xref: /aosp_15_r20/external/abseil-cpp/absl/strings/numbers_test.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // This file tests string processing functions related to numeric values.
16 
17 #include "absl/strings/numbers.h"
18 
19 #include <sys/types.h>
20 
21 #include <cfenv>  // NOLINT(build/c++11)
22 #include <cfloat>
23 #include <cinttypes>
24 #include <climits>
25 #include <cmath>
26 #include <cstddef>
27 #include <cstdint>
28 #include <cstdio>
29 #include <cstdlib>
30 #include <cstring>
31 #include <ios>
32 #include <limits>
33 #include <numeric>
34 #include <random>
35 #include <set>
36 #include <string>
37 #include <vector>
38 
39 #include "gmock/gmock.h"
40 #include "gtest/gtest.h"
41 #include "absl/log/log.h"
42 #include "absl/numeric/int128.h"
43 #include "absl/random/distributions.h"
44 #include "absl/random/random.h"
45 #include "absl/strings/internal/numbers_test_common.h"
46 #include "absl/strings/internal/ostringstream.h"
47 #include "absl/strings/internal/pow10_helper.h"
48 #include "absl/strings/str_cat.h"
49 #include "absl/strings/string_view.h"
50 
51 namespace {
52 
53 using absl::SimpleAtoi;
54 using absl::SimpleHexAtoi;
55 using absl::numbers_internal::kSixDigitsToBufferSize;
56 using absl::numbers_internal::safe_strto32_base;
57 using absl::numbers_internal::safe_strto64_base;
58 using absl::numbers_internal::safe_strtou32_base;
59 using absl::numbers_internal::safe_strtou64_base;
60 using absl::numbers_internal::SixDigitsToBuffer;
61 using absl::strings_internal::Itoa;
62 using absl::strings_internal::strtouint32_test_cases;
63 using absl::strings_internal::strtouint64_test_cases;
64 using testing::Eq;
65 using testing::MatchesRegex;
66 using testing::Pointee;
67 
68 // Number of floats to test with.
69 // 5,000,000 is a reasonable default for a test that only takes a few seconds.
70 // 1,000,000,000+ triggers checking for all possible mantissa values for
71 // double-precision tests. 2,000,000,000+ triggers checking for every possible
72 // single-precision float.
73 const int kFloatNumCases = 5000000;
74 
75 // This is a slow, brute-force routine to compute the exact base-10
76 // representation of a double-precision floating-point number.  It
77 // is useful for debugging only.
PerfectDtoa(double d)78 std::string PerfectDtoa(double d) {
79   if (d == 0) return "0";
80   if (d < 0) return "-" + PerfectDtoa(-d);
81 
82   // Basic theory: decompose d into mantissa and exp, where
83   // d = mantissa * 2^exp, and exp is as close to zero as possible.
84   int64_t mantissa, exp = 0;
85   while (d >= 1ULL << 63) ++exp, d *= 0.5;
86   while ((mantissa = d) != d) --exp, d *= 2.0;
87 
88   // Then convert mantissa to ASCII, and either double it (if
89   // exp > 0) or halve it (if exp < 0) repeatedly.  "halve it"
90   // in this case means multiplying it by five and dividing by 10.
91   constexpr int maxlen = 1100;  // worst case is actually 1030 or so.
92   char buf[maxlen + 5];
93   for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
94     buf[pos] = '0' + (num % 10);
95     num /= 10;
96   }
97   char* begin = &buf[0];
98   char* end = buf + maxlen;
99   for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
100     int carry = 0;
101     for (char* p = end; --p != begin;) {
102       int dig = *p - '0';
103       dig = dig * (exp > 0 ? 2 : 5) + carry;
104       carry = dig / 10;
105       dig %= 10;
106       *p = '0' + dig;
107     }
108   }
109   if (exp < 0) {
110     // "dividing by 10" above means we have to add the decimal point.
111     memmove(end + 1 + exp, end + exp, 1 - exp);
112     end[exp] = '.';
113     ++end;
114   }
115   while (*begin == '0' && begin[1] != '.') ++begin;
116   return {begin, end};
117 }
118 
TEST(ToString,PerfectDtoa)119 TEST(ToString, PerfectDtoa) {
120   EXPECT_THAT(PerfectDtoa(1), Eq("1"));
121   EXPECT_THAT(PerfectDtoa(0.1),
122               Eq("0.1000000000000000055511151231257827021181583404541015625"));
123   EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
124   EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
125   for (int i = 0; i < 100; ++i) {
126     for (double multiplier :
127          {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
128       double d = multiplier * i;
129       std::string s = PerfectDtoa(d);
130       EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
131     }
132   }
133 }
134 
135 template <typename integer>
136 struct MyInteger {
137   integer i;
MyInteger__anon93c6f5cf0111::MyInteger138   explicit constexpr MyInteger(integer i) : i(i) {}
operator integer__anon93c6f5cf0111::MyInteger139   constexpr operator integer() const { return i; }
140 
operator +__anon93c6f5cf0111::MyInteger141   constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
operator -__anon93c6f5cf0111::MyInteger142   constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
operator *__anon93c6f5cf0111::MyInteger143   constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
operator /__anon93c6f5cf0111::MyInteger144   constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }
145 
operator <__anon93c6f5cf0111::MyInteger146   constexpr bool operator<(MyInteger other) const { return i < other.i; }
operator <=__anon93c6f5cf0111::MyInteger147   constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
operator ==__anon93c6f5cf0111::MyInteger148   constexpr bool operator==(MyInteger other) const { return i == other.i; }
operator >=__anon93c6f5cf0111::MyInteger149   constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
operator >__anon93c6f5cf0111::MyInteger150   constexpr bool operator>(MyInteger other) const { return i > other.i; }
operator !=__anon93c6f5cf0111::MyInteger151   constexpr bool operator!=(MyInteger other) const { return i != other.i; }
152 
as_integer__anon93c6f5cf0111::MyInteger153   integer as_integer() const { return i; }
154 };
155 
156 typedef MyInteger<int64_t> MyInt64;
157 typedef MyInteger<uint64_t> MyUInt64;
158 
CheckInt32(int32_t x)159 void CheckInt32(int32_t x) {
160   char buffer[absl::numbers_internal::kFastToBufferSize];
161   char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
162   std::string expected = std::to_string(x);
163   EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
164 
165   char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
166   EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
167 }
168 
CheckInt64(int64_t x)169 void CheckInt64(int64_t x) {
170   char buffer[absl::numbers_internal::kFastToBufferSize + 3];
171   buffer[0] = '*';
172   buffer[23] = '*';
173   buffer[24] = '*';
174   char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
175   std::string expected = std::to_string(x);
176   EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
177   EXPECT_EQ(buffer[0], '*');
178   EXPECT_EQ(buffer[23], '*');
179   EXPECT_EQ(buffer[24], '*');
180 
181   char* my_actual =
182       absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
183   EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
184 }
185 
CheckUInt32(uint32_t x)186 void CheckUInt32(uint32_t x) {
187   char buffer[absl::numbers_internal::kFastToBufferSize];
188   char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
189   std::string expected = std::to_string(x);
190   EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
191 
192   char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
193   EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
194 }
195 
CheckUInt64(uint64_t x)196 void CheckUInt64(uint64_t x) {
197   char buffer[absl::numbers_internal::kFastToBufferSize + 1];
198   char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
199   std::string expected = std::to_string(x);
200   EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
201 
202   char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
203   EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
204       << " Input " << x;
205 
206   char* my_actual =
207       absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
208   EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
209 }
210 
CheckHex64(uint64_t v)211 void CheckHex64(uint64_t v) {
212   char expected[16 + 1];
213   std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
214   snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
215   EXPECT_EQ(expected, actual) << " Input " << v;
216   actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
217   snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
218   EXPECT_EQ(expected, actual) << " Input " << v;
219 }
220 
TEST(Numbers,TestFastPrints)221 TEST(Numbers, TestFastPrints) {
222   for (int i = -100; i <= 100; i++) {
223     CheckInt32(i);
224     CheckInt64(i);
225   }
226   for (int i = 0; i <= 100; i++) {
227     CheckUInt32(i);
228     CheckUInt64(i);
229   }
230   // Test min int to make sure that works
231   CheckInt32(INT_MIN);
232   CheckInt32(INT_MAX);
233   CheckInt64(LONG_MIN);
234   CheckInt64(uint64_t{1000000000});
235   CheckInt64(uint64_t{9999999999});
236   CheckInt64(uint64_t{100000000000000});
237   CheckInt64(uint64_t{999999999999999});
238   CheckInt64(uint64_t{1000000000000000000});
239   CheckInt64(uint64_t{1199999999999999999});
240   CheckInt64(int64_t{-700000000000000000});
241   CheckInt64(LONG_MAX);
242   CheckUInt32(std::numeric_limits<uint32_t>::max());
243   CheckUInt64(uint64_t{1000000000});
244   CheckUInt64(uint64_t{9999999999});
245   CheckUInt64(uint64_t{100000000000000});
246   CheckUInt64(uint64_t{999999999999999});
247   CheckUInt64(uint64_t{1000000000000000000});
248   CheckUInt64(uint64_t{1199999999999999999});
249   CheckUInt64(std::numeric_limits<uint64_t>::max());
250 
251   for (int i = 0; i < 10000; i++) {
252     CheckHex64(i);
253   }
254   CheckHex64(uint64_t{0x123456789abcdef0});
255 }
256 
257 template <typename int_type, typename in_val_type>
VerifySimpleAtoiGood(in_val_type in_value,int_type exp_value)258 void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
259   std::string s;
260   // (u)int128 can be streamed but not StrCat'd.
