xref: /aosp_15_r20/external/android-nn-driver/1.0/HalPolicy.cpp (revision 3e777be0405cee09af5d5785ff37f7cfb5bee59a)
1 //
2 // Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "HalPolicy.hpp"
7 
8 #include <armnn/Optional.hpp>
9 
10 #include "FullyConnected.hpp"
11 #include "Utils.hpp"
12 
13 namespace armnn_driver
14 {
15 namespace hal_1_0
16 {
17 
ConvertOperation(const Operation & operation,const Model & model,ConversionData & data)18 bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
19 {
20     switch (operation.type)
21     {
22         case V1_0::OperationType::ADD:
23             return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Add);
24         case V1_0::OperationType::AVERAGE_POOL_2D:
25             return ConvertAveragePool2d(operation, model, data);
26         case V1_0::OperationType::CONCATENATION:
27             return ConvertConcatenation(operation, model, data);
28         case V1_0::OperationType::CONV_2D:
29             return ConvertConv2d(operation, model, data);
30         case V1_0::OperationType::DEPTH_TO_SPACE:
31             return ConvertDepthToSpace(operation, model, data);
32         case V1_0::OperationType::DEPTHWISE_CONV_2D:
33             return ConvertDepthwiseConv2d(operation, model, data);
34         case V1_0::OperationType::DEQUANTIZE:
35             return ConvertDequantize(operation, model, data);
36         case V1_0::OperationType::FLOOR:
37             return ConvertFloor(operation, model, data);
38         case V1_0::OperationType::FULLY_CONNECTED:
39             return ConvertFullyConnected(operation, model, data);
40         case V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION:
41             return ConvertLocalResponseNormalization(operation, model, data);
42         case V1_0::OperationType::LOGISTIC:
43             return ConvertLogistic(operation, model, data);
44         case V1_0::OperationType::LSTM:
45             return ConvertLstm(operation, model, data);
46         case V1_0::OperationType::L2_NORMALIZATION:
47             return ConvertL2Normalization(operation, model, data);
48         case V1_0::OperationType::L2_POOL_2D:
49             return ConvertL2Pool2d(operation, model, data);
50         case V1_0::OperationType::MAX_POOL_2D:
51             return ConvertMaxPool2d(operation, model, data);
52         case V1_0::OperationType::MUL:
53             return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Mul);
54         case V1_0::OperationType::RELU:
55             return ConvertReLu(operation, model, data);
56         case V1_0::OperationType::RELU1:
57             return ConvertReLu1(operation, model, data);
58         case V1_0::OperationType::RELU6:
59             return ConvertReLu6(operation, model, data);
60         case V1_0::OperationType::SOFTMAX:
61             return ConvertSoftmax(operation, model, data);
62         case V1_0::OperationType::SPACE_TO_DEPTH:
63             return ConvertSpaceToDepth(operation, model, data);
64         case V1_0::OperationType::TANH:
65             return ConvertTanH(operation, model, data);
66         case V1_0::OperationType::RESHAPE:
67             return ConvertReshape(operation, model, data);
68         case V1_0::OperationType::RESIZE_BILINEAR:
69             return ConvertResizeBilinear(operation, model, data);
70         default:
71             return Fail("%s: Operation type %s not supported in ArmnnDriver",
72                         __func__, toString(operation.type).c_str());
73     }
74 }
75 
ConvertAveragePool2d(const Operation & operation,const Model & model,ConversionData & data)76 bool HalPolicy::ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data)
77 {
78     ALOGV("hal_1_0::HalPolicy::ConvertAveragePool2d()");
79     return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Average, model, data);
80 }
81 
ConvertConcatenation(const Operation & operation,const Model & model,ConversionData & data)82 bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
83 {
84     ALOGV("hal_1_0::HalPolicy::ConvertConcatenation()");
85     return ::ConvertConcatenation<hal_1_0::HalPolicy>(operation, model, data);
86 }
87 
ConvertConv2d(const Operation & operation,const Model & model,ConversionData & data)88 bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
89 {
90     ALOGV("hal_1_0::HalPolicy::ConvertConv2d()");
91     return ::ConvertConv2d<hal_1_0::HalPolicy>(operation, model, data);
92 }
93 
ConvertDepthToSpace(const Operation & operation,const Model & model,ConversionData & data)94 bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
95 {
96     ALOGV("hal_1_0::HalPolicy::ConvertDepthToSpace()");
97     return ::ConvertDepthToSpace<hal_1_0::HalPolicy>(operation, model, data);
98 }
99 
ConvertDepthwiseConv2d(const Operation & operation,const Model & model,ConversionData & data)100 bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
101 {
102     ALOGV("hal_1_0::HalPolicy::ConvertDepthwiseConv2d()");
103     return ::ConvertDepthwiseConv2d<hal_1_0::HalPolicy>(operation, model, data);
104 }
105 
ConvertDequantize(const Operation & operation,const Model & model,ConversionData & data)106 bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
107 {
108     ALOGV("hal_1_0::HalPolicy::ConvertDequantize()");
109     return ::ConvertDequantize<hal_1_0::HalPolicy>(operation, model, data);
110 }
111 
ConvertElementwiseBinary(const Operation & operation,const Model & model,ConversionData & data,armnn::BinaryOperation binaryOperation)112 bool HalPolicy::ConvertElementwiseBinary(const Operation& operation,
113                                          const Model& model,
114                                          ConversionData& data,
115                                          armnn::BinaryOperation binaryOperation)
116 {
117     ALOGV("hal_1_0::HalPolicy::ConvertElementwiseBinary()");
118     return ::ConvertElementwiseBinary<hal_1_0::HalPolicy>(operation, model, data, binaryOperation);
119 }
120 
ConvertFloor(const Operation & operation,const Model & model,ConversionData & data)121 bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
122 {
123     ALOGV("hal_1_0::HalPolicy::ConvertFloor()");
124     return ::ConvertFloor<hal_1_0::HalPolicy>(operation, model, data);
125 }
126 
ConvertFullyConnected(const Operation & operation,const Model & model,ConversionData & data)127 bool HalPolicy::ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data)
128 {
129     ALOGV("hal_1_0::HalPolicy::ConvertFullyConnected()");
130     return ::ConvertFullyConnected<hal_1_0::HalPolicy>(operation, model, data);
131 }
132 
ConvertLocalResponseNormalization(const Operation & operation,const Model & model,ConversionData & data)133 bool HalPolicy::ConvertLocalResponseNormalization(const Operation& operation,
134                                                   const Model& model,
135                                                   ConversionData& data)
136 {
137     ALOGV("hal_1_0::HalPolicy::ConvertLocalResponseNormalization()");
138     return ::ConvertLocalResponseNormalization<hal_1_0::HalPolicy>(operation, model, data);
139 }
140 
ConvertLogistic(const Operation & operation,const Model & model,ConversionData & data)141 bool HalPolicy::ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data)
142 {
143     ALOGV("hal_1_0::HalPolicy::ConvertLogistic()");
144     return ::ConvertLogistic<hal_1_0::HalPolicy>(operation, model, data);
145 }
146 
ConvertLstm(const Operation & operation,const Model & model,ConversionData & data)147 bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
148 {
149     ALOGV("hal_1_0::HalPolicy::ConvertLstm()");
150 
151     // Inputs:
152     // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
153     //      “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
154     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
155     if (!input.IsValid())
156     {
157         return Fail("%s: Could not read input 0: input", __func__);
158     }
159     // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
160     LayerInputHandle outputStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 18, model, data);
161     if (!outputStateIn.IsValid())
162     {
163         return Fail("%s: Could not read input 18: outputStateIn", __func__);
164     }
165     // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
166     LayerInputHandle cellStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 19, model, data);
167     if (!cellStateIn.IsValid())
168     {
169         return Fail("%s: Could not read input 19: cellStateIn", __func__);
170     }
171 
172     // Get the mandatory input tensors:
173     // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
174     //     [num_units, input_size].
175     const ConstTensorPin inputToForgetWeightsPin =
176         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 2, model, data);
177     // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
178     // [num_units, input_size].
179     const ConstTensorPin inputToCellWeightsPin =
180         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 3, model, data);
181     // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
182     //     [num_units, input_size].
183     const ConstTensorPin inputToOutputWeightsPin =
184         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 4, model, data);
185     // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
186     //     [num_units, output_size].
187     const ConstTensorPin recurrentToForgetWeightsPin =
188         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 6, model, data);
189     // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
190     //     [num_units, output_size].
191     const ConstTensorPin recurrentToCellWeightsPin =
192         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 7, model, data);
193     // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
194     //     [num_units, output_size].
195     const ConstTensorPin recurrentToOutputWeightsPin =
196             ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 8, model, data);
197     // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
198     const ConstTensorPin forgetGateBiasPin =
199         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 13, model, data);
200     // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
201     const ConstTensorPin cellBiasPin =
202         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 14, model, data);
203     // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
204     const ConstTensorPin outputGateBiasPin =
205         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 15, model, data);
206 
207     if (!inputToForgetWeightsPin.IsValid() ||
208         !inputToCellWeightsPin.IsValid() ||
209         !inputToOutputWeightsPin.IsValid() ||
210         !recurrentToForgetWeightsPin.IsValid() ||
211         !recurrentToCellWeightsPin.IsValid() ||
212         !recurrentToOutputWeightsPin.IsValid() ||
213         !forgetGateBiasPin.IsValid() ||
214         !cellBiasPin.IsValid() ||
215         !outputGateBiasPin.IsValid())
216     {
217         return Fail("%s: Operation has invalid tensor inputs", __func__);
218     }
219 
220     // Get the optional input tensors:
221     // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
222     //     [num_units, input_size], where “num_units” corresponds to the number of cell units.
223     const ConstTensorPin inputToInputWeightsPin =
224         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
225                                                                   1,
226                                                                   model,
227                                                                   data,
228                                                                   g_DontPermute,
229                                                                   nullptr,
230                                                                   true);
231 
232     // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
233     //     [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
234     //     “num_units”), or the second dimension of the “projection_weights”, if defined.
235     const ConstTensorPin recurrentToInputWeightsPin =
236         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
237                                                                   5,
238                                                                   model,
239                                                                   data,
240                                                                   g_DontPermute,
241                                                                   nullptr,
242                                                                   true);
243 
244     // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
245     const ConstTensorPin cellToInputWeightsPin =
246         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
247                                                                   9,
248                                                                   model,
249                                                                   data,
250                                                                   g_DontPermute,
251                                                                   nullptr,
252                                                                   true);
253 
254     // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
255     const ConstTensorPin cellToForgetWeightsPin =
256         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
257                                                                   10,
258                                                                   model,
259                                                                   data,
260                                                                   g_DontPermute,
261                                                                   nullptr,
262                                                                   true);
263 
264     // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
265     const ConstTensorPin cellToOutputWeightsPin =
266         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
267                                                                   11,
268                                                                   model,
269                                                                   data,
270                                                                   g_DontPermute,
271                                                                   nullptr,
272                                                                   true);
273 
274     // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
275     const ConstTensorPin inputGateBiasPin =
276         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
277                                                                   12,
278                                                                   model,
279                                                                   data,
280                                                                   g_DontPermute,
281                                                                   nullptr,
282                                                                   true);
283 
284     // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
285     //     [output_size, num_units].
286     const ConstTensorPin projectionWeightsPin =
287         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
288                                                                   16,
289                                                                   model,
290                                                                   data,
291                                                                   g_DontPermute,
292                                                                   nullptr,
293                                                                   true);
294 
295     // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
296     const ConstTensorPin projectionBiasPin =
297     ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
298                                                               17,
299                                                               model,
300                                                               data,
301                                                               g_DontPermute,
302                                                               nullptr,
303                                                               true);
304 
305     if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
306         (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
307         (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
308         (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
309         (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
310         (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
311         (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
312         (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
313     {
314         return Fail("%s: Operation has invalid tensor inputs", __func__);
315     }
316 
317     // Get the mandatory input scalars (actually 1-D tensors of size 1):
318     // 20: The activation function: A value indicating the activation function:
319     //     0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
320     // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
321     //     If set to 0.0 then clipping is disabled.
322     // 22: The clipping threshold: for the output from the projection layer, such that values are bound within
323     //     [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
324     ActivationFn activation;
325     float cellClip;
326     float projClip;
327     if (!GetInputActivationFunctionFromTensor<hal_1_0::HalPolicy>(operation, 20, activation, model, data) ||
328         !GetInputScalar<hal_1_0::HalPolicy>(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
329         !GetInputScalar<hal_1_0::HalPolicy>(operation, 22, OperandType::FLOAT32, projClip, model, