for the very first read to be able set
509 // "has been read" option on this flag).
510 //
511 // If flag is specified on the command line we store the parsed value either
512 // in the internal buffer (if the default value never been read) or we leak the
513 // default value and allocate the new storage for the parse value. This value is
514 // also a candidate for an unprotected read. If flag is set programmatically
515 // after the command line is parsed, the storage for this value is going to be
516 // leaked. Note that in both scenarios we are not going to have a real leak.
517 // Instead we'll store the leaked value pointers in the internal freelist to
518 // avoid triggering the memory leak checker complains.
519 //
520 // If the flag is ever set programmatically, it stops being the candidate for an
521 // unprotected read, and any follow up access to the flag value requires a lock.
522 // Note that if the value if set programmatically before the command line is
523 // parsed, we can switch back to enabling unprotected reads for that value.
524 template <typename T>
525 struct FlagValue<T, FlagValueStorageKind::kHeapAllocated>
526 : FlagMaskedPointerValue {
527 // We const initialize the value with unmasked pointer to the internal buffer,
528 // making sure it is not a candidate for unprotected read. This way we can
529 // ensure Init is done before any access to the flag value.
530 constexpr FlagValue() : FlagMaskedPointerValue(&buffer[0]) {}
531
532 bool Get(const SequenceLock&, T& dst) const {
533 MaskedPointer ptr_value = value.load(std::memory_order_acquire);
534
535 if (ABSL_PREDICT_TRUE(ptr_value.AllowsUnprotectedRead())) {
536 ::new (static_cast<void*>(&dst)) T(*static_cast<T*>(ptr_value.Ptr()));
537 return true;
538 }
539 return false;
540 }
541
542 alignas(MaskedPointer::RequiredAlignment()) alignas(
543 T) char buffer[sizeof(T)]{};
544 };
545
546 ///////////////////////////////////////////////////////////////////////////////
547 // Flag callback auxiliary structs.
548
549 // Signature for the mutation callback used by watched Flags
550 // The callback is noexcept.
551 // TODO(rogeeff): add noexcept after C++17 support is added.
552 using FlagCallbackFunc = void (*)();
553
554 struct FlagCallback {
555 FlagCallbackFunc func;
556 absl::Mutex guard; // Guard for concurrent callback invocations.
557 };
558
559 ///////////////////////////////////////////////////////////////////////////////
560 // Flag implementation, which does not depend on flag value type.
561 // The class encapsulates the Flag's data and access to it.
562
563 struct DynValueDeleter {
564 explicit DynValueDeleter(FlagOpFn op_arg = nullptr);
565 void operator()(void* ptr) const;
566
567 FlagOpFn op;
568 };
569
570 class FlagState;
571
572 // These are only used as constexpr global objects.
573 // They do not use a virtual destructor to simplify their implementation.
574 // They are not destroyed except at program exit, so leaks do not matter.
575 #if defined(__GNUC__) && !defined(__clang__)
576 #pragma GCC diagnostic push
577 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
578 #endif
579 class FlagImpl final : public CommandLineFlag {
580 public:
581 constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
582 FlagHelpArg help, FlagValueStorageKind value_kind,
583 FlagDefaultArg default_arg)
584 : name_(name),
585 filename_(filename),
586 op_(op),
587 help_(help.source),
588 help_source_kind_(static_cast<uint8_t>(help.kind)),
589 value_storage_kind_(static_cast<uint8_t>(value_kind)),
590 def_kind_(static_cast<uint8_t>(default_arg.kind)),
591 modified_(false),
592 on_command_line_(false),
593 callback_(nullptr),
594 default_value_(default_arg.source),
595 data_guard_{} {}
596
597 // Constant access methods
598 int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard());
599 bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard());
600 void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
601 void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
602 *value = ReadOneBool();
603 }
604 template <typename T,
605 absl::enable_if_t<flags_internal::StorageKind<T>() ==
606 FlagValueStorageKind::kOneWordAtomic,
607 int> = 0>
608 void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
609 int64_t v = ReadOneWord();
610 std::memcpy(value, static_cast<const void*>(&v), sizeof(T));
611 }
612 template <typename T,
613 typename std::enable_if<flags_internal::StorageKind<T>() ==
614 FlagValueStorageKind::kValueAndInitBit,
615 int>::type = 0>
616 void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
617 *value = absl::bit_cast<FlagValueAndInitBit<T>>(ReadOneWord()).value;
618 }
619
620 // Mutating access methods
621 void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
622
623 // Interfaces to operate on callbacks.
