xref: /aosp_15_r20/external/abseil-cpp/absl/random/uniform_real_distribution_test.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/uniform_real_distribution.h"
16 
17 #include <cfloat>
18 #include <cmath>
19 #include <cstdint>
20 #include <iterator>
21 #include <random>
22 #include <sstream>
23 #include <string>
24 #include <type_traits>
25 #include <vector>
26 
27 #include "gmock/gmock.h"
28 #include "gtest/gtest.h"
29 #include "absl/log/log.h"
30 #include "absl/numeric/internal/representation.h"
31 #include "absl/random/internal/chi_square.h"
32 #include "absl/random/internal/distribution_test_util.h"
33 #include "absl/random/internal/pcg_engine.h"
34 #include "absl/random/internal/sequence_urbg.h"
35 #include "absl/random/random.h"
36 #include "absl/strings/str_cat.h"
37 
38 // NOTES:
39 // * Some documentation on generating random real values suggests that
40 //   it is possible to use std::nextafter(b, DBL_MAX) to generate a value on
41 //   the closed range [a, b]. Unfortunately, that technique is not universally
42 //   reliable due to floating point quantization.
43 //
44 // * absl::uniform_real_distribution<float> generates between 2^28 and 2^29
45 //   distinct floating point values in the range [0, 1).
46 //
47 // * absl::uniform_real_distribution<float> generates at least 2^23 distinct
48 //   floating point values in the range [1, 2). This should be the same as
49 //   any other range covered by a single exponent in IEEE 754.
50 //
51 // * absl::uniform_real_distribution<double> generates more than 2^52 distinct
52 //   values in the range [0, 1), and should generate at least 2^52 distinct
53 //   values in the range of [1, 2).
54 //
55 
56 namespace {
57 
58 template <typename RealType>
59 class UniformRealDistributionTest : public ::testing::Test {};
60 
61 // double-double arithmetic is not supported well by either GCC or Clang; see
62 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
63 // https://bugs.llvm.org/show_bug.cgi?id=49131, and
64 // https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
65 // with double doubles until compiler support is better.
66 using RealTypes =
67     std::conditional<absl::numeric_internal::IsDoubleDouble(),
68                      ::testing::Types<float, double>,
69                      ::testing::Types<float, double, long double>>::type;
70 
71 TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);
72 
TYPED_TEST(UniformRealDistributionTest,ParamSerializeTest)73 TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {
74 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
75   // We're using an x87-compatible FPU, and intermediate operations are
76   // performed with 80-bit floats. This produces slightly different results from
77   // what we expect below.
78   GTEST_SKIP()
79       << "Skipping the test because we detected x87 floating-point semantics";
80 #endif
81   using DistributionType = absl::uniform_real_distribution<TypeParam>;
82   using real_type = TypeParam;
83   using param_type = typename DistributionType::param_type;
84 
85   constexpr const real_type kMax = std::numeric_limits<real_type>::max();
86   constexpr const real_type kMin = std::numeric_limits<real_type>::min();
87   constexpr const real_type kEpsilon =
88       std::numeric_limits<real_type>::epsilon();
89   constexpr const real_type kLowest =
90       std::numeric_limits<real_type>::lowest();  // -max
91 
92   const real_type kDenormMax = std::nextafter(kMin, real_type{0});
93   const real_type kOneMinusE =
94       std::nextafter(real_type{1}, real_type{0});  // 1 - epsilon
95 
96   constexpr const real_type kTwo60{1152921504606846976};  // 2^60
97 
98   constexpr int kCount = 1000;
99   absl::InsecureBitGen gen;
100   for (const auto& param : {
101            param_type(),
102            param_type(real_type{0}, real_type{1}),
103            param_type(real_type(-0.1), real_type(0.1)),
104            param_type(real_type(0.05), real_type(0.12)),
105            param_type(real_type(-0.05), real_type(0.13)),
106            param_type(real_type(-0.05), real_type(-0.02)),
107            // range = 0
108            param_type(real_type(2.0), real_type(2.0)),  // Same
109            // double range = 0
110            // 2^60 , 2^60 + 2^6
111            param_type(kTwo60, real_type(1152921504606847040)),
112            // 2^60 , 2^60 + 2^7
113            param_type(kTwo60, real_type(1152921504606847104)),
114            // double range = 2^8
115            // 2^60 , 2^60 + 2^8
116            param_type(kTwo60, real_type(1152921504606847232)),
117            // float range = 0
118            // 2^60 , 2^60 + 2^36
119            param_type(kTwo60, real_type(1152921573326323712)),
120            // 2^60 , 2^60 + 2^37
121            param_type(kTwo60, real_type(1152921642045800448)),
122            // float range = 2^38
123            // 2^60 , 2^60 + 2^38
124            param_type(kTwo60, real_type(1152921779484753920)),
125            // Limits
126            param_type(0, kMax),
127            param_type(kLowest, 0),
128            param_type(0, kMin),
129            param_type(0, kEpsilon),
130            param_type(-kEpsilon, kEpsilon),
131            param_type(0, kOneMinusE),
132            param_type(0, kDenormMax),
133        }) {
134     // Validate parameters.
