xref: /aosp_15_r20/external/abseil-cpp/absl/strings/cord_buffer.h (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2021 The Abseil Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: cord_buffer.h
17 // -----------------------------------------------------------------------------
18 //
19 // This file defines an `absl::CordBuffer` data structure to hold data for
20 // eventual inclusion within an existing `Cord` data structure. Cord buffers are
21 // useful for building large Cords that may require custom allocation of its
22 // associated memory.
23 //
24 #ifndef ABSL_STRINGS_CORD_BUFFER_H_
25 #define ABSL_STRINGS_CORD_BUFFER_H_
26 
27 #include <algorithm>
28 #include <cassert>
29 #include <cstddef>
30 #include <cstdint>
31 #include <memory>
32 #include <utility>
33 
34 #include "absl/base/config.h"
35 #include "absl/base/macros.h"
36 #include "absl/numeric/bits.h"
37 #include "absl/strings/internal/cord_internal.h"
38 #include "absl/strings/internal/cord_rep_flat.h"
39 #include "absl/types/span.h"
40 
41 namespace absl {
42 ABSL_NAMESPACE_BEGIN
43 
44 class Cord;
45 class CordBufferTestPeer;
46 
47 // CordBuffer
48 //
49 // CordBuffer manages memory buffers for purposes such as zero-copy APIs as well
50 // as applications building cords with large data requiring granular control
51 // over the allocation and size of cord data. For example, a function creating
52 // a cord of random data could use a CordBuffer as follows:
53 //
54 //   absl::Cord CreateRandomCord(size_t length) {
55 //     absl::Cord cord;
56 //     while (length > 0) {
57 //       CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(length);
58 //       absl::Span<char> data = buffer.available_up_to(length);
59 //       FillRandomValues(data.data(), data.size());
60 //       buffer.IncreaseLengthBy(data.size());
61 //       cord.Append(std::move(buffer));
62 //       length -= data.size();
63 //     }
64 //     return cord;
65 //   }
66 //
67 // CordBuffer instances are by default limited to a capacity of `kDefaultLimit`
68 // bytes. `kDefaultLimit` is currently just under 4KiB, but this default may
69 // change in the future and/or for specific architectures. The default limit is
70 // aimed to provide a good trade-off between performance and memory overhead.
71 // Smaller buffers typically incur more compute cost while larger buffers are
72 // more CPU efficient but create significant memory overhead because of such
73 // allocations being less granular. Using larger buffers may also increase the
74 // risk of memory fragmentation.
75 //
76 // Applications create a buffer using one of the `CreateWithDefaultLimit()` or
77 // `CreateWithCustomLimit()` methods. The returned instance will have a non-zero
78 // capacity and a zero length. Applications use the `data()` method to set the
79 // contents of the managed memory, and once done filling the buffer, use the
80 // `IncreaseLengthBy()` or 'SetLength()' method to specify the length of the
81 // initialized data before adding the buffer to a Cord.
82 //
83 // The `CreateWithCustomLimit()` method is intended for applications needing
84 // larger buffers than the default memory limit, allowing the allocation of up
85 // to a capacity of `kCustomLimit` bytes minus some minimum internal overhead.
86 // The usage of `CreateWithCustomLimit()` should be limited to only those use
87 // cases where the distribution of the input is relatively well known, and/or
88 // where the trade-off between the efficiency gains outweigh the risk of memory
89 // fragmentation. See the documentation for `CreateWithCustomLimit()` for more
90 // information on using larger custom limits.
91 //
92 // The capacity of a `CordBuffer` returned by one of the `Create` methods may
93 // be larger than the requested capacity due to rounding, alignment and
94 // granularity of the memory allocator. Applications should use the `capacity`
95 // method to obtain the effective capacity of the returned instance as
96 // demonstrated in the provided example above.
97 //
98 // CordBuffer is a move-only class. All references into the managed memory are
99 // invalidated when an instance is moved into either another CordBuffer instance
100 // or a Cord. Writing to a location obtained by a previous call to `data()`
101 // after an instance was moved will lead to undefined behavior.
102 //
103 // A `moved from` CordBuffer instance will have a valid, but empty state.
104 // CordBuffer is thread compatible.
105 class CordBuffer {
106  public:
107   // kDefaultLimit
108   //
109   // Default capacity limits of allocated CordBuffers.
110   // See the class comments for more information on allocation limits.
111   static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength;
112 
113   // kCustomLimit
114   //
115   // Maximum size for CreateWithCustomLimit() allocated buffers.
116   // Note that the effective capacity may be slightly less
117   // because of internal overhead of internal cord buffers.