261   absl::strings_internal::OStringStream(&s) << in_value;
262   int_type x = static_cast<int_type>(~exp_value);
263   EXPECT_TRUE(SimpleAtoi(s, &x))
264       << "in_value=" << in_value << " s=" << s << " x=" << x;
265   EXPECT_EQ(exp_value, x);
266   x = static_cast<int_type>(~exp_value);
267   EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
268   EXPECT_EQ(exp_value, x);
269 }
270 
271 template <typename int_type, typename in_val_type>
VerifySimpleAtoiBad(in_val_type in_value)272 void VerifySimpleAtoiBad(in_val_type in_value) {
273   std::string s;
274   // (u)int128 can be streamed but not StrCat'd.
275   absl::strings_internal::OStringStream(&s) << in_value;
276   int_type x;
277   EXPECT_FALSE(SimpleAtoi(s, &x));
278   EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
279 }
280 
TEST(NumbersTest,Atoi)281 TEST(NumbersTest, Atoi) {
282   // SimpleAtoi(absl::string_view, int32_t)
283   VerifySimpleAtoiGood<int32_t>(0, 0);
284   VerifySimpleAtoiGood<int32_t>(42, 42);
285   VerifySimpleAtoiGood<int32_t>(-42, -42);
286 
287   VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
288                                 std::numeric_limits<int32_t>::min());
289   VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
290                                 std::numeric_limits<int32_t>::max());
291 
292   // SimpleAtoi(absl::string_view, uint32_t)
293   VerifySimpleAtoiGood<uint32_t>(0, 0);
294   VerifySimpleAtoiGood<uint32_t>(42, 42);
295   VerifySimpleAtoiBad<uint32_t>(-42);
296 
297   VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
298   VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
299                                  std::numeric_limits<int32_t>::max());
300   VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
301                                  std::numeric_limits<uint32_t>::max());
302   VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
303   VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
304   VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
305 
306   // SimpleAtoi(absl::string_view, int64_t)
307   VerifySimpleAtoiGood<int64_t>(0, 0);
308   VerifySimpleAtoiGood<int64_t>(42, 42);
309   VerifySimpleAtoiGood<int64_t>(-42, -42);
310 
311   VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
312                                 std::numeric_limits<int32_t>::min());
313   VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
314                                 std::numeric_limits<int32_t>::max());
315   VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
316                                 std::numeric_limits<uint32_t>::max());
317   VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
318                                 std::numeric_limits<int64_t>::min());
319   VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
320                                 std::numeric_limits<int64_t>::max());
321   VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
322 
323   // SimpleAtoi(absl::string_view, uint64_t)
324   VerifySimpleAtoiGood<uint64_t>(0, 0);
325   VerifySimpleAtoiGood<uint64_t>(42, 42);
326   VerifySimpleAtoiBad<uint64_t>(-42);
327 
328   VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
329   VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
330                                  std::numeric_limits<int32_t>::max());
331   VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
332                                  std::numeric_limits<uint32_t>::max());
333   VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
334   VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
335                                  std::numeric_limits<int64_t>::max());
336   VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
337                                  std::numeric_limits<uint64_t>::max());
338 
339   // SimpleAtoi(absl::string_view, absl::uint128)
340   VerifySimpleAtoiGood<absl::uint128>(0, 0);
341   VerifySimpleAtoiGood<absl::uint128>(42, 42);
342   VerifySimpleAtoiBad<absl::uint128>(-42);
343 
344   VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
345   VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
346                                       std::numeric_limits<int32_t>::max());
347   VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
348                                       std::numeric_limits<uint32_t>::max());
349   VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
350   VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
351                                       std::numeric_limits<int64_t>::max());
352   VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
353                                       std::numeric_limits<uint64_t>::max());
354   VerifySimpleAtoiGood<absl::uint128>(
355       std::numeric_limits<absl::uint128>::max(),
356       std::numeric_limits<absl::uint128>::max());
357 
358   // SimpleAtoi(absl::string_view, absl::int128)
359   VerifySimpleAtoiGood<absl::int128>(0, 0);
360   VerifySimpleAtoiGood<absl::int128>(42, 42);
361   VerifySimpleAtoiGood<absl::int128>(-42, -42);
362 
363   VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),
364                                       std::numeric_limits<int32_t>::min());
365   VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),
366                                       std::numeric_limits<int32_t>::max());
367   VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),
368                                       std::numeric_limits<uint32_t>::max());
369   VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),
370                                       std::numeric_limits<int64_t>::min());
371   VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),
372                                       std::numeric_limits<int64_t>::max());
373   VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),
374                                       std::numeric_limits<uint64_t>::max());
375   VerifySimpleAtoiGood<absl::int128>(
376       std::numeric_limits<absl::int128>::min(),
377       std::numeric_limits<absl::int128>::min());
378   VerifySimpleAtoiGood<absl::int128>(
379       std::numeric_limits<absl::int128>::max(),
380       std::numeric_limits<absl::int128>::max());
381   VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());
382 
383   // Some other types
384   VerifySimpleAtoiGood<int>(-42, -42);
385   VerifySimpleAtoiGood<int32_t>(-42, -42);
386   VerifySimpleAtoiGood<uint32_t>(42, 42);
387   VerifySimpleAtoiGood<unsigned int>(42, 42);
388   VerifySimpleAtoiGood<int64_t>(-42, -42);
389   VerifySimpleAtoiGood<long>(-42, -42);  // NOLINT: runtime-int
390   VerifySimpleAtoiGood<uint64_t>(42, 42);
391   VerifySimpleAtoiGood<size_t>(42, 42);
392   VerifySimpleAtoiGood<std::string::size_type>(42, 42);
393 }
394 
TEST(NumbersTest,Atod)395 TEST(NumbersTest, Atod) {
396   // DBL_TRUE_MIN and FLT_TRUE_MIN were not mandated in <cfloat> before C++17.
397 #if !defined(DBL_TRUE_MIN)
398   static constexpr double DBL_TRUE_MIN =
399       4.940656458412465441765687928682213723650598026143247644255856825e-324;
400 #endif
401 #if !defined(FLT_TRUE_MIN)
402   static constexpr float FLT_TRUE_MIN =
403       1.401298464324817070923729583289916131280261941876515771757068284e-45f;
404 #endif
405 
406   double d;
407   float f;
408 
409   // NaN can be spelled in multiple ways.
410   EXPECT_TRUE(absl::SimpleAtod("NaN", &d));
411   EXPECT_TRUE(std::isnan(d));
412   EXPECT_TRUE(absl::SimpleAtod("nAN", &d));
413   EXPECT_TRUE(std::isnan(d));
414   EXPECT_TRUE(absl::SimpleAtod("-nan", &d));
415   EXPECT_TRUE(std::isnan(d));
416 
417   // Likewise for Infinity.
418   EXPECT_TRUE(absl::SimpleAtod("inf", &d));
419   EXPECT_TRUE(std::isinf(d) && (d > 0));
420   EXPECT_TRUE(absl::SimpleAtod("+Infinity", &d));
421   EXPECT_TRUE(std::isinf(d) && (d > 0));
422   EXPECT_TRUE(absl::SimpleAtod("-INF", &d));
423   EXPECT_TRUE(std::isinf(d) && (d < 0));
424 
425   // Parse DBL_MAX. Parsing something more than twice as big should also
426   // produce infinity.
427   EXPECT_TRUE(absl::SimpleAtod("1.7976931348623157e+308", &d));
428   EXPECT_EQ(d, 1.7976931348623157e+308);
429   EXPECT_TRUE(absl::SimpleAtod("5e308", &d));
430   EXPECT_TRUE(std::isinf(d) && (d > 0));
431   // Ditto, but for FLT_MAX.
432   EXPECT_TRUE(absl::SimpleAtof("3.4028234663852886e+38", &f));
433   EXPECT_EQ(f, 3.4028234663852886e+38f);
434   EXPECT_TRUE(absl::SimpleAtof("7e38", &f));
435   EXPECT_TRUE(std::isinf(f) && (f > 0));
436 
437   // Parse the largest N such that parsing 1eN produces a finite value and the
438   // smallest M = N + 1 such that parsing 1eM produces infinity.