135     const auto a = param.a();
136     const auto b = param.b();
137     DistributionType before(a, b);
138     EXPECT_EQ(before.a(), param.a());
139     EXPECT_EQ(before.b(), param.b());
140 
141     {
142       DistributionType via_param(param);
143       EXPECT_EQ(via_param, before);
144     }
145 
146     std::stringstream ss;
147     ss << before;
148     DistributionType after(real_type(1.0), real_type(3.1));
149 
150     EXPECT_NE(before.a(), after.a());
151     EXPECT_NE(before.b(), after.b());
152     EXPECT_NE(before.param(), after.param());
153     EXPECT_NE(before, after);
154 
155     ss >> after;
156 
157     EXPECT_EQ(before.a(), after.a());
158     EXPECT_EQ(before.b(), after.b());
159     EXPECT_EQ(before.param(), after.param());
160     EXPECT_EQ(before, after);
161 
162     // Smoke test.
163     auto sample_min = after.max();
164     auto sample_max = after.min();
165     for (int i = 0; i < kCount; i++) {
166       auto sample = after(gen);
167       // Failure here indicates a bug in uniform_real_distribution::operator(),
168       // or bad parameters--range too large, etc.
169       if (after.min() == after.max()) {
170         EXPECT_EQ(sample, after.min());
171       } else {
172         EXPECT_GE(sample, after.min());
173         EXPECT_LT(sample, after.max());
174       }
175       if (sample > sample_max) {
176         sample_max = sample;
177       }
178       if (sample < sample_min) {
179         sample_min = sample;
180       }
181     }
182 
183     if (!std::is_same<real_type, long double>::value) {
184       // static_cast<double>(long double) can overflow.
185       LOG(INFO) << "Range: " << static_cast<double>(sample_min) << ", "
186                 << static_cast<double>(sample_max);
187     }
188   }
189 }
190 
191 #ifdef _MSC_VER
192 #pragma warning(push)
193 #pragma warning(disable:4756)  // Constant arithmetic overflow.
194 #endif
TYPED_TEST(UniformRealDistributionTest,ViolatesPreconditionsDeathTest)195 TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {
196   using DistributionType = absl::uniform_real_distribution<TypeParam>;
197   using real_type = TypeParam;
198 
199 #if GTEST_HAS_DEATH_TEST
200   // Hi < Lo
201   EXPECT_DEBUG_DEATH({ DistributionType dist(10.0, 1.0); }, "");
202 
203   // Hi - Lo > numeric_limits<>::max()
204   EXPECT_DEBUG_DEATH(
205       {
206         DistributionType dist(std::numeric_limits<real_type>::lowest(),
207                               std::numeric_limits<real_type>::max());
208       },
209       "");
210 
211   // kEpsilon guarantees that max + kEpsilon = inf.
212   const auto kEpsilon = std::nexttoward(
213       (std::numeric_limits<real_type>::max() -
214        std::nexttoward(std::numeric_limits<real_type>::max(), 0.0)) /
215           2,
216       std::numeric_limits<real_type>::max());
217   EXPECT_DEBUG_DEATH(
218       {
219         DistributionType dist(-kEpsilon, std::numeric_limits<real_type>::max());
220       },
221       "");
222   EXPECT_DEBUG_DEATH(
223       {
224         DistributionType dist(std::numeric_limits<real_type>::lowest(),
225                               kEpsilon);
226       },
227       "");
228 
229 #endif  // GTEST_HAS_DEATH_TEST
230 #if defined(NDEBUG)
231   // opt-mode, for invalid parameters, will generate a garbage value,
232   // but should not enter an infinite loop.
233   absl::InsecureBitGen gen;
234   {
235     DistributionType dist(10.0, 1.0);
236     auto x = dist(gen);
237     EXPECT_FALSE(std::isnan(x)) << x;
238   }
239   {
240     DistributionType dist(std::numeric_limits<real_type>::lowest(),
241                           std::numeric_limits<real_type>::max());
242     auto x = dist(gen);
243     // Infinite result.
244     EXPECT_FALSE(std::isfinite(x)) << x;
245   }
246 #endif  // NDEBUG
247 }
248 #ifdef _MSC_VER
249 #pragma warning(pop)  // warning(disable:4756)
250 #endif
251 
TYPED_TEST(UniformRealDistributionTest,TestMoments)252 TYPED_TEST(UniformRealDistributionTest, TestMoments) {
253   using DistributionType = absl::uniform_real_distribution<TypeParam>;
254 
255   constexpr int kSize = 1000000;
256   std::vector<double> values(kSize);
257 
258   // We use a fixed bit generator for distribution accuracy tests.  This allows
259   // these tests to be deterministic, while still testing the qualify of the
260   // implementation.