118   static constexpr size_t kCustomLimit = 64U << 10;
119 
120   // Constructors, Destructors and Assignment Operators
121 
122   // Creates an empty CordBuffer.
123   CordBuffer() = default;
124 
125   // Destroys this CordBuffer instance and, if not empty, releases any memory
126   // managed by this instance, invalidating previously returned references.
127   ~CordBuffer();
128 
129   // CordBuffer is move-only
130   CordBuffer(CordBuffer&& rhs) noexcept;
131   CordBuffer& operator=(CordBuffer&&) noexcept;
132   CordBuffer(const CordBuffer&) = delete;
133   CordBuffer& operator=(const CordBuffer&) = delete;
134 
135   // CordBuffer::MaximumPayload()
136   //
137   // Returns the guaranteed maximum payload for a CordBuffer returned by the
138   // `CreateWithDefaultLimit()` method. While small, each internal buffer inside
139   // a Cord incurs an overhead to manage the length, type and reference count
140   // for the buffer managed inside the cord tree. Applications can use this
141   // method to get approximate number of buffers required for a given byte
142   // size, etc.
143   //
144   // For example:
145   //   const size_t payload = absl::CordBuffer::MaximumPayload();
146   //   const size_t buffer_count = (total_size + payload - 1) / payload;
147   //   buffers.reserve(buffer_count);
148   static constexpr size_t MaximumPayload();
149 
150   // Overload to the above `MaximumPayload()` except that it returns the
151   // maximum payload for a CordBuffer returned by the `CreateWithCustomLimit()`
152   // method given the provided `block_size`.
153   static constexpr size_t MaximumPayload(size_t block_size);
154 
155   // CordBuffer::CreateWithDefaultLimit()
156   //
157   // Creates a CordBuffer instance of the desired `capacity`, capped at the
158   // default limit `kDefaultLimit`. The returned buffer has a guaranteed
159   // capacity of at least `min(kDefaultLimit, capacity)`. See the class comments
160   // for more information on buffer capacities and intended usage.
161   static CordBuffer CreateWithDefaultLimit(size_t capacity);
162 
163   // CordBuffer::CreateWithCustomLimit()
164   //
165   // Creates a CordBuffer instance of the desired `capacity` rounded to an
166   // appropriate power of 2 size less than, or equal to `block_size`.
167   // Requires `block_size` to be a power of 2.
168   //
169   // If `capacity` is less than or equal to `kDefaultLimit`, then this method
170   // behaves identical to `CreateWithDefaultLimit`, which means that the caller
171   // is guaranteed to get a buffer of at least the requested capacity.
172   //
173   // If `capacity` is greater than or equal to `block_size`, then this method
174   // returns a buffer with an `allocated size` of `block_size` bytes. Otherwise,
175   // this methods returns a buffer with a suitable smaller power of 2 block size
176   // to satisfy the request. The actual size depends on a number of factors, and
177   // is typically (but not necessarily) the highest or second highest power of 2
178   // value less than or equal to `capacity`.
179   //
180   // The 'allocated size' includes a small amount of overhead required for
181   // internal state, which is currently 13 bytes on 64-bit platforms. For
182   // example: a buffer created with `block_size` and `capacity' set to 8KiB
183   // will have an allocated size of 8KiB, and an effective internal `capacity`
184   // of 8KiB - 13 = 8179 bytes.
185   //
186   // To demonstrate this in practice, let's assume we want to read data from
187   // somewhat larger files using approximately 64KiB buffers:
188   //
189   //   absl::Cord ReadFromFile(int fd, size_t n) {
190   //     absl::Cord cord;
191   //     while (n > 0) {
192   //       CordBuffer buffer = CordBuffer::CreateWithCustomLimit(64 << 10, n);
193   //       absl::Span<char> data = buffer.available_up_to(n);
194   //       ReadFileDataOrDie(fd, data.data(), data.size());
195   //       buffer.IncreaseLengthBy(data.size());
196   //       cord.Append(std::move(buffer));
197   //       n -= data.size();
198   //     }
199   //     return cord;
200   //   }
201   //
202   // If we'd use this function to read a file of 659KiB, we may get the
203   // following pattern of allocated cord buffer sizes:
204   //
205   //   CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
206   //   CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
207   //   ...
208   //   CreateWithCustomLimit(64KiB,  19586) --> ~16KiB (16371)
209   //   CreateWithCustomLimit(64KiB,   3215) -->   3215 (at least 3215)
210   //
211   // The reason the method returns a 16K buffer instead of a roughly 19K buffer
212   // is to reduce memory overhead and fragmentation risks. Using carefully
213   // chosen power of 2 values reduces the entropy of allocated memory sizes.