624 void SetCallback(const FlagCallbackFunc mutation_callback)
625 ABSL_LOCKS_EXCLUDED(*DataGuard());
626 void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
627
628 // Used in read/write operations to validate source/target has correct type.
629 // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
630 // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
631 // int. To do that we pass the assumed type id (which is deduced from type
632 // int) as an argument `type_id`, which is in turn is validated against the
633 // type id stored in flag object by flag definition statement.
634 void AssertValidType(FlagFastTypeId type_id,
635 const std::type_info* (*gen_rtti)()) const;
636
637 private:
638 template <typename T>
639 friend class Flag;
640 friend class FlagState;
641
642 // Ensures that `data_guard_` is initialized and returns it.
643 absl::Mutex* DataGuard() const
644 ABSL_LOCK_RETURNED(reinterpret_cast<absl::Mutex*>(data_guard_));
645 // Returns heap allocated value of type T initialized with default value.
646 std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
647 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
648 // Flag initialization called via absl::call_once.
649 void Init();
650
651 // Offset value access methods. One per storage kind. These methods to not
652 // respect const correctness, so be very careful using them.
653
654 // This is a shared helper routine which encapsulates most of the magic. Since
655 // it is only used inside the three routines below, which are defined in
656 // flag.cc, we can define it in that file as well.
657 template <typename StorageT>
658 StorageT* OffsetValue() const;
659
660 // The same as above, but used for sequencelock-protected storage.
661 std::atomic<uint64_t>* AtomicBufferValue() const;
662
663 // This is an accessor for a value stored as one word atomic. Returns a
664 // mutable reference to an atomic value.
665 std::atomic<int64_t>& OneWordValue() const;
666
667 std::atomic<MaskedPointer>& PtrStorage() const;
668
669 // Attempts to parse supplied `value` string. If parsing is successful,
670 // returns new value. Otherwise returns nullptr.
671 std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
672 std::string& err) const
673 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
674 // Stores the flag value based on the pointer to the source.
675 void StoreValue(const void* src, ValueSource source)
676 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
677
678 // Copy the flag data, protected by `seq_lock_` into `dst`.
679 //
680 // REQUIRES: ValueStorageKind() == kSequenceLocked.
681 void ReadSequenceLockedData(void* dst) const
682 ABSL_LOCKS_EXCLUDED(*DataGuard());
683
684 FlagHelpKind HelpSourceKind() const {
685 return static_cast<FlagHelpKind>(help_source_kind_);
686 }
687 FlagValueStorageKind ValueStorageKind() const {
688 return static_cast<FlagValueStorageKind>(value_storage_kind_);
689 }
690 FlagDefaultKind DefaultKind() const
691 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
692 return static_cast<FlagDefaultKind>(def_kind_);
693 }
694
695 // CommandLineFlag interface implementation
696 absl::string_view Name() const override;
697 std::string Filename() const override;
698 std::string Help() const override;
699 FlagFastTypeId TypeId() const override;
700 bool IsSpecifiedOnCommandLine() const override
701 ABSL_LOCKS_EXCLUDED(*DataGuard());
702 std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
703 std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
704 bool ValidateInputValue(absl::string_view value) const override
705 ABSL_LOCKS_EXCLUDED(*DataGuard());
706 void CheckDefaultValueParsingRoundtrip() const override
707 ABSL_LOCKS_EXCLUDED(*DataGuard());
708
709 int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
710
711 // Interfaces to save and restore flags to/from persistent state.
712 // Returns current flag state or nullptr if flag does not support
713 // saving and restoring a state.
714 std::unique_ptr<FlagStateInterface> SaveState() override
715 ABSL_LOCKS_EXCLUDED(*DataGuard());
716
717 // Restores the flag state to the supplied state object. If there is
718 // nothing to restore returns false. Otherwise returns true.