439   //
440   // The 309 exponent (and 39) confirms the "definition of
441   // kEiselLemireMaxExclExp10" comment in charconv.cc.
442   EXPECT_TRUE(absl::SimpleAtod("1e308", &d));
443   EXPECT_EQ(d, 1e308);
444   EXPECT_FALSE(std::isinf(d));
445   EXPECT_TRUE(absl::SimpleAtod("1e309", &d));
446   EXPECT_TRUE(std::isinf(d));
447   // Ditto, but for Atof instead of Atod.
448   EXPECT_TRUE(absl::SimpleAtof("1e38", &f));
449   EXPECT_EQ(f, 1e38f);
450   EXPECT_FALSE(std::isinf(f));
451   EXPECT_TRUE(absl::SimpleAtof("1e39", &f));
452   EXPECT_TRUE(std::isinf(f));
453 
454   // Parse the largest N such that parsing 9.999999999999999999eN, with 19
455   // nines, produces a finite value.
456   //
457   // 9999999999999999999, with 19 nines but no decimal point, is the largest
458   // "repeated nines" integer that fits in a uint64_t.
459   EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e307", &d));
460   EXPECT_EQ(d, 9.999999999999999999e307);
461   EXPECT_FALSE(std::isinf(d));
462   EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e308", &d));
463   EXPECT_TRUE(std::isinf(d));
464   // Ditto, but for Atof instead of Atod.
465   EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e37", &f));
466   EXPECT_EQ(f, 9.999999999999999999e37f);
467   EXPECT_FALSE(std::isinf(f));
468   EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e38", &f));
469   EXPECT_TRUE(std::isinf(f));
470 
471   // Parse DBL_MIN (normal), DBL_TRUE_MIN (subnormal) and (DBL_TRUE_MIN / 10)
472   // (effectively zero).
473   EXPECT_TRUE(absl::SimpleAtod("2.2250738585072014e-308", &d));
474   EXPECT_EQ(d, 2.2250738585072014e-308);
475   EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-324", &d));
476   EXPECT_EQ(d, 4.9406564584124654e-324);
477   EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-325", &d));
478   EXPECT_EQ(d, 0);
479   // Ditto, but for FLT_MIN, FLT_TRUE_MIN and (FLT_TRUE_MIN / 10).
480   EXPECT_TRUE(absl::SimpleAtof("1.1754943508222875e-38", &f));
481   EXPECT_EQ(f, 1.1754943508222875e-38f);
482   EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-45", &f));
483   EXPECT_EQ(f, 1.4012984643248171e-45f);
484   EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-46", &f));
485   EXPECT_EQ(f, 0);
486 
487   // Parse the largest N (the most negative -N) such that parsing 1e-N produces
488   // a normal or subnormal (but still positive) or zero value.
489   EXPECT_TRUE(absl::SimpleAtod("1e-307", &d));
490   EXPECT_EQ(d, 1e-307);
491   EXPECT_GE(d, DBL_MIN);
492   EXPECT_LT(d, DBL_MIN * 10);
493   EXPECT_TRUE(absl::SimpleAtod("1e-323", &d));
494   EXPECT_EQ(d, 1e-323);
495   EXPECT_GE(d, DBL_TRUE_MIN);
496   EXPECT_LT(d, DBL_TRUE_MIN * 10);
497   EXPECT_TRUE(absl::SimpleAtod("1e-324", &d));
498   EXPECT_EQ(d, 0);
499   // Ditto, but for Atof instead of Atod.
500   EXPECT_TRUE(absl::SimpleAtof("1e-37", &f));
501   EXPECT_EQ(f, 1e-37f);
502   EXPECT_GE(f, FLT_MIN);
503   EXPECT_LT(f, FLT_MIN * 10);
504   EXPECT_TRUE(absl::SimpleAtof("1e-45", &f));
505   EXPECT_EQ(f, 1e-45f);
506   EXPECT_GE(f, FLT_TRUE_MIN);
507   EXPECT_LT(f, FLT_TRUE_MIN * 10);
508   EXPECT_TRUE(absl::SimpleAtof("1e-46", &f));
509   EXPECT_EQ(f, 0);
510 
511   // Parse the largest N (the most negative -N) such that parsing
512   // 9.999999999999999999e-N, with 19 nines, produces a normal or subnormal
513   // (but still positive) or zero value.
514   //
515   // 9999999999999999999, with 19 nines but no decimal point, is the largest
516   // "repeated nines" integer that fits in a uint64_t.
517   //
518   // The -324/-325 exponents (and -46/-47) confirms the "definition of
519   // kEiselLemireMinInclExp10" comment in charconv.cc.
520   EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-308", &d));
521   EXPECT_EQ(d, 9.999999999999999999e-308);
522   EXPECT_GE(d, DBL_MIN);
523   EXPECT_LT(d, DBL_MIN * 10);
524   EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-324", &d));
525   EXPECT_EQ(d, 9.999999999999999999e-324);
526   EXPECT_GE(d, DBL_TRUE_MIN);
527   EXPECT_LT(d, DBL_TRUE_MIN * 10);
528   EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-325", &d));
529   EXPECT_EQ(d, 0);
530   // Ditto, but for Atof instead of Atod.
531   EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-38", &f));
532   EXPECT_EQ(f, 9.999999999999999999e-38f);
533   EXPECT_GE(f, FLT_MIN);
534   EXPECT_LT(f, FLT_MIN * 10);
535   EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-46", &f));
536   EXPECT_EQ(f, 9.999999999999999999e-46f);
537   EXPECT_GE(f, FLT_TRUE_MIN);
538   EXPECT_LT(f, FLT_TRUE_MIN * 10);
539   EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-47", &f));
540   EXPECT_EQ(f, 0);
541 
542   // Leading and/or trailing whitespace is OK.
543   EXPECT_TRUE(absl::SimpleAtod("  \t\r\n  2.718", &d));
544   EXPECT_EQ(d, 2.718);
545   EXPECT_TRUE(absl::SimpleAtod("  3.141  ", &d));
546   EXPECT_EQ(d, 3.141);
547 
548   // Leading or trailing not-whitespace is not OK.
549   EXPECT_FALSE(absl::SimpleAtod("n 0", &d));
550   EXPECT_FALSE(absl::SimpleAtod("0n ", &d));
551 
552   // Multiple leading 0s are OK.
553   EXPECT_TRUE(absl::SimpleAtod("000123", &d));
554   EXPECT_EQ(d, 123);
555   EXPECT_TRUE(absl::SimpleAtod("000.456", &d));
556   EXPECT_EQ(d, 0.456);
557 
558   // An absent leading 0 (for a fraction < 1) is OK.
559   EXPECT_TRUE(absl::SimpleAtod(".5", &d));
560   EXPECT_EQ(d, 0.5);
561   EXPECT_TRUE(absl::SimpleAtod("-.707", &d));
562   EXPECT_EQ(d, -0.707);
563 
564   // Unary + is OK.
565   EXPECT_TRUE(absl::SimpleAtod("+6.0221408e+23", &d));
566   EXPECT_EQ(d, 6.0221408e+23);
567 
568   // Underscores are not OK.
569   EXPECT_FALSE(absl::SimpleAtod("123_456", &d));
570 
571   // The decimal separator must be '.' and is never ','.
572   EXPECT_TRUE(absl::SimpleAtod("8.9", &d));
573   EXPECT_FALSE(absl::SimpleAtod("8,9", &d));
574 
575   // These examples are called out in the EiselLemire function's comments.
576   EXPECT_TRUE(absl::SimpleAtod("4503599627370497.5", &d));
577   EXPECT_EQ(d, 4503599627370497.5);
578   EXPECT_TRUE(absl::SimpleAtod("1e+23", &d));
579   EXPECT_EQ(d, 1e+23);
580   EXPECT_TRUE(absl::SimpleAtod("9223372036854775807", &d));
581   EXPECT_EQ(d, 9223372036854775807);
582   // Ditto, but for Atof instead of Atod.
583   EXPECT_TRUE(absl::SimpleAtof("0.0625", &f));
584   EXPECT_EQ(f, 0.0625f);
585   EXPECT_TRUE(absl::SimpleAtof("20040229.0", &f));
586   EXPECT_EQ(f, 20040229.0f);
587   EXPECT_TRUE(absl::SimpleAtof("2147483647.0", &f));
588   EXPECT_EQ(f, 2147483647.0f);
589 
590   // Some parsing algorithms don't always round correctly (but absl::SimpleAtod
591   // should). This test case comes from
592   // https://github.com/serde-rs/json/issues/707
593   //
594   // See also atod_manual_test.cc for running many more test cases.
