xref: /aosp_15_r20/external/abseil-cpp/absl/numeric/int128.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/numeric/int128.h"
16 
17 #include <stddef.h>
18 
19 #include <cassert>
20 #include <iomanip>
21 #include <ostream>  // NOLINT(readability/streams)
22 #include <sstream>
23 #include <string>
24 #include <type_traits>
25 
26 #include "absl/base/optimization.h"
27 #include "absl/numeric/bits.h"
28 
29 namespace absl {
30 ABSL_NAMESPACE_BEGIN
31 
32 namespace {
33 
34 // Returns the 0-based position of the last set bit (i.e., most significant bit)
35 // in the given uint128. The argument is not 0.
36 //
37 // For example:
38 //   Given: 5 (decimal) == 101 (binary)
39 //   Returns: 2
Fls128(uint128 n)40 inline ABSL_ATTRIBUTE_ALWAYS_INLINE int Fls128(uint128 n) {
41   if (uint64_t hi = Uint128High64(n)) {
42     ABSL_ASSUME(hi != 0);
43     return 127 - countl_zero(hi);
44   }
45   const uint64_t low = Uint128Low64(n);
46   ABSL_ASSUME(low != 0);
47   return 63 - countl_zero(low);
48 }
49 
50 // Long division/modulo for uint128 implemented using the shift-subtract
51 // division algorithm adapted from:
52 // https://stackoverflow.com/questions/5386377/division-without-using
DivModImpl(uint128 dividend,uint128 divisor,uint128 * quotient_ret,uint128 * remainder_ret)53 inline void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret,
54                        uint128* remainder_ret) {
55   assert(divisor != 0);
56 
57   if (divisor > dividend) {
58     *quotient_ret = 0;
59     *remainder_ret = dividend;
60     return;
61   }
62 
63   if (divisor == dividend) {
64     *quotient_ret = 1;
65     *remainder_ret = 0;
66     return;
67   }
68 
69   uint128 denominator = divisor;
70   uint128 quotient = 0;
71 
72   // Left aligns the MSB of the denominator and the dividend.
73   const int shift = Fls128(dividend) - Fls128(denominator);
74   denominator <<= shift;
75 
76   // Uses shift-subtract algorithm to divide dividend by denominator. The
77   // remainder will be left in dividend.
78   for (int i = 0; i <= shift; ++i) {
79     quotient <<= 1;
80     if (dividend >= denominator) {
81       dividend -= denominator;
82       quotient |= 1;
83     }
84     denominator >>= 1;
85   }
86 
87   *quotient_ret = quotient;
88   *remainder_ret = dividend;
89 }
90 
91 template <typename T>
MakeUint128FromFloat(T v)92 uint128 MakeUint128FromFloat(T v) {
93   static_assert(std::is_floating_point<T>::value, "");
94 
95   // Rounding behavior is towards zero, same as for built-in types.
96 
97   // Undefined behavior if v is NaN or cannot fit into uint128.
98   assert(std::isfinite(v) && v > -1 &&
99          (std::numeric_limits<T>::max_exponent <= 128 ||
100           v < std::ldexp(static_cast<T>(1), 128)));
101 
102   if (v >= std::ldexp(static_cast<T>(1), 64)) {
103     uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));
104     uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));
105     return MakeUint128(hi, lo);
106   }
107 
108   return MakeUint128(0, static_cast<uint64_t>(v));
109 }
110 
111 #if defined(__clang__) && (__clang_major__ < 9) && !defined(__SSE3__)
112 // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
113 // Casting from long double to uint64_t is miscompiled and drops bits.
114 // It is more work, so only use when we need the workaround.
MakeUint128FromFloat(long double v)115 uint128 MakeUint128FromFloat(long double v) {
116   // Go 50 bits at a time, that fits in a double
117   static_assert(std::numeric_limits<double>::digits >= 50, "");
118   static_assert(std::numeric_limits<long double>::digits <= 150, "");
119   // Undefined behavior if v is not finite or cannot fit into uint128.