719 bool RestoreState(const FlagState& flag_state)
720 ABSL_LOCKS_EXCLUDED(*DataGuard());
721
722 bool ParseFrom(absl::string_view value, FlagSettingMode set_mode,
723 ValueSource source, std::string& error) override
724 ABSL_LOCKS_EXCLUDED(*DataGuard());
725
726 // Immutable flag's state.
727
728 // Flags name passed to ABSL_FLAG as second arg.
729 const char* const name_;
730 // The file name where ABSL_FLAG resides.
731 const char* const filename_;
732 // Type-specific operations vtable.
733 const FlagOpFn op_;
734 // Help message literal or function to generate it.
735 const FlagHelpMsg help_;
736 // Indicates if help message was supplied as literal or generator func.
737 const uint8_t help_source_kind_ : 1;
738 // Kind of storage this flag is using for the flag's value.
739 const uint8_t value_storage_kind_ : 2;
740
741 uint8_t : 0; // The bytes containing the const bitfields must not be
742 // shared with bytes containing the mutable bitfields.
743
744 // Mutable flag's state (guarded by `data_guard_`).
745
746 // def_kind_ is not guard by DataGuard() since it is accessed in Init without
747 // locks.
748 uint8_t def_kind_ : 2;
749 // Has this flag's value been modified?
750 bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
751 // Has this flag been specified on command line.
752 bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
753
754 // Unique tag for absl::call_once call to initialize this flag.
755 absl::once_flag init_control_;
756
757 // Sequence lock / mutation counter.
758 flags_internal::SequenceLock seq_lock_;
759
760 // Optional flag's callback and absl::Mutex to guard the invocations.
761 FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
762 // Either a pointer to the function generating the default value based on the
763 // value specified in ABSL_FLAG or pointer to the dynamically set default
764 // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
765 // these two cases.
766 FlagDefaultSrc default_value_;
767
768 // This is reserved space for an absl::Mutex to guard flag data. It will be
769 // initialized in FlagImpl::Init via placement new.
770 // We can't use "absl::Mutex data_guard_", since this class is not literal.
771 // We do not want to use "absl::Mutex* data_guard_", since this would require
772 // heap allocation during initialization, which is both slows program startup
773 // and can fail. Using reserved space + placement new allows us to avoid both
774 // problems.
775 alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
776 };
777 #if defined(__GNUC__) && !defined(__clang__)
778 #pragma GCC diagnostic pop
779 #endif
780
781 ///////////////////////////////////////////////////////////////////////////////
782 // The Flag object parameterized by the flag's value type. This class implements
783 // flag reflection handle interface.
784
785 template <typename T>
786 class Flag {
787 public:
788 constexpr Flag(const char* name, const char* filename, FlagHelpArg help,
789 const FlagDefaultArg default_arg)
790 : impl_(name, filename, &FlagOps<T>, help,
791 flags_internal::StorageKind<T>(), default_arg),
792 value_() {}
793
794 // CommandLineFlag interface
795 absl::string_view Name() const { return impl_.Name(); }
796 std::string Filename() const { return impl_.Filename(); }
797 std::string Help() const { return impl_.Help(); }
798 // Do not use. To be removed.
799 bool IsSpecifiedOnCommandLine() const {
800 return impl_.IsSpecifiedOnCommandLine();
801 }
802 std::string DefaultValue() const { return impl_.DefaultValue(); }
803 std::string CurrentValue() const { return impl_.CurrentValue(); }
804
805 private:
806 template <typename, bool>
807 friend class FlagRegistrar;
808 friend class FlagImplPeer;
809
810 T Get() const {
811 // See implementation notes in CommandLineFlag::Get().
812 union U {
813 T value;
814 U() {}
815 ~U() { value.~T(); }
816 };
817 U u;
818
819 #if !defined(NDEBUG)
820 impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
821 #endif
822
823 if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) {
824 impl_.Read(&u.value);
825 }
826 return std::move(u.value);
827 }
828 void Set(const T& v) {
829 impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
830 impl_.Write(&v);
831 }
832
833 // Access to the reflection.
834 const CommandLineFlag& Reflect() const { return impl_; }
835
836 // Flag's data
837 // The implementation depends on value_ field to be placed exactly after the
838 // impl_ field, so that impl_ can figure out the offset to the value and
839 // access it.