595   EXPECT_TRUE(absl::SimpleAtod("122.416294033786585", &d));
596   EXPECT_EQ(d, 122.416294033786585);
597   EXPECT_TRUE(absl::SimpleAtof("122.416294033786585", &f));
598   EXPECT_EQ(f, 122.416294033786585f);
599 }
600 
TEST(NumbersTest,Prefixes)601 TEST(NumbersTest, Prefixes) {
602   double d;
603   EXPECT_FALSE(absl::SimpleAtod("++1", &d));
604   EXPECT_FALSE(absl::SimpleAtod("+-1", &d));
605   EXPECT_FALSE(absl::SimpleAtod("-+1", &d));
606   EXPECT_FALSE(absl::SimpleAtod("--1", &d));
607   EXPECT_TRUE(absl::SimpleAtod("-1", &d));
608   EXPECT_EQ(d, -1.);
609   EXPECT_TRUE(absl::SimpleAtod("+1", &d));
610   EXPECT_EQ(d, +1.);
611 
612   float f;
613   EXPECT_FALSE(absl::SimpleAtof("++1", &f));
614   EXPECT_FALSE(absl::SimpleAtof("+-1", &f));
615   EXPECT_FALSE(absl::SimpleAtof("-+1", &f));
616   EXPECT_FALSE(absl::SimpleAtof("--1", &f));
617   EXPECT_TRUE(absl::SimpleAtof("-1", &f));
618   EXPECT_EQ(f, -1.f);
619   EXPECT_TRUE(absl::SimpleAtof("+1", &f));
620   EXPECT_EQ(f, +1.f);
621 }
622 
TEST(NumbersTest,Atoenum)623 TEST(NumbersTest, Atoenum) {
624   enum E01 {
625     E01_zero = 0,
626     E01_one = 1,
627   };
628 
629   VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
630   VerifySimpleAtoiGood<E01>(E01_one, E01_one);
631 
632   enum E_101 {
633     E_101_minusone = -1,
634     E_101_zero = 0,
635     E_101_one = 1,
636   };
637 
638   VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
639   VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
640   VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);
641 
642   enum E_bigint {
643     E_bigint_zero = 0,
644     E_bigint_one = 1,
645     E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
646   };
647 
648   VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
649   VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
650   VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);
651 
652   enum E_fullint {
653     E_fullint_zero = 0,
654     E_fullint_one = 1,
655     E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
656     E_fullint_min32 = INT32_MIN,
657   };
658 
659   VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
660   VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
661   VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
662   VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);
663 
664   enum E_biguint {
665     E_biguint_zero = 0,
666     E_biguint_one = 1,
667     E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
668     E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
669   };
670 
671   VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
672   VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
673   VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
674   VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
675 }
676 
677 template <typename int_type, typename in_val_type>
VerifySimpleHexAtoiGood(in_val_type in_value,int_type exp_value)678 void VerifySimpleHexAtoiGood(in_val_type in_value, int_type exp_value) {
679   std::string s;
680   // uint128 can be streamed but not StrCat'd
681   absl::strings_internal::OStringStream strm(&s);
682   if (in_value >= 0) {
683     strm << std::hex << in_value;
684   } else {
685     // Inefficient for small integers, but works with all integral types.
686     strm << "-" << std::hex << -absl::uint128(in_value);
687   }
688   int_type x = static_cast<int_type>(~exp_value);
689   EXPECT_TRUE(SimpleHexAtoi(s, &x))
690       << "in_value=" << std::hex << in_value << " s=" << s << " x=" << x;
691   EXPECT_EQ(exp_value, x);
692   x = static_cast<int_type>(~exp_value);
693   EXPECT_TRUE(SimpleHexAtoi(
694       s.c_str(), &x));  // NOLINT: readability-redundant-string-conversions
695   EXPECT_EQ(exp_value, x);
696 }
697 
698 template <typename int_type, typename in_val_type>
VerifySimpleHexAtoiBad(in_val_type in_value)699 void VerifySimpleHexAtoiBad(in_val_type in_value) {
700   std::string s;
701   // uint128 can be streamed but not StrCat'd
702   absl::strings_internal::OStringStream strm(&s);
703   if (in_value >= 0) {
704     strm << std::hex << in_value;
705   } else {
706     // Inefficient for small integers, but works with all integral types.
707     strm << "-" << std::hex << -absl::uint128(in_value);
708   }
709   int_type x;
710   EXPECT_FALSE(SimpleHexAtoi(s, &x));
711   EXPECT_FALSE(SimpleHexAtoi(
712       s.c_str(), &x));  // NOLINT: readability-redundant-string-conversions
713 }
714 
TEST(NumbersTest,HexAtoi)715 TEST(NumbersTest, HexAtoi) {
716   // SimpleHexAtoi(absl::string_view, int32_t)
717   VerifySimpleHexAtoiGood<int32_t>(0, 0);
718   VerifySimpleHexAtoiGood<int32_t>(0x42, 0x42);
719   VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42);
720 
721   VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
722                                    std::numeric_limits<int32_t>::min());
723   VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
724                                    std::numeric_limits<int32_t>::max());
725 
726   // SimpleHexAtoi(absl::string_view, uint32_t)
727   VerifySimpleHexAtoiGood<uint32_t>(0, 0);
728   VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42);
729   VerifySimpleHexAtoiBad<uint32_t>(-0x42);
730 
731   VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
732   VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
733                                     std::numeric_limits<int32_t>::max());
734   VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
735                                     std::numeric_limits<uint32_t>::max());
736   VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
737   VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
738   VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
739 
740   // SimpleHexAtoi(absl::string_view, int64_t)
741   VerifySimpleHexAtoiGood<int64_t>(0, 0);
742   VerifySimpleHexAtoiGood<int64_t>(0x42, 0x42);
743   VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42);
744 
745   VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
746                                    std::numeric_limits<int32_t>::min());
747   VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
748                                    std::numeric_limits<int32_t>::max());
749   VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
750                                    std::numeric_limits<uint32_t>::max());
751   VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
752                                    std::numeric_limits<int64_t>::min());
753   VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
754                                    std::numeric_limits<int64_t>::max());
755   VerifySimpleHexAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
756 
757   // SimpleHexAtoi(absl::string_view, uint64_t)
758   VerifySimpleHexAtoiGood<uint64_t>(0, 0);
759   VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42);
760   VerifySimpleHexAtoiBad<uint64_t>(-0x42);
761 
762   VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
763   VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
764                                     std::numeric_limits<int32_t>::max());
765   VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
766                                     std::numeric_limits<uint32_t>::max());
767   VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
768   VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
769                                     std::numeric_limits<int64_t>::max());
770   VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
771                                     std::numeric_limits<uint64_t>::max());
772 
773   // SimpleHexAtoi(absl::string_view, absl::uint128)
774   VerifySimpleHexAtoiGood<absl::uint128>(0, 0);
775   VerifySimpleHexAtoiGood<absl::uint128>(0x42, 0x42);
776   VerifySimpleHexAtoiBad<absl::uint128>(-0x42);
777 
778   VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
779   VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
780                                          std::numeric_limits<int32_t>::max());
781   VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
782                                          std::numeric_limits<uint32_t>::max());
783   VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
784   VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
785                                          std::numeric_limits<int64_t>::max());
786   VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
787                                          std::numeric_limits<uint64_t>::max());
788   VerifySimpleHexAtoiGood<absl::uint128>(
789       std::numeric_limits<absl::uint128>::max(),
790       std::numeric_limits<absl::uint128>::max());
791 
792   // Some other types
793   VerifySimpleHexAtoiGood<int>(-0x42, -0x42);
794   VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42);
795   VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42);
796   VerifySimpleHexAtoiGood<unsigned int>(0x42, 0x42);
797   VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42);
798   VerifySimpleHexAtoiGood<long>(-0x42, -0x42);  // NOLINT: runtime-int
799   VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42);
800   VerifySimpleHexAtoiGood<size_t>(0x42, 0x42);
801   VerifySimpleHexAtoiGood<std::string::size_type>(0x42, 0x42);
802 
803   // Number prefix
804   int32_t value;
805   EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
806   EXPECT_EQ(0x34234324, value);
807 
808   EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
809   EXPECT_EQ(0x34234324, value);
810 
811   // ASCII whitespace
812   EXPECT_TRUE(safe_strto32_base(" \t\n 34234324", &value, 16));
813   EXPECT_EQ(0x34234324, value);
814 
815   EXPECT_TRUE(safe_strto32_base("34234324 \t\n ", &value, 16));
816   EXPECT_EQ(0x34234324, value);
817 }
818 
TEST(stringtest,safe_strto32_base)819 TEST(stringtest, safe_strto32_base) {
820   int32_t value;
821   EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
822   EXPECT_EQ(0x34234324, value);
823 
824   EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
825   EXPECT_EQ(0x34234324, value);
826 
827   EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
828   EXPECT_EQ(0x34234324, value);
829 
830   EXPECT_TRUE(safe_strto32_base("0", &value, 16));
831   EXPECT_EQ(0, value);
832 
833   EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
834   EXPECT_EQ(-0x34234324, value);
835 
836   EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
837   EXPECT_EQ(-0x34234324, value);
838 
839   EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
840   EXPECT_EQ(07654321, value);
841 
842   EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
843   EXPECT_EQ(-01234, value);
844 
845   EXPECT_FALSE(safe_strto32_base("1834", &value, 8));
846 
847   // Autodetect base.
