xref: /aosp_15_r20/external/abseil-cpp/absl/memory/memory.h (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: memory.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file contains utility functions for managing the creation and
20 // conversion of smart pointers. This file is an extension to the C++
21 // standard <memory> library header file.
22 
23 #ifndef ABSL_MEMORY_MEMORY_H_
24 #define ABSL_MEMORY_MEMORY_H_
25 
26 #include <cstddef>
27 #include <limits>
28 #include <memory>
29 #include <new>
30 #include <type_traits>
31 #include <utility>
32 
33 #include "absl/base/macros.h"
34 #include "absl/meta/type_traits.h"
35 
36 namespace absl {
37 ABSL_NAMESPACE_BEGIN
38 
39 // -----------------------------------------------------------------------------
40 // Function Template: WrapUnique()
41 // -----------------------------------------------------------------------------
42 //
43 // Adopts ownership from a raw pointer and transfers it to the returned
44 // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*
45 // specify the template type `T` when calling `WrapUnique`.
46 //
47 // Example:
48 //   X* NewX(int, int);
49 //   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.
50 //
51 // Do not call WrapUnique with an explicit type, as in
52 // `WrapUnique<X>(NewX(1, 2))`.  The purpose of WrapUnique is to automatically
53 // deduce the pointer type. If you wish to make the type explicit, just use
54 // `std::unique_ptr` directly.
55 //
56 //   auto x = std::unique_ptr<X>(NewX(1, 2));
57 //                  - or -
58 //   std::unique_ptr<X> x(NewX(1, 2));
59 //
60 // While `absl::WrapUnique` is useful for capturing the output of a raw
61 // pointer factory, prefer 'absl::make_unique<T>(args...)' over
62 // 'absl::WrapUnique(new T(args...))'.
63 //
64 //   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.
65 //   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.
66 //
67 // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
68 // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
69 // arrays, functions or void, and it must not be used to capture pointers
70 // obtained from array-new expressions (even though that would compile!).
71 template <typename T>
WrapUnique(T * ptr)72 std::unique_ptr<T> WrapUnique(T* ptr) {
73   static_assert(!std::is_array<T>::value, "array types are unsupported");
74   static_assert(std::is_object<T>::value, "non-object types are unsupported");
75   return std::unique_ptr<T>(ptr);
76 }
77 
78 // -----------------------------------------------------------------------------
79 // Function Template: make_unique<T>()
80 // -----------------------------------------------------------------------------
81 //
82 // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
83 // during the construction process. `absl::make_unique<>` also avoids redundant
84 // type declarations, by avoiding the need to explicitly use the `new` operator.
85 //
86 // https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
87 //
88 // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
89 // see Herb Sutter's explanation on
90 // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].
91 // (In general, reviewers should treat `new T(a,b)` with scrutiny.)
92 //
93 // Historical note: Abseil once provided a C++11 compatible implementation of
94 // the C++14's `std::make_unique`. Now that C++11 support has been sunsetted,
95 // `absl::make_unique` simply uses the STL-provided implementation. New code
96 // should use `std::make_unique`.
97 using std::make_unique;
98 
99 // -----------------------------------------------------------------------------
100 // Function Template: RawPtr()
101 // -----------------------------------------------------------------------------
102 //
103 // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is
104 // useful within templates that need to handle a complement of raw pointers,
105 // `std::nullptr_t`, and smart pointers.
106 template <typename T>
107 auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {
108   // ptr is a forwarding reference to support Ts with non-const operators.
109   return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;
110 }
RawPtr(std::nullptr_t)111 inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
112 
113 // -----------------------------------------------------------------------------
114 // Function Template: ShareUniquePtr()
115 // -----------------------------------------------------------------------------
116 //
117 // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced
118 // type. Ownership (if any) of the held value is transferred to the returned
119 // shared pointer.
120 //
121 // Example:
122 //
123 //     auto up = absl::make_unique<int>(10);
124 //     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>
125 //     CHECK_EQ(*sp, 10);
126 //     CHECK(up == nullptr);
127 //
128 // Note that this conversion is correct even when T is an array type, and more
129 // generally it works for *any* deleter of the `unique_ptr` (single-object
130 // deleter, array deleter, or any custom deleter), since the deleter is adopted
131 // by the shared pointer as well. The deleter is copied (unless it is a
132 // reference).
133 //
134 // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
135 // null shared pointer does not attempt to call the deleter.