261   absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
262 
263   DistributionType dist;
264   for (int i = 0; i < kSize; i++) {
265     values[i] = dist(rng);
266   }
267 
268   const auto moments =
269       absl::random_internal::ComputeDistributionMoments(values);
270   EXPECT_NEAR(0.5, moments.mean, 0.01);
271   EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);
272   EXPECT_NEAR(0.0, moments.skewness, 0.02);
273   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);
274 }
275 
TYPED_TEST(UniformRealDistributionTest,ChiSquaredTest50)276 TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {
277   using DistributionType = absl::uniform_real_distribution<TypeParam>;
278   using param_type = typename DistributionType::param_type;
279 
280   using absl::random_internal::kChiSquared;
281 
282   constexpr size_t kTrials = 100000;
283   constexpr int kBuckets = 50;
284   constexpr double kExpected =
285       static_cast<double>(kTrials) / static_cast<double>(kBuckets);
286 
287   // 1-in-100000 threshold, but remember, there are about 8 tests
288   // in this file. And the test could fail for other reasons.
289   // Empirically validated with --runs_per_test=10000.
290   const int kThreshold =
291       absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);
292 
293   // We use a fixed bit generator for distribution accuracy tests.  This allows
294   // these tests to be deterministic, while still testing the qualify of the
295   // implementation.
296   absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
297 
298   for (const auto& param : {param_type(0, 1), param_type(5, 12),
299                             param_type(-5, 13), param_type(-5, -2)}) {
300     const double min_val = param.a();
301     const double max_val = param.b();
302     const double factor = kBuckets / (max_val - min_val);
303 
304     std::vector<int32_t> counts(kBuckets, 0);
305     DistributionType dist(param);
306     for (size_t i = 0; i < kTrials; i++) {
307       auto x = dist(rng);
308       auto bucket = static_cast<size_t>((x - min_val) * factor);
309       counts[bucket]++;
310     }
311 
312     double chi_square = absl::random_internal::ChiSquareWithExpected(
313         std::begin(counts), std::end(counts), kExpected);
314     if (chi_square > kThreshold) {
315       double p_value =
316           absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
317 
318       // Chi-squared test failed. Output does not appear to be uniform.
319       std::string msg;
320       for (const auto& a : counts) {
321         absl::StrAppend(&msg, a, "\n");
322       }
323       absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
324       absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
325                       kThreshold);
326       LOG(INFO) << msg;
327       FAIL() << msg;
328     }
329   }
330 }
331 
TYPED_TEST(UniformRealDistributionTest,StabilityTest)332 TYPED_TEST(UniformRealDistributionTest, StabilityTest) {
333   using DistributionType = absl::uniform_real_distribution<TypeParam>;
334   using real_type = TypeParam;
335 
336   // absl::uniform_real_distribution stability relies only on
337   // random_internal::GenerateRealFromBits.
338   absl::random_internal::sequence_urbg urbg(
339       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
340        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
341        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
342        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
343 
344   std::vector<int> output(12);
345 
346   DistributionType dist;
347   std::generate(std::begin(output), std::end(output), [&] {
348     return static_cast<int>(real_type(1000000) * dist(urbg));
349   });
350 
351   EXPECT_THAT(
352       output,  //
353       testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,
354                            77341, 12527, 708791, 834451, 932808));
355 }
356 
TEST(UniformRealDistributionTest,AlgorithmBounds)357 TEST(UniformRealDistributionTest, AlgorithmBounds) {
358   absl::uniform_real_distribution<double> dist;
359 
360   {
361     // This returns the smallest value >0 from absl::uniform_real_distribution.
362     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
363     double a = dist(urbg);
364     EXPECT_EQ(a, 5.42101086242752217004e-20);
365   }
366 
367   {
368     // This returns a value very near 0.5 from absl::uniform_real_distribution.
369     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
370     double a = dist(urbg);
371     EXPECT_EQ(a, 0.499999999999999944489);
372   }
373   {
374     // This returns a value very near 0.5 from absl::uniform_real_distribution.
375     absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});
376     double a = dist(urbg);
377     EXPECT_EQ(a, 0.5);
378   }
379 
380   {
381     // This returns the largest value <1 from absl::uniform_real_distribution.
382     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});
383     double a = dist(urbg);
384     EXPECT_EQ(a, 0.999999999999999888978);
385   }
386   {
387     // This *ALSO* returns the largest value <1.
388     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
389     double a = dist(urbg);
390     EXPECT_EQ(a, 0.999999999999999888978);
391   }
392 }
393 
394 }  // namespace
395