120   assert(std::isfinite(v) && v > -1 && v < std::ldexp(1.0L, 128));
121 
122   v = std::ldexp(v, -100);
123   uint64_t w0 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
124   v = std::ldexp(v - static_cast<double>(w0), 50);
125   uint64_t w1 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
126   v = std::ldexp(v - static_cast<double>(w1), 50);
127   uint64_t w2 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
128   return (static_cast<uint128>(w0) << 100) | (static_cast<uint128>(w1) << 50) |
129          static_cast<uint128>(w2);
130 }
131 #endif  // __clang__ && (__clang_major__ < 9) && !__SSE3__
132 }  // namespace
133 
uint128(float v)134 uint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {}
uint128(double v)135 uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {}
uint128(long double v)136 uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {}
137 
138 #if !defined(ABSL_HAVE_INTRINSIC_INT128)
operator /(uint128 lhs,uint128 rhs)139 uint128 operator/(uint128 lhs, uint128 rhs) {
140   uint128 quotient = 0;
141   uint128 remainder = 0;
142   DivModImpl(lhs, rhs, &quotient, &remainder);
143   return quotient;
144 }
145 
operator %(uint128 lhs,uint128 rhs)146 uint128 operator%(uint128 lhs, uint128 rhs) {
147   uint128 quotient = 0;
148   uint128 remainder = 0;
149   DivModImpl(lhs, rhs, &quotient, &remainder);
150   return remainder;
151 }
152 #endif  // !defined(ABSL_HAVE_INTRINSIC_INT128)
153 
154 namespace {
155 
Uint128ToFormattedString(uint128 v,std::ios_base::fmtflags flags)156 std::string Uint128ToFormattedString(uint128 v, std::ios_base::fmtflags flags) {
157   // Select a divisor which is the largest power of the base < 2^64.
158   uint128 div;
159   int div_base_log;
160   switch (flags & std::ios::basefield) {
161     case std::ios::hex:
162       div = 0x1000000000000000;  // 16^15
163       div_base_log = 15;
164       break;
165     case std::ios::oct:
166       div = 01000000000000000000000;  // 8^21
167       div_base_log = 21;
168       break;
169     default:  // std::ios::dec
170       div = 10000000000000000000u;  // 10^19
171       div_base_log = 19;
172       break;
173   }
174 
175   // Now piece together the uint128 representation from three chunks of the
176   // original value, each less than "div" and therefore representable as a
177   // uint64_t.
178   std::ostringstream os;
179   std::ios_base::fmtflags copy_mask =
180       std::ios::basefield | std::ios::showbase | std::ios::uppercase;
181   os.setf(flags & copy_mask, copy_mask);
182   uint128 high = v;
183   uint128 low;
184   DivModImpl(high, div, &high, &low);
185   uint128 mid;
186   DivModImpl(high, div, &high, &mid);
187   if (Uint128Low64(high) != 0) {
188     os << Uint128Low64(high);
189     os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
190     os << Uint128Low64(mid);
191     os << std::setw(div_base_log);
192   } else if (Uint128Low64(mid) != 0) {
193     os << Uint128Low64(mid);
194     os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
195   }
196   os << Uint128Low64(low);
197   return os.str();
198 }
199 
200 }  // namespace
201 
ToString() const202 std::string uint128::ToString() const {
203   return Uint128ToFormattedString(*this, std::ios_base::dec);
204 }
205 
operator <<(std::ostream & os,uint128 v)206 std::ostream& operator<<(std::ostream& os, uint128 v) {
207   std::ios_base::fmtflags flags = os.flags();
208   std::string rep = Uint128ToFormattedString(v, flags);
209 
210   // Add the requisite padding.
211   std::streamsize width = os.width(0);
212   if (static_cast<size_t>(width) > rep.size()) {
213     const size_t count = static_cast<size_t>(width) - rep.size();
214     std::ios::fmtflags adjustfield = flags & std::ios::adjustfield;
215     if (adjustfield == std::ios::left) {
216       rep.append(count, os.fill());
217     } else if (adjustfield == std::ios::internal &&
218                (flags & std::ios::showbase) &&
219                (flags & std::ios::basefield) == std::ios::hex && v != 0) {
220       rep.insert(size_t{2}, count, os.fill());
221     } else {
222       rep.insert(size_t{0}, count, os.fill());
223     }
224   }
225 
226   return os << rep;
227 }
228 
229 namespace {
230 
UnsignedAbsoluteValue(int128 v)231 uint128 UnsignedAbsoluteValue(int128 v) {
232   // Cast to uint128 before possibly negating because -Int128Min() is undefined.
233   return Int128High64(v) < 0 ? -uint128(v) : uint128(v);
234 }
235 
236 }  // namespace
237 
238 #if !defined(ABSL_HAVE_INTRINSIC_INT128)
239 namespace {
240 
241 template <typename T>
MakeInt128FromFloat(T v)242 int128 MakeInt128FromFloat(T v) {
243   // Conversion when v is NaN or cannot fit into int128 would be undefined
244   // behavior if using an intrinsic 128-bit integer.
245   assert(std::isfinite(v) && (std::numeric_limits<T>::max_exponent <= 127 ||
246                               (v >= -std::ldexp(static_cast<T>(1), 127) &&
247                                v < std::ldexp(static_cast<T>(1), 127))));
248 
249   // We must convert the absolute value and then negate as needed, because
250   // floating point types are typically sign-magnitude. Otherwise, the
251   // difference between the high and low 64 bits when interpreted as two's
252   // complement overwhelms the precision of the mantissa.
253   uint128 result = v < 0 ? -MakeUint128FromFloat(-v) : MakeUint128FromFloat(v);
254   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(result)),
255                     Uint128Low64(result));
256 }
257 
258 }  // namespace
259 
int128(float v)260 int128::int128(float v) : int128(MakeInt128FromFloat(v)) {}
int128(double v)261 int128::int128(double v) : int128(MakeInt128FromFloat(v)) {}
int128(long double v)262 int128::int128(long double v) : int128(MakeInt128FromFloat(v)) {}
263 
operator /(int128 lhs,int128 rhs)264 int128 operator/(int128 lhs, int128 rhs) {
265   assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.
266 
267   uint128 quotient = 0;
268   uint128 remainder = 0;
269   DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
270              &quotient, &remainder);
271   if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient;
272   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(quotient)),
273                     Uint128Low64(quotient));
274 }
275 
operator %(int128 lhs,int128 rhs)276 int128 operator%(int128 lhs, int128 rhs) {
277   assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.
278 
279   uint128 quotient = 0;
280   uint128 remainder = 0;
281   DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
282              &quotient, &remainder);
283   if (Int128High64(lhs) < 0) remainder = -remainder;
284   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(remainder)),
285                     Uint128Low64(remainder));
286 }
287 #endif  // ABSL_HAVE_INTRINSIC_INT128
288 
ToString() const289 std::string int128::ToString() const {
290   std::string rep;
291   if (Int128High64(*this) < 0) rep = "-";
292   rep.append(Uint128ToFormattedString(UnsignedAbsoluteValue(*this),
293                                       std::ios_base::dec));
294   return rep;
295 }
296 
operator <<(std::ostream & os,int128 v)297 std::ostream& operator<<(std::ostream& os, int128 v) {
298   std::ios_base::fmtflags flags = os.flags();
299   std::string rep;
300 
301   // Add the sign if needed.
302   bool print_as_decimal =
303       (flags & std::ios::basefield) == std::ios::dec ||
304       (flags & std::ios::basefield) == std::ios_base::fmtflags();
305   if (print_as_decimal) {
306     if (Int128High64(v) < 0) {
307       rep = "-";
308     } else if (flags & std::ios::showpos) {
309       rep = "+";
310     }
311   }
312 
313   rep.append(Uint128ToFormattedString(
314       print_as_decimal ? UnsignedAbsoluteValue(v) : uint128(v), os.flags()));
315 
316   // Add the requisite padding.