214   //
215   // Additionally, let's assume we'd use the above function on files that are
216   // generally smaller than 64K. If we'd use 'precise' sized buffers for such
217   // files, than we'd get a very wide distribution of allocated memory sizes
218   // rounded to 4K page sizes, and we'd end up with a lot of unused capacity.
219   //
220   // In general, application should only use custom sizes if the data they are
221   // consuming or storing is expected to be many times the chosen block size,
222   // and be based on objective data and performance metrics. For example, a
223   // compress function may work faster and consume less CPU when using larger
224   // buffers. Such an application should pick a size offering a reasonable
225   // trade-off between expected data size, compute savings with larger buffers,
226   // and the cost or fragmentation effect of larger buffers.
227   // Applications must pick a reasonable spot on that curve, and make sure their
228   // data meets their expectations in size distributions such as "mostly large".
229   static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity);
230 
231   // CordBuffer::available()
232   //
233   // Returns the span delineating the available capacity in this buffer
234   // which is defined as `{ data() + length(), capacity() - length() }`.
235   absl::Span<char> available();
236 
237   // CordBuffer::available_up_to()
238   //
239   // Returns the span delineating the available capacity in this buffer limited
240   // to `size` bytes. This is equivalent to `available().subspan(0, size)`.
241   absl::Span<char> available_up_to(size_t size);
242 
243   // CordBuffer::data()
244   //
245   // Returns a non-null reference to the data managed by this instance.
246   // Applications are allowed to write up to `capacity` bytes of instance data.
247   // CordBuffer data is uninitialized by default. Reading data from an instance
248   // that has not yet been initialized will lead to undefined behavior.
249   char* data();
250   const char* data() const;
251 
252   // CordBuffer::length()
253   //
254   // Returns the length of this instance. The default length of a CordBuffer is
255   // 0, indicating an 'empty' CordBuffer. Applications must specify the length
256   // of the data in a CordBuffer before adding it to a Cord.
257   size_t length() const;
258 
259   // CordBuffer::capacity()
260   //
261   // Returns the capacity of this instance. All instances have a non-zero
262   // capacity: default and `moved from` instances have a small internal buffer.
263   size_t capacity() const;
264 
265   // CordBuffer::IncreaseLengthBy()
266   //
267   // Increases the length of this buffer by the specified 'n' bytes.
268   // Applications must make sure all data in this buffer up to the new length
269   // has been initialized before adding a CordBuffer to a Cord: failure to do so
270   // will lead to undefined behavior.  Requires `length() + n <= capacity()`.
271   // Typically, applications will use 'available_up_to()` to get a span of the
272   // desired capacity, and use `span.size()` to increase the length as in:
273   //   absl::Span<char> span = buffer.available_up_to(desired);
274   //   buffer.IncreaseLengthBy(span.size());
275   //   memcpy(span.data(), src, span.size());
276   //   etc...
277   void IncreaseLengthBy(size_t n);
278 
279   // CordBuffer::SetLength()
280   //
281   // Sets the data length of this instance. Applications must make sure all data
282   // of the specified length has been initialized before adding a CordBuffer to
283   // a Cord: failure to do so will lead to undefined behavior.
284   // Setting the length to a small value or zero does not release any memory
285   // held by this CordBuffer instance. Requires `length <= capacity()`.
286   // Applications should preferably use the `IncreaseLengthBy()` method above
287   // in combination with the 'available()` or `available_up_to()` methods.
288   void SetLength(size_t length);
289 
290  private:
291   // Make sure we don't accidentally over promise.
292   static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, "");
293 
294   // Assume the cost of an 'uprounded' allocation to CeilPow2(size) versus
295   // the cost of allocating at least 1 extra flat <= 4KB:
296   // - Flat overhead = 13 bytes
297   // - Btree amortized cost / node =~ 13 bytes
298   // - 64 byte granularity of tcmalloc at 4K =~ 32 byte average
299   // CPU cost and efficiency requires we should at least 'save' something by
300   // splitting, as a poor man's measure, we say the slop needs to be
301   // at least double the cost offset to make it worth splitting: ~128 bytes.
302   static constexpr size_t kMaxPageSlop = 128;
303 
304   // Overhead for allocation a flat.
305   static constexpr size_t kOverhead = cord_internal::kFlatOverhead;
306 
307   using CordRepFlat = cord_internal::CordRepFlat;
308 
309   // `Rep` is the internal data representation of a CordBuffer. The internal
310   // representation has an internal small size optimization similar to
311   // std::string (SSO).
312   struct Rep {
313     // Inline SSO size of a CordBuffer
314     static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1;
315 
316     // Creates a default instance with kInlineCapacity.