848   EXPECT_TRUE(safe_strto32_base("0", &value, 0));
849   EXPECT_EQ(0, value);
850 
851   EXPECT_TRUE(safe_strto32_base("077", &value, 0));
852   EXPECT_EQ(077, value);  // Octal interpretation
853 
854   // Leading zero indicates octal, but then followed by invalid digit.
855   EXPECT_FALSE(safe_strto32_base("088", &value, 0));
856 
857   // Leading 0x indicated hex, but then followed by invalid digit.
858   EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));
859 
860   // Base-10 version.
861   EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
862   EXPECT_EQ(34234324, value);
863 
864   EXPECT_TRUE(safe_strto32_base("0", &value, 10));
865   EXPECT_EQ(0, value);
866 
867   EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
868   EXPECT_EQ(-34234324, value);
869 
870   EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
871   EXPECT_EQ(34234324, value);
872 
873   // Invalid ints.
874   EXPECT_FALSE(safe_strto32_base("", &value, 10));
875   EXPECT_FALSE(safe_strto32_base("  ", &value, 10));
876   EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
877   EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
878   EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));
879 
880   // Out of bounds.
881   EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
882   EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
883 
884   // String version.
885   EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
886   EXPECT_EQ(0x1234, value);
887 
888   // Base-10 string version.
889   EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
890   EXPECT_EQ(1234, value);
891 }
892 
TEST(stringtest,safe_strto32_range)893 TEST(stringtest, safe_strto32_range) {
894   // These tests verify underflow/overflow behaviour.
895   int32_t value;
896   EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
897   EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);
898 
899   EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
900   EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
901 
902   EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
903   EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
904 }
905 
TEST(stringtest,safe_strto64_range)906 TEST(stringtest, safe_strto64_range) {
907   // These tests verify underflow/overflow behaviour.
908   int64_t value;
909   EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
910   EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);
911 
912   EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
913   EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
914 
915   EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
916   EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
917 }
918 
TEST(stringtest,safe_strto32_leading_substring)919 TEST(stringtest, safe_strto32_leading_substring) {
920   // These tests verify this comment in numbers.h:
921   // On error, returns false, and sets *value to: [...]
922   //   conversion of leading substring if available ("123@@@" -> 123)
923   //   0 if no leading substring available
924   int32_t value;
925   EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
926   EXPECT_EQ(4069, value);
927 
928   EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
929   EXPECT_EQ(0406, value);
930 
931   EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
932   EXPECT_EQ(4069, value);
933 
934   EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
935   EXPECT_EQ(0x4069ba, value);
936 
937   EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
938   EXPECT_EQ(0, value);  // there was no leading substring
939 }
940 
TEST(stringtest,safe_strto64_leading_substring)941 TEST(stringtest, safe_strto64_leading_substring) {
942   // These tests verify this comment in numbers.h:
943   // On error, returns false, and sets *value to: [...]
944   //   conversion of leading substring if available ("123@@@" -> 123)
945   //   0 if no leading substring available
946   int64_t value;
947   EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
948   EXPECT_EQ(4069, value);
949 
950   EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
951   EXPECT_EQ(0406, value);
952 
953   EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
954   EXPECT_EQ(4069, value);
955 
956   EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
957   EXPECT_EQ(0x4069ba, value);
958 
959   EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
960   EXPECT_EQ(0, value);  // there was no leading substring
961 }
962 
TEST(stringtest,safe_strto64_base)963 TEST(stringtest, safe_strto64_base) {
964   int64_t value;
965   EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
966   EXPECT_EQ(int64_t{0x3423432448783446}, value);
967 
968   EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
969   EXPECT_EQ(int64_t{0x3423432448783446}, value);
970 
971   EXPECT_TRUE(safe_strto64_base("0", &value, 16));
972   EXPECT_EQ(0, value);
973 
974   EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
975   EXPECT_EQ(int64_t{-0x3423432448783446}, value);
976 
977   EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
978   EXPECT_EQ(int64_t{-0x3423432448783446}, value);
979 
980   EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
981   EXPECT_EQ(int64_t{0123456701234567012}, value);
982 
983   EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
984   EXPECT_EQ(int64_t{-017777777777777}, value);
985 
986   EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));
987 
988   // Autodetect base.
989   EXPECT_TRUE(safe_strto64_base("0", &value, 0));
990   EXPECT_EQ(0, value);
991 
992   EXPECT_TRUE(safe_strto64_base("077", &value, 0));
993   EXPECT_EQ(077, value);  // Octal interpretation
994 
995   // Leading zero indicates octal, but then followed by invalid digit.
996   EXPECT_FALSE(safe_strto64_base("088", &value, 0));
997 
998   // Leading 0x indicated hex, but then followed by invalid digit.
999   EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));
1000 
1001   // Base-10 version.
1002   EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
1003   EXPECT_EQ(int64_t{34234324487834466}, value);
1004 
1005   EXPECT_TRUE(safe_strto64_base("0", &value, 10));
1006   EXPECT_EQ(0, value);
1007 
1008   EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
1009   EXPECT_EQ(int64_t{-34234324487834466}, value);
1010 
1011   EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
1012   EXPECT_EQ(int64_t{34234324487834466}, value);
1013 
1014   // Invalid ints.
1015   EXPECT_FALSE(safe_strto64_base("", &value, 10));
1016   EXPECT_FALSE(safe_strto64_base("  ", &value, 10));
1017   EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
1018   EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
1019   EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));
1020 
1021   // Out of bounds.
1022   EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
1023   EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
1024 
1025   // String version.
1026   EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
1027   EXPECT_EQ(0x1234, value);
1028 
1029   // Base-10 string version.
1030   EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
1031   EXPECT_EQ(1234, value);
1032 }
1033 
1034 const size_t kNumRandomTests = 10000;
1035 
1036 template <typename IntType>
test_random_integer_parse_base(bool (* parse_func)(absl::string_view,IntType * value,int base))1037 void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
1038                                                        IntType* value,
1039                                                        int base)) {
1040   using RandomEngine = std::minstd_rand0;
1041   std::random_device rd;
1042   RandomEngine rng(rd());
1043   std::uniform_int_distribution<IntType> random_int(
1044       std::numeric_limits<IntType>::min());
1045   std::uniform_int_distribution<int> random_base(2, 35);
1046   for (size_t i = 0; i < kNumRandomTests; i++) {
1047     IntType value = random_int(rng);
1048     int base = random_base(rng);
1049     std::string str_value;
1050     EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
1051     IntType parsed_value;
1052 
1053     // Test successful parse
1054     EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
1055     EXPECT_EQ(parsed_value, value);
1056 
1057     // Test overflow
1058     EXPECT_FALSE(
1059         parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
1060                    &parsed_value, base));
1061 
1062     // Test underflow
1063     if (std::numeric_limits<IntType>::min() < 0) {
1064       EXPECT_FALSE(
1065           parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
1066                      &parsed_value, base));
1067     } else {
1068       EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
1069     }
1070   }
1071 }
1072 
TEST(stringtest,safe_strto32_random)1073 TEST(stringtest, safe_strto32_random) {
1074   test_random_integer_parse_base<int32_t>(&safe_strto32_base);
1075 }
TEST(stringtest,safe_strto64_random)1076 TEST(stringtest, safe_strto64_random) {
1077   test_random_integer_parse_base<int64_t>(&safe_strto64_base);
1078 }
TEST(stringtest,safe_strtou32_random)1079 TEST(stringtest, safe_strtou32_random) {
1080   test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
1081 }
TEST(stringtest,safe_strtou64_random)1082 TEST(stringtest, safe_strtou64_random) {
1083   test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
1084 }
TEST(stringtest,safe_strtou128_random)1085 TEST(stringtest, safe_strtou128_random) {
1086   // random number generators don't work for uint128, and
1087   // uint128 can be streamed but not StrCat'd, so this code must be custom
1088   // implemented for uint128, but is generally the same as what's above.