136 template <typename T, typename D>
ShareUniquePtr(std::unique_ptr<T,D> && ptr)137 std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
138   return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
139 }
140 
141 // -----------------------------------------------------------------------------
142 // Function Template: WeakenPtr()
143 // -----------------------------------------------------------------------------
144 //
145 // Creates a weak pointer associated with a given shared pointer. The returned
146 // value is a `std::weak_ptr` of deduced type.
147 //
148 // Example:
149 //
150 //    auto sp = std::make_shared<int>(10);
151 //    auto wp = absl::WeakenPtr(sp);
152 //    CHECK_EQ(sp.get(), wp.lock().get());
153 //    sp.reset();
154 //    CHECK(wp.lock() == nullptr);
155 //
156 template <typename T>
WeakenPtr(const std::shared_ptr<T> & ptr)157 std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
158   return std::weak_ptr<T>(ptr);
159 }
160 
161 // -----------------------------------------------------------------------------
162 // Class Template: pointer_traits
163 // -----------------------------------------------------------------------------
164 //
165 // Historical note: Abseil once provided an implementation of
166 // `std::pointer_traits` for platforms that had not yet provided it. Those
167 // platforms are no longer supported. New code should simply use
168 // `std::pointer_traits`.
169 using std::pointer_traits;
170 
171 // -----------------------------------------------------------------------------
172 // Class Template: allocator_traits
173 // -----------------------------------------------------------------------------
174 //
175 // Historical note: Abseil once provided an implementation of
176 // `std::allocator_traits` for platforms that had not yet provided it. Those
177 // platforms are no longer supported. New code should simply use
178 // `std::allocator_traits`.
179 using std::allocator_traits;
180 
181 namespace memory_internal {
182 
183 // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
184 template <template <typename> class Extract, typename Obj, typename Default,
185           typename>
186 struct ExtractOr {
187   using type = Default;
188 };
189 
190 template <template <typename> class Extract, typename Obj, typename Default>
191 struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
192   using type = Extract<Obj>;
193 };
194 
195 template <template <typename> class Extract, typename Obj, typename Default>
196 using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
197 
198 // This template alias transforms Alloc::is_nothrow into a metafunction with
199 // Alloc as a parameter so it can be used with ExtractOrT<>.
200 template <typename Alloc>
201 using GetIsNothrow = typename Alloc::is_nothrow;
202 
203 }  // namespace memory_internal
204 
205 // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
206 // specify whether the default allocation function can throw or never throws.
207 // If the allocation function never throws, user should define it to a non-zero
208 // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
209 // If the allocation function can throw, user should leave it undefined or
210 // define it to zero.
211 //
212 // allocator_is_nothrow<Alloc> is a traits class that derives from
213 // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
214 // for Alloc = std::allocator<T> for any type T according to the state of
215 // ABSL_ALLOCATOR_NOTHROW.
216 //
217 // default_allocator_is_nothrow is a class that derives from std::true_type
218 // when the default allocator (global operator new) never throws, and
219 // std::false_type when it can throw. It is a convenience shorthand for writing
220 // allocator_is_nothrow<std::allocator<T>> (T can be any type).
221 // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
222 // the same type for all T, because users should specialize neither
223 // allocator_is_nothrow nor std::allocator.
224 template <typename Alloc>
225 struct allocator_is_nothrow
226     : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
227                                   std::false_type> {};
228 
229 #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
230 template <typename T>
231 struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
232 struct default_allocator_is_nothrow : std::true_type {};
233 #else
234 struct default_allocator_is_nothrow : std::false_type {};
235 #endif
236 
237 namespace memory_internal {
238 template <typename Allocator, typename Iterator, typename... Args>
239 void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
240                     const Args&... args) {
241   for (Iterator cur = first; cur != last; ++cur) {
242     ABSL_INTERNAL_TRY {
243       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
244                                                   args...);
245     }
246     ABSL_INTERNAL_CATCH_ANY {
247       while (cur != first) {
248         --cur;
249         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
250       }
251       ABSL_INTERNAL_RETHROW;
252     }
253   }
254 }
255 
256 template <typename Allocator, typename Iterator, typename InputIterator>
257 void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
258                InputIterator last) {
259   for (Iterator cur = destination; first != last;
260        static_cast<void>(++cur), static_cast<void>(++first)) {
261     ABSL_INTERNAL_TRY {
262       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
263                                                   *first);
264     }
265     ABSL_INTERNAL_CATCH_ANY {
266       while (cur != destination) {
267         --cur;
268         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
269       }
270       ABSL_INTERNAL_RETHROW;
271     }
272   }
273 }
274 }  // namespace memory_internal
275 ABSL_NAMESPACE_END
276 }  // namespace absl
277 
278 #endif  // ABSL_MEMORY_MEMORY_H_
279