RepRep317     Rep() : short_rep{} {}
318 
319     // Creates an instance managing an allocated non zero CordRep.
RepRep320     explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} {
321       assert(rep != nullptr);
322     }
323 
324     // Returns true if this instance manages the SSO internal buffer.
is_shortRep325     bool is_short() const {
326       constexpr size_t offset = offsetof(Short, raw_size);
327       return (reinterpret_cast<const char*>(this)[offset] & 1) != 0;
328     }
329 
330     // Returns the available area of the internal SSO data
short_availableRep331     absl::Span<char> short_available() {
332       const size_t length = short_length();
333       return absl::Span<char>(short_rep.data + length,
334                               kInlineCapacity - length);
335     }
336 
337     // Returns the available area of the internal SSO data
long_availableRep338     absl::Span<char> long_available() const {
339       assert(!is_short());
340       const size_t length = long_rep.rep->length;
341       return absl::Span<char>(long_rep.rep->Data() + length,
342                               long_rep.rep->Capacity() - length);
343     }
344 
345     // Returns the length of the internal SSO data.
short_lengthRep346     size_t short_length() const {
347       assert(is_short());
348       return static_cast<size_t>(short_rep.raw_size >> 1);
349     }
350 
351     // Sets the length of the internal SSO data.
352     // Disregards any previously set CordRep instance.
set_short_lengthRep353     void set_short_length(size_t length) {
354       short_rep.raw_size = static_cast<char>((length << 1) + 1);
355     }
356 
357     // Adds `n` to the current short length.
add_short_lengthRep358     void add_short_length(size_t n) {
359       assert(is_short());
360       short_rep.raw_size += static_cast<char>(n << 1);
361     }
362 
363     // Returns reference to the internal SSO data buffer.
dataRep364     char* data() {
365       assert(is_short());
366       return short_rep.data;
367     }
dataRep368     const char* data() const {
369       assert(is_short());
370       return short_rep.data;
371     }
372 
373     // Returns a pointer the external CordRep managed by this instance.
repRep374     cord_internal::CordRepFlat* rep() const {
375       assert(!is_short());
376       return long_rep.rep;
377     }
378 
379     // The internal representation takes advantage of the fact that allocated
380     // memory is always on an even address, and uses the least significant bit
381     // of the first or last byte (depending on endianness) as the inline size
382     // indicator overlapping with the least significant byte of the CordRep*.
383 #if defined(ABSL_IS_BIG_ENDIAN)
384     struct Long {
LongRep::Long385       explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
386       void* padding;
387       cord_internal::CordRepFlat* rep;
388     };
389     struct Short {
390       char data[sizeof(Long) - 1];
391       char raw_size = 1;
392     };
393 #else
394     struct Long {
LongRep::Long395       explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
396       cord_internal::CordRepFlat* rep;
397       void* padding;
398     };
399     struct Short {
400       char raw_size = 1;
401       char data[sizeof(Long) - 1];
402     };
403 #endif
404 
405     union {
406       Long long_rep;
407       Short short_rep;
408     };
409   };
410 
411   // Power2 functions
IsPow2(size_t size)412   static bool IsPow2(size_t size) { return absl::has_single_bit(size); }
Log2Floor(size_t size)413   static size_t Log2Floor(size_t size) {
414     return static_cast<size_t>(absl::bit_width(size) - 1);
415   }
Log2Ceil(size_t size)416   static size_t Log2Ceil(size_t size) {
417     return static_cast<size_t>(absl::bit_width(size - 1));
418   }
419 
420   // Implementation of `CreateWithCustomLimit()`.
421   // This implementation allows for future memory allocation hints to
422   // be passed down into the CordRepFlat allocation function.
423   template <typename... AllocationHints>
424   static CordBuffer CreateWithCustomLimitImpl(size_t block_size,
425                                               size_t capacity,
426                                               AllocationHints... hints);
427 
428   // Consumes the value contained in this instance and resets the instance.
429   // This method returns a non-null Cordrep* if the current instances manages a
430   // CordRep*, and resets the instance to an empty SSO instance. If the current
431   // instance is an SSO instance, then this method returns nullptr and sets
432   // `short_value` to the inlined data value. In either case, the current
433   // instance length is reset to zero.
434   // This method is intended to be used by Cord internal functions only.
ConsumeValue(absl::string_view & short_value)435   cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) {
436     cord_internal::CordRep* rep = nullptr;
437     if (rep_.is_short()) {
438       short_value = absl::string_view(rep_.data(), rep_.short_length());
439     } else {
440       rep = rep_.rep();
441     }
442     rep_.set_short_length(0);
443     return rep;
444   }
445 
446   // Internal constructor.