1089   // test_random_integer_parse_base<absl::uint128>(
1090   //     &absl::numbers_internal::safe_strtou128_base);
1091   using RandomEngine = std::minstd_rand0;
1092   using IntType = absl::uint128;
1093   constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;
1094 
1095   std::random_device rd;
1096   RandomEngine rng(rd());
1097   std::uniform_int_distribution<uint64_t> random_uint64(
1098       std::numeric_limits<uint64_t>::min());
1099   std::uniform_int_distribution<int> random_base(2, 35);
1100 
1101   for (size_t i = 0; i < kNumRandomTests; i++) {
1102     IntType value = random_uint64(rng);
1103     value = (value << 64) + random_uint64(rng);
1104     int base = random_base(rng);
1105     std::string str_value;
1106     EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
1107     IntType parsed_value;
1108 
1109     // Test successful parse
1110     EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
1111     EXPECT_EQ(parsed_value, value);
1112 
1113     // Test overflow
1114     std::string s;
1115     absl::strings_internal::OStringStream(&s)
1116         << std::numeric_limits<IntType>::max() << value;
1117     EXPECT_FALSE(parse_func(s, &parsed_value, base));
1118 
1119     // Test underflow
1120     s.clear();
1121     absl::strings_internal::OStringStream(&s) << "-" << value;
1122     EXPECT_FALSE(parse_func(s, &parsed_value, base));
1123   }
1124 }
TEST(stringtest,safe_strto128_random)1125 TEST(stringtest, safe_strto128_random) {
1126   // random number generators don't work for int128, and
1127   // int128 can be streamed but not StrCat'd, so this code must be custom
1128   // implemented for int128, but is generally the same as what's above.
1129   // test_random_integer_parse_base<absl::int128>(
1130   //     &absl::numbers_internal::safe_strto128_base);
1131   using RandomEngine = std::minstd_rand0;
1132   using IntType = absl::int128;
1133   constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base;
1134 
1135   std::random_device rd;
1136   RandomEngine rng(rd());
1137   std::uniform_int_distribution<int64_t> random_int64(
1138       std::numeric_limits<int64_t>::min());
1139   std::uniform_int_distribution<uint64_t> random_uint64(
1140       std::numeric_limits<uint64_t>::min());
1141   std::uniform_int_distribution<int> random_base(2, 35);
1142 
1143   for (size_t i = 0; i < kNumRandomTests; ++i) {
1144     int64_t high = random_int64(rng);
1145     uint64_t low = random_uint64(rng);
1146     IntType value = absl::MakeInt128(high, low);
1147 
1148     int base = random_base(rng);
1149     std::string str_value;
1150     EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
1151     IntType parsed_value;
1152 
1153     // Test successful parse
1154     EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
1155     EXPECT_EQ(parsed_value, value);
1156 
1157     // Test overflow
1158     std::string s;
1159     absl::strings_internal::OStringStream(&s)
1160         << std::numeric_limits<IntType>::max() << value;
1161     EXPECT_FALSE(parse_func(s, &parsed_value, base));
1162 
1163     // Test underflow
1164     s.clear();
1165     absl::strings_internal::OStringStream(&s)
1166         << std::numeric_limits<IntType>::min() << value;
1167     EXPECT_FALSE(parse_func(s, &parsed_value, base));
1168   }
1169 }
1170 
TEST(stringtest,safe_strtou32_base)1171 TEST(stringtest, safe_strtou32_base) {
1172   for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
1173     const auto& e = strtouint32_test_cases()[i];
1174     uint32_t value;
1175     EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
1176         << "str=\"" << e.str << "\" base=" << e.base;
1177     if (e.expect_ok) {
1178       EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
1179                                    << "\" base=" << e.base;
1180     }
1181   }
1182 }
1183 
TEST(stringtest,safe_strtou32_base_length_delimited)1184 TEST(stringtest, safe_strtou32_base_length_delimited) {
1185   for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
1186     const auto& e = strtouint32_test_cases()[i];
1187     std::string tmp(e.str);
1188     tmp.append("12");  // Adds garbage at the end.
1189 
1190     uint32_t value;
1191     EXPECT_EQ(e.expect_ok,
1192               safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
1193                                  &value, e.base))
1194         << "str=\"" << e.str << "\" base=" << e.base;
1195     if (e.expect_ok) {
1196       EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
1197                                    << " base=" << e.base;
1198     }
1199   }
1200 }
1201 
TEST(stringtest,safe_strtou64_base)1202 TEST(stringtest, safe_strtou64_base) {
1203   for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
1204     const auto& e = strtouint64_test_cases()[i];
1205     uint64_t value;
1206     EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
1207         << "str=\"" << e.str << "\" base=" << e.base;
1208     if (e.expect_ok) {
1209       EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
1210     }
1211   }
1212 }
1213 
TEST(stringtest,safe_strtou64_base_length_delimited)1214 TEST(stringtest, safe_strtou64_base_length_delimited) {
1215   for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
1216     const auto& e = strtouint64_test_cases()[i];
1217     std::string tmp(e.str);
1218     tmp.append("12");  // Adds garbage at the end.
1219 
1220     uint64_t value;
1221     EXPECT_EQ(e.expect_ok,
1222               safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
1223                                  &value, e.base))
1224         << "str=\"" << e.str << "\" base=" << e.base;
1225     if (e.expect_ok) {
1226       EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
1227     }
1228   }
1229 }
1230 
1231 // feenableexcept() and fedisableexcept() are extensions supported by some libc
1232 // implementations.
1233 #if defined(__GLIBC__) || defined(__BIONIC__)
1234 #define ABSL_HAVE_FEENABLEEXCEPT 1
1235 #define ABSL_HAVE_FEDISABLEEXCEPT 1
1236 #endif
1237 
1238 class SimpleDtoaTest : public testing::Test {
1239  protected:
SetUp()1240   void SetUp() override {
1241     // Store the current floating point env & clear away any pending exceptions.
1242     feholdexcept(&fp_env_);
1243 #ifdef ABSL_HAVE_FEENABLEEXCEPT
1244     // Turn on floating point exceptions.
1245     feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
1246 #endif
1247   }
1248 
TearDown()1249   void TearDown() override {
1250     // Restore the floating point environment to the original state.
1251     // In theory fedisableexcept is unnecessary; fesetenv will also do it.
1252     // In practice, our toolchains have subtle bugs.
1253 #ifdef ABSL_HAVE_FEDISABLEEXCEPT
1254     fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
1255 #endif
1256     fesetenv(&fp_env_);
1257   }
1258 
ToNineDigits(double value)1259   std::string ToNineDigits(double value) {
1260     char buffer[16];  // more than enough for %.9g
1261     snprintf(buffer, sizeof(buffer), "%.9g", value);
1262     return buffer;
1263   }
1264 
1265   fenv_t fp_env_;
1266 };
1267 
1268 // Run the given runnable functor for "cases" test cases, chosen over the
1269 // available range of float.  pi and e and 1/e are seeded, and then all
1270 // available integer powers of 2 and 10 are multiplied against them.  In
1271 // addition to trying all those values, we try the next higher and next lower
1272 // float, and then we add additional test cases evenly distributed between them.
1273 // Each test case is passed to runnable as both a positive and negative value.
1274 template <typename R>
ExhaustiveFloat(uint32_t cases,R && runnable)1275 void ExhaustiveFloat(uint32_t cases, R&& runnable) {
1276   runnable(0.0f);
1277   runnable(-0.0f);
1278   if (cases >= 2e9) {  // more than 2 billion?  Might as well run them all.
1279     for (float f = 0; f < std::numeric_limits<float>::max(); ) {
1280       f = nextafterf(f, std::numeric_limits<float>::max());
1281       runnable(-f);
1282       runnable(f);
1283     }
1284     return;
1285   }
1286   std::set<float> floats = {3.4028234e38f};
1287   for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
1288     for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
1289     for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
1290     for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
1291       floats.insert(testf);
1292     for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
1293   }
1294 
1295   float last = *floats.begin();
1296 
1297   runnable(last);
1298   runnable(-last);
1299   int iters_per_float = cases / floats.size();
1300   if (iters_per_float == 0) iters_per_float = 1;
1301   for (float f : floats) {
1302     if (f == last) continue;
1303     float testf = std::nextafter(last, std::numeric_limits<float>::max());
1304     runnable(testf);
1305     runnable(-testf);
1306     last = testf;
1307     if (f == last) continue;
1308     double step = (double{f} - last) / iters_per_float;
1309     for (double d = last + step; d < f; d += step) {
1310       testf = d;
1311       if (testf != last) {
1312         runnable(testf);
1313         runnable(-testf);
1314         last = testf;
1315       }
1316     }
1317     testf = std::nextafter(f, 0.0f);
1318     if (testf > last) {
1319       runnable(testf);
1320       runnable(-testf);
1321       last = testf;
1322     }
1323     if (f != last) {
1324       runnable(f);
1325       runnable(-f);
1326       last = f;
1327     }
1328   }
1329 }
1330 
TEST_F(SimpleDtoaTest,ExhaustiveDoubleToSixDigits)1331 TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
1332   uint64_t test_count = 0;
1333   std::vector<double> mismatches;
1334   auto checker = [&](double d) {
1335     if (d != d) return;  // rule out NaNs
1336     ++test_count;
1337     char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
1338     SixDigitsToBuffer(d, sixdigitsbuf);
1339     char snprintfbuf[kSixDigitsToBufferSize] = {0};
1340     snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
1341     if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
1342       mismatches.push_back(d);
1343       if (mismatches.size() < 10) {
1344         LOG(ERROR) << "Six-digit failure with double.  d=" << d
1345                    << " sixdigits=" << sixdigitsbuf
1346                    << " printf(%g)=" << snprintfbuf;
1347       }
1348     }
1349   };
1350   // Some quick sanity checks...
1351   checker(5e-324);
1352   checker(1e-308);
1353   checker(1.0);
1354   checker(1.000005);
1355   checker(1.7976931348623157e308);
1356   checker(0.00390625);
1357 #ifndef _MSC_VER
1358   // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
1359   // to 0.00195312 (round half to even).
1360   checker(0.001953125);
1361 #endif
1362   checker(0.005859375);
1363   // Some cases where the rounding is very very close
1364   checker(1.089095e-15);
1365   checker(3.274195e-55);
1366   checker(6.534355e-146);
1367   checker(2.920845e+234);
1368 
1369   if (mismatches.empty()) {
1370     test_count = 0;
1371     ExhaustiveFloat(kFloatNumCases, checker);
1372 
1373     test_count = 0;
1374     std::vector<int> digit_testcases{
1375         100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100,  // misc
1376         195312, 195313,  // 1.953125 is a case where we round down, just barely.
1377         200000, 500000, 800000,  // misc mid-range cases
1378         585937, 585938,  // 5.859375 is a case where we round up, just barely.
1379         900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
1380     if (kFloatNumCases >= 1e9) {
1381       // If at least 1 billion test cases were requested, user wants an
1382       // exhaustive test. So let's test all mantissas, too.
1383       constexpr int min_mantissa = 100000, max_mantissa = 999999;
1384       digit_testcases.resize(max_mantissa - min_mantissa + 1);
1385       std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
1386     }
1387 
1388     for (int exponent = -324; exponent <= 308; ++exponent) {
1389       double powten = absl::strings_internal::Pow10(exponent);
1390       if (powten == 0) powten = 5e-324;
1391       if (kFloatNumCases >= 1e9) {
1392         // The exhaustive test takes a very long time, so log progress.
1393         char buf[kSixDigitsToBufferSize];
1394         LOG(INFO) << "Exp " << exponent << " powten=" << powten << "(" << powten
1395                   << ") ("
1396                   << absl::string_view(buf, SixDigitsToBuffer(powten, buf))
1397                   << ")";
1398       }
1399       for (int digits : digit_testcases) {
1400         if (exponent == 308 && digits >= 179769) break;  // don't overflow!
1401         double digiform = (digits + 0.5) * 0.00001;
1402         double testval = digiform * powten;
1403         double pretestval = nextafter(testval, 0);
1404         double posttestval = nextafter(testval, 1.7976931348623157e308);
1405         checker(testval);
1406         checker(pretestval);
1407         checker(posttestval);
1408       }
1409     }
1410   } else {
1411     EXPECT_EQ(mismatches.size(), 0);
1412     for (size_t i = 0; i < mismatches.size(); ++i) {
1413       if (i > 100) i = mismatches.size() - 1;
1414       double d = mismatches[i];
1415       char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
1416       SixDigitsToBuffer(d, sixdigitsbuf);
1417       char snprintfbuf[kSixDigitsToBufferSize] = {0};
1418       snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
1419       double before = nextafter(d, 0.0);
1420       double after = nextafter(d, 1.7976931348623157e308);
1421       char b1[32], b2[kSixDigitsToBufferSize];
1422       LOG(ERROR) << "Mismatch #" << i << "  d=" << d << " (" << ToNineDigits(d)
1423                  << ") sixdigits='" << sixdigitsbuf << "' snprintf='"
1424                  << snprintfbuf << "' Before.=" << PerfectDtoa(before) << " "
1425                  << (SixDigitsToBuffer(before, b2), b2) << " vs snprintf="
1426                  << (snprintf(b1, sizeof(b1), "%g", before), b1)
1427                  << " Perfect=" << PerfectDtoa(d) << " "
1428                  << (SixDigitsToBuffer(d, b2), b2)
1429                  << " vs snprintf=" << (snprintf(b1, sizeof(b1), "%g", d), b1)
1430                  << " After.=." << PerfectDtoa(after) << " "
1431                  << (SixDigitsToBuffer(after, b2), b2) << " vs snprintf="
1432                  << (snprintf(b1, sizeof(b1), "%g", after), b1);
1433     }
1434   }
1435 }
1436 
TEST(StrToInt32,Partial)1437 TEST(StrToInt32, Partial) {
1438   struct Int32TestLine {
1439     std::string input;
1440     bool status;
1441     int32_t value;
1442   };
1443   const int32_t int32_min = std::numeric_limits<int32_t>::min();
1444   const int32_t int32_max = std::numeric_limits<int32_t>::max();
1445   Int32TestLine int32_test_line[] = {
1446       {"", false, 0},
1447       {" ", false, 0},
1448       {"-", false, 0},
1449       {"123@@@", false, 123},
1450       {absl::StrCat(int32_min, int32_max), false, int32_min},
1451       {absl::StrCat(int32_max, int32_max), false, int32_max},
1452   };
1453 
1454   for (const Int32TestLine& test_line : int32_test_line) {
1455     int32_t value = -2;
1456     bool status = safe_strto32_base(test_line.input, &value, 10);
1457     EXPECT_EQ(test_line.status, status) << test_line.input;
1458     EXPECT_EQ(test_line.value, value) << test_line.input;
1459     value = -2;
1460     status = safe_strto32_base(test_line.input, &value, 10);
1461     EXPECT_EQ(test_line.status, status) << test_line.input;
1462     EXPECT_EQ(test_line.value, value) << test_line.input;
1463     value = -2;
1464     status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
1465     EXPECT_EQ(test_line.status, status) << test_line.input;
1466     EXPECT_EQ(test_line.value, value) << test_line.input;
1467   }
1468 }
1469 
TEST(StrToUint32,Partial)1470 TEST(StrToUint32, Partial) {
1471   struct Uint32TestLine {
1472     std::string input;
1473     bool status;
1474     uint32_t value;
1475   };
1476   const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
1477   Uint32TestLine uint32_test_line[] = {
1478       {"", false, 0},
1479       {" ", false, 0},
1480       {"-", false, 0},
1481       {"123@@@", false, 123},
1482       {absl::StrCat(uint32_max, uint32_max), false, uint32_max},
1483   };
1484 
1485   for (const Uint32TestLine& test_line : uint32_test_line) {
1486     uint32_t value = 2;
1487     bool status = safe_strtou32_base(test_line.input, &value, 10);
1488     EXPECT_EQ(test_line.status, status) << test_line.input;
1489     EXPECT_EQ(test_line.value, value) << test_line.input;
1490     value = 2;
1491     status = safe_strtou32_base(test_line.input, &value, 10);
1492     EXPECT_EQ(test_line.status, status) << test_line.input;
1493     EXPECT_EQ(test_line.value, value) << test_line.input;
1494     value = 2;
1495     status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
1496     EXPECT_EQ(test_line.status, status) << test_line.input;
1497     EXPECT_EQ(test_line.value, value) << test_line.input;
1498   }
1499 }
1500 
TEST(StrToInt64,Partial)1501 TEST(StrToInt64, Partial) {
1502   struct Int64TestLine {
1503     std::string input;
1504     bool status;
1505     int64_t value;
1506   };
1507   const int64_t int64_min = std::numeric_limits<int64_t>::min();
1508   const int64_t int64_max = std::numeric_limits<int64_t>::max();
1509   Int64TestLine int64_test_line[] = {
1510       {"", false, 0},
1511       {" ", false, 0},
1512       {"-", false, 0},
1513       {"123@@@", false, 123},
1514       {absl::StrCat(int64_min, int64_max), false, int64_min},
1515       {absl::StrCat(int64_max, int64_max), false, int64_max},
1516   };
1517 
1518   for (const Int64TestLine& test_line : int64_test_line) {
1519     int64_t value = -2;
1520     bool status = safe_strto64_base(test_line.input, &value, 10);
1521     EXPECT_EQ(test_line.status, status) << test_line.input;
1522     EXPECT_EQ(test_line.value, value) << test_line.input;
1523     value = -2;
1524     status = safe_strto64_base(test_line.input, &value, 10);
1525     EXPECT_EQ(test_line.status, status) << test_line.input;
1526     EXPECT_EQ(test_line.value, value) << test_line.input;
1527     value = -2;
1528     status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
1529     EXPECT_EQ(test_line.status, status) << test_line.input;
1530     EXPECT_EQ(test_line.value, value) << test_line.input;
1531   }
1532 }
1533 
TEST(StrToUint64,Partial)1534 TEST(StrToUint64, Partial) {
1535   struct Uint64TestLine {
1536     std::string input;