317   std::streamsize width = os.width(0);
318   if (static_cast<size_t>(width) > rep.size()) {
319     const size_t count = static_cast<size_t>(width) - rep.size();
320     switch (flags & std::ios::adjustfield) {
321       case std::ios::left:
322         rep.append(count, os.fill());
323         break;
324       case std::ios::internal:
325         if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) {
326           rep.insert(size_t{1}, count, os.fill());
327         } else if ((flags & std::ios::basefield) == std::ios::hex &&
328                    (flags & std::ios::showbase) && v != 0) {
329           rep.insert(size_t{2}, count, os.fill());
330         } else {
331           rep.insert(size_t{0}, count, os.fill());
332         }
333         break;
334       default:  // std::ios::right
335         rep.insert(size_t{0}, count, os.fill());
336         break;
337     }
338   }
339 
340   return os << rep;
341 }
342 
343 ABSL_NAMESPACE_END
344 }  // namespace absl
345 
346 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
347 namespace std {
348 constexpr bool numeric_limits<absl::uint128>::is_specialized;
349 constexpr bool numeric_limits<absl::uint128>::is_signed;
350 constexpr bool numeric_limits<absl::uint128>::is_integer;
351 constexpr bool numeric_limits<absl::uint128>::is_exact;
352 constexpr bool numeric_limits<absl::uint128>::has_infinity;
353 constexpr bool numeric_limits<absl::uint128>::has_quiet_NaN;
354 constexpr bool numeric_limits<absl::uint128>::has_signaling_NaN;
355 constexpr float_denorm_style numeric_limits<absl::uint128>::has_denorm;
356 constexpr bool numeric_limits<absl::uint128>::has_denorm_loss;
357 constexpr float_round_style numeric_limits<absl::uint128>::round_style;
358 constexpr bool numeric_limits<absl::uint128>::is_iec559;
359 constexpr bool numeric_limits<absl::uint128>::is_bounded;
360 constexpr bool numeric_limits<absl::uint128>::is_modulo;
361 constexpr int numeric_limits<absl::uint128>::digits;
362 constexpr int numeric_limits<absl::uint128>::digits10;
363 constexpr int numeric_limits<absl::uint128>::max_digits10;
364 constexpr int numeric_limits<absl::uint128>::radix;
365 constexpr int numeric_limits<absl::uint128>::min_exponent;
366 constexpr int numeric_limits<absl::uint128>::min_exponent10;
367 constexpr int numeric_limits<absl::uint128>::max_exponent;
368 constexpr int numeric_limits<absl::uint128>::max_exponent10;
369 constexpr bool numeric_limits<absl::uint128>::traps;
370 constexpr bool numeric_limits<absl::uint128>::tinyness_before;
371 
372 constexpr bool numeric_limits<absl::int128>::is_specialized;
373 constexpr bool numeric_limits<absl::int128>::is_signed;
374 constexpr bool numeric_limits<absl::int128>::is_integer;
375 constexpr bool numeric_limits<absl::int128>::is_exact;
376 constexpr bool numeric_limits<absl::int128>::has_infinity;
377 constexpr bool numeric_limits<absl::int128>::has_quiet_NaN;
378 constexpr bool numeric_limits<absl::int128>::has_signaling_NaN;
379 constexpr float_denorm_style numeric_limits<absl::int128>::has_denorm;
380 constexpr bool numeric_limits<absl::int128>::has_denorm_loss;
381 constexpr float_round_style numeric_limits<absl::int128>::round_style;
382 constexpr bool numeric_limits<absl::int128>::is_iec559;
383 constexpr bool numeric_limits<absl::int128>::is_bounded;
384 constexpr bool numeric_limits<absl::int128>::is_modulo;
385 constexpr int numeric_limits<absl::int128>::digits;
386 constexpr int numeric_limits<absl::int128>::digits10;
387 constexpr int numeric_limits<absl::int128>::max_digits10;
388 constexpr int numeric_limits<absl::int128>::radix;
389 constexpr int numeric_limits<absl::int128>::min_exponent;
390 constexpr int numeric_limits<absl::int128>::min_exponent10;
391 constexpr int numeric_limits<absl::int128>::max_exponent;
392 constexpr int numeric_limits<absl::int128>::max_exponent10;
393 constexpr bool numeric_limits<absl::int128>::traps;
394 constexpr bool numeric_limits<absl::int128>::tinyness_before;
395 }  // namespace std
396 #endif
397