CordBuffer(cord_internal::CordRepFlat * rep)447   explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) {
448     assert(rep != nullptr);
449   }
450 
451   Rep rep_;
452 
453   friend class Cord;
454   friend class CordBufferTestPeer;
455 };
456 
MaximumPayload()457 inline constexpr size_t CordBuffer::MaximumPayload() {
458   return cord_internal::kMaxFlatLength;
459 }
460 
MaximumPayload(size_t block_size)461 inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) {
462   return (std::min)(kCustomLimit, block_size) - cord_internal::kFlatOverhead;
463 }
464 
CreateWithDefaultLimit(size_t capacity)465 inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) {
466   if (capacity > Rep::kInlineCapacity) {
467     auto* rep = cord_internal::CordRepFlat::New(capacity);
468     rep->length = 0;
469     return CordBuffer(rep);
470   }
471   return CordBuffer();
472 }
473 
474 template <typename... AllocationHints>
CreateWithCustomLimitImpl(size_t block_size,size_t capacity,AllocationHints...hints)475 inline CordBuffer CordBuffer::CreateWithCustomLimitImpl(
476     size_t block_size, size_t capacity, AllocationHints... hints) {
477   assert(IsPow2(block_size));
478   capacity = (std::min)(capacity, kCustomLimit);
479   block_size = (std::min)(block_size, kCustomLimit);
480   if (capacity + kOverhead >= block_size) {
481     capacity = block_size;
482   } else if (capacity <= kDefaultLimit) {
483     capacity = capacity + kOverhead;
484   } else if (!IsPow2(capacity)) {
485     // Check if rounded up to next power 2 is a good enough fit
486     // with limited waste making it an acceptable direct fit.
487     const size_t rounded_up = size_t{1} << Log2Ceil(capacity);
488     const size_t slop = rounded_up - capacity;
489     if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) {
490       capacity = rounded_up;
491     } else {
492       // Round down to highest power of 2 <= capacity.
493       // Consider a more aggressive step down if that may reduce the
494       // risk of fragmentation where 'people are holding it wrong'.
495       const size_t rounded_down = size_t{1} << Log2Floor(capacity);
496       capacity = rounded_down;
497     }
498   }
499   const size_t length = capacity - kOverhead;
500   auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...);
501   rep->length = 0;
502   return CordBuffer(rep);
503 }
504 
CreateWithCustomLimit(size_t block_size,size_t capacity)505 inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size,
506                                                     size_t capacity) {
507   return CreateWithCustomLimitImpl(block_size, capacity);
508 }
509 
~CordBuffer()510 inline CordBuffer::~CordBuffer() {
511   if (!rep_.is_short()) {
512     cord_internal::CordRepFlat::Delete(rep_.rep());
513   }
514 }
515 
CordBuffer(CordBuffer && rhs)516 inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) {
517   rhs.rep_.set_short_length(0);
518 }
519 
520 inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept {
521   if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep());
522   rep_ = rhs.rep_;
523   rhs.rep_.set_short_length(0);
524   return *this;
525 }
526 
available()527 inline absl::Span<char> CordBuffer::available() {
528   return rep_.is_short() ? rep_.short_available() : rep_.long_available();
529 }
530 
available_up_to(size_t size)531 inline absl::Span<char> CordBuffer::available_up_to(size_t size) {
532   return available().subspan(0, size);
533 }
534 
data()535 inline char* CordBuffer::data() {
536   return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
537 }
538 
data()539 inline const char* CordBuffer::data() const {
540   return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
541 }
542 
capacity()543 inline size_t CordBuffer::capacity() const {
544   return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity();
545 }
546 
length()547 inline size_t CordBuffer::length() const {
548   return rep_.is_short() ? rep_.short_length() : rep_.rep()->length;
549 }
550 
SetLength(size_t length)551 inline void CordBuffer::SetLength(size_t length) {
552   ABSL_HARDENING_ASSERT(length <= capacity());
553   if (rep_.is_short()) {
554     rep_.set_short_length(length);
555   } else {
556     rep_.rep()->length = length;
557   }
558 }
559 
IncreaseLengthBy(size_t n)560 inline void CordBuffer::IncreaseLengthBy(size_t n) {
561   ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity());
562   if (rep_.is_short()) {
563     rep_.add_short_length(n);
564   } else {
565     rep_.rep()->length += n;
566   }
567 }
568 
569 ABSL_NAMESPACE_END
570 }  // namespace absl
571 
572 #endif  // ABSL_STRINGS_CORD_BUFFER_H_
573