1537     bool status;
1538     uint64_t value;
1539   };
1540   const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
1541   Uint64TestLine uint64_test_line[] = {
1542       {"", false, 0},
1543       {" ", false, 0},
1544       {"-", false, 0},
1545       {"123@@@", false, 123},
1546       {absl::StrCat(uint64_max, uint64_max), false, uint64_max},
1547   };
1548 
1549   for (const Uint64TestLine& test_line : uint64_test_line) {
1550     uint64_t value = 2;
1551     bool status = safe_strtou64_base(test_line.input, &value, 10);
1552     EXPECT_EQ(test_line.status, status) << test_line.input;
1553     EXPECT_EQ(test_line.value, value) << test_line.input;
1554     value = 2;
1555     status = safe_strtou64_base(test_line.input, &value, 10);
1556     EXPECT_EQ(test_line.status, status) << test_line.input;
1557     EXPECT_EQ(test_line.value, value) << test_line.input;
1558     value = 2;
1559     status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
1560     EXPECT_EQ(test_line.status, status) << test_line.input;
1561     EXPECT_EQ(test_line.value, value) << test_line.input;
1562   }
1563 }
1564 
TEST(StrToInt32Base,PrefixOnly)1565 TEST(StrToInt32Base, PrefixOnly) {
1566   struct Int32TestLine {
1567     std::string input;
1568     bool status;
1569     int32_t value;
1570   };
1571   Int32TestLine int32_test_line[] = {
1572     { "", false, 0 },
1573     { "-", false, 0 },
1574     { "-0", true, 0 },
1575     { "0", true, 0 },
1576     { "0x", false, 0 },
1577     { "-0x", false, 0 },
1578   };
1579   const int base_array[] = { 0, 2, 8, 10, 16 };
1580 
1581   for (const Int32TestLine& line : int32_test_line) {
1582     for (const int base : base_array) {
1583       int32_t value = 2;
1584       bool status = safe_strto32_base(line.input.c_str(), &value, base);
1585       EXPECT_EQ(line.status, status) << line.input << " " << base;
1586       EXPECT_EQ(line.value, value) << line.input << " " << base;
1587       value = 2;
1588       status = safe_strto32_base(line.input, &value, base);
1589       EXPECT_EQ(line.status, status) << line.input << " " << base;
1590       EXPECT_EQ(line.value, value) << line.input << " " << base;
1591       value = 2;
1592       status = safe_strto32_base(absl::string_view(line.input), &value, base);
1593       EXPECT_EQ(line.status, status) << line.input << " " << base;
1594       EXPECT_EQ(line.value, value) << line.input << " " << base;
1595     }
1596   }
1597 }
1598 
TEST(StrToUint32Base,PrefixOnly)1599 TEST(StrToUint32Base, PrefixOnly) {
1600   struct Uint32TestLine {
1601     std::string input;
1602     bool status;
1603     uint32_t value;
1604   };
1605   Uint32TestLine uint32_test_line[] = {
1606     { "", false, 0 },
1607     { "0", true, 0 },
1608     { "0x", false, 0 },
1609   };
1610   const int base_array[] = { 0, 2, 8, 10, 16 };
1611 
1612   for (const Uint32TestLine& line : uint32_test_line) {
1613     for (const int base : base_array) {
1614       uint32_t value = 2;
1615       bool status = safe_strtou32_base(line.input.c_str(), &value, base);
1616       EXPECT_EQ(line.status, status) << line.input << " " << base;
1617       EXPECT_EQ(line.value, value) << line.input << " " << base;
1618       value = 2;
1619       status = safe_strtou32_base(line.input, &value, base);
1620       EXPECT_EQ(line.status, status) << line.input << " " << base;
1621       EXPECT_EQ(line.value, value) << line.input << " " << base;
1622       value = 2;
1623       status = safe_strtou32_base(absl::string_view(line.input), &value, base);
1624       EXPECT_EQ(line.status, status) << line.input << " " << base;
1625       EXPECT_EQ(line.value, value) << line.input << " " << base;
1626     }
1627   }
1628 }
1629 
TEST(StrToInt64Base,PrefixOnly)1630 TEST(StrToInt64Base, PrefixOnly) {
1631   struct Int64TestLine {
1632     std::string input;
1633     bool status;
1634     int64_t value;
1635   };
1636   Int64TestLine int64_test_line[] = {
1637     { "", false, 0 },
1638     { "-", false, 0 },
1639     { "-0", true, 0 },
1640     { "0", true, 0 },
1641     { "0x", false, 0 },
1642     { "-0x", false, 0 },
1643   };
1644   const int base_array[] = { 0, 2, 8, 10, 16 };
1645 
1646   for (const Int64TestLine& line : int64_test_line) {
1647     for (const int base : base_array) {
1648       int64_t value = 2;
1649       bool status = safe_strto64_base(line.input.c_str(), &value, base);
1650       EXPECT_EQ(line.status, status) << line.input << " " << base;
1651       EXPECT_EQ(line.value, value) << line.input << " " << base;
1652       value = 2;
1653       status = safe_strto64_base(line.input, &value, base);
1654       EXPECT_EQ(line.status, status) << line.input << " " << base;
1655       EXPECT_EQ(line.value, value) << line.input << " " << base;
1656       value = 2;
1657       status = safe_strto64_base(absl::string_view(line.input), &value, base);
1658       EXPECT_EQ(line.status, status) << line.input << " " << base;
1659       EXPECT_EQ(line.value, value) << line.input << " " << base;
1660     }
1661   }
1662 }
1663 
TEST(StrToUint64Base,PrefixOnly)1664 TEST(StrToUint64Base, PrefixOnly) {
1665   struct Uint64TestLine {
1666     std::string input;
1667     bool status;
1668     uint64_t value;
1669   };
1670   Uint64TestLine uint64_test_line[] = {
1671     { "", false, 0 },
1672     { "0", true, 0 },
1673     { "0x", false, 0 },
1674   };
1675   const int base_array[] = { 0, 2, 8, 10, 16 };
1676 
1677   for (const Uint64TestLine& line : uint64_test_line) {
1678     for (const int base : base_array) {
1679       uint64_t value = 2;
1680       bool status = safe_strtou64_base(line.input.c_str(), &value, base);
1681       EXPECT_EQ(line.status, status) << line.input << " " << base;
1682       EXPECT_EQ(line.value, value) << line.input << " " << base;
1683       value = 2;
1684       status = safe_strtou64_base(line.input, &value, base);
1685       EXPECT_EQ(line.status, status) << line.input << " " << base;
1686       EXPECT_EQ(line.value, value) << line.input << " " << base;
1687       value = 2;
1688       status = safe_strtou64_base(absl::string_view(line.input), &value, base);
1689       EXPECT_EQ(line.status, status) << line.input << " " << base;
1690       EXPECT_EQ(line.value, value) << line.input << " " << base;
1691     }
1692   }
1693 }
1694 
TestFastHexToBufferZeroPad16(uint64_t v)1695 void TestFastHexToBufferZeroPad16(uint64_t v) {
1696   char buf[16];
1697   auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);
1698   absl::string_view res(buf, 16);
1699   char buf2[17];
1700   snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);
1701   EXPECT_EQ(res, buf2) << v;
1702   size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);
1703   EXPECT_EQ(digits, expected_digits) << v;
1704 }
1705 
TEST(FastHexToBufferZeroPad16,Smoke)1706 TEST(FastHexToBufferZeroPad16, Smoke) {
1707   TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());
1708   TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());
1709   TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());
1710   TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());
1711   absl::BitGen rng;
1712   for (int i = 0; i < 100000; ++i) {
1713     TestFastHexToBufferZeroPad16(
1714         absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),
1715                          std::numeric_limits<uint64_t>::max()));
1716   }
1717 }
1718 
1719 template <typename Int>
ExpectWritesNull()1720 void ExpectWritesNull() {
1721   {
1722     char buf[absl::numbers_internal::kFastToBufferSize];
1723     Int x = std::numeric_limits<Int>::min();
1724     EXPECT_THAT(absl::numbers_internal::FastIntToBuffer(x, buf), Pointee('\0'));
1725   }
1726   {
1727     char buf[absl::numbers_internal::kFastToBufferSize];
1728     Int x = std::numeric_limits<Int>::max();
1729     EXPECT_THAT(absl::numbers_internal::FastIntToBuffer(x, buf), Pointee('\0'));
1730   }
1731 }
1732 
TEST(FastIntToBuffer,WritesNull)1733 TEST(FastIntToBuffer, WritesNull) {
1734   ExpectWritesNull<int32_t>();
1735   ExpectWritesNull<uint32_t>();
1736   ExpectWritesNull<int64_t>();
1737   ExpectWritesNull<uint32_t>();
1738 }
1739 
1740 }  // namespace
1741