840 FlagImpl impl_;
841 FlagValue<T> value_;
842 };
843
844 ///////////////////////////////////////////////////////////////////////////////
845 // Trampoline for friend access
846
847 class FlagImplPeer {
848 public:
849 template <typename T, typename FlagType>
850 static T InvokeGet(const FlagType& flag) {
851 return flag.Get();
852 }
853 template <typename FlagType, typename T>
854 static void InvokeSet(FlagType& flag, const T& v) {
855 flag.Set(v);
856 }
857 template <typename FlagType>
858 static const CommandLineFlag& InvokeReflect(const FlagType& f) {
859 return f.Reflect();
860 }
861 };
862
863 ///////////////////////////////////////////////////////////////////////////////
864 // Implementation of Flag value specific operations routine.
865 template <typename T>
866 void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
867 struct AlignedSpace {
868 alignas(MaskedPointer::RequiredAlignment()) alignas(T) char buf[sizeof(T)];
869 };
870 using Allocator = std::allocator<AlignedSpace>;
871 switch (op) {
872 case FlagOp::kAlloc: {
873 Allocator alloc;
874 return std::allocator_traits<Allocator>::allocate(alloc, 1);
875 }
876 case FlagOp::kDelete: {
877 T* p = static_cast<T*>(v2);
878 p->~T();
879 Allocator alloc;
880 std::allocator_traits<Allocator>::deallocate(
881 alloc, reinterpret_cast<AlignedSpace*>(p), 1);
882 return nullptr;
883 }
884 case FlagOp::kCopy:
885 *static_cast<T*>(v2) = *static_cast<const T*>(v1);
886 return nullptr;
887 case FlagOp::kCopyConstruct:
888 new (v2) T(*static_cast<const T*>(v1));
889 return nullptr;
890 case FlagOp::kSizeof:
891 return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
892 case FlagOp::kFastTypeId:
893 return const_cast<void*>(base_internal::FastTypeId<T>());
894 case FlagOp::kRuntimeTypeId:
895 return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
896 case FlagOp::kParse: {
897 // Initialize the temporary instance of type T based on current value in
898 // destination (which is going to be flag's default value).
899 T temp(*static_cast<T*>(v2));
900 if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
901 static_cast<std::string*>(v3))) {
902 return nullptr;
903 }
904 *static_cast<T*>(v2) = std::move(temp);
905 return v2;
906 }
907 case FlagOp::kUnparse:
908 *static_cast<std::string*>(v2) =
909 absl::UnparseFlag<T>(*static_cast<const T*>(v1));
910 return nullptr;
911 case FlagOp::kValueOffset: {
912 // Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the
913 // offset of the data.
914 size_t round_to = alignof(FlagValue<T>);
915 size_t offset = (sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
916 return reinterpret_cast<void*>(offset);
917 }
918 }
919 return nullptr;
920 }
921
922 ///////////////////////////////////////////////////////////////////////////////
923 // This class facilitates Flag object registration and tail expression-based
924 // flag definition, for example:
925 // ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
926 struct FlagRegistrarEmpty {};
927 template <typename T, bool do_register>
928 class FlagRegistrar {
929 public:
930 constexpr explicit FlagRegistrar(Flag<T>& flag, const char* filename)
931 : flag_(flag) {
932 if (do_register)
933 flags_internal::RegisterCommandLineFlag(flag_.impl_, filename);
934 }
935
936 FlagRegistrar OnUpdate(FlagCallbackFunc cb) && {
937 flag_.impl_.SetCallback(cb);
938 return *this;
939 }
940
941 // Makes the registrar die gracefully as an empty struct on a line where
942 // registration happens. Registrar objects are intended to live only as
943 // temporary.
944 constexpr operator FlagRegistrarEmpty() const { return {}; } // NOLINT
945
946 private:
947 Flag<T>& flag_; // Flag being registered (not owned).
948 };
949
950 ///////////////////////////////////////////////////////////////////////////////
951 // Test only API
952 uint64_t NumLeakedFlagValues();
953
954 } // namespace flags_internal
955 ABSL_NAMESPACE_END
956 } // namespace absl
957
958 #endif // ABSL_FLAGS_INTERNAL_FLAG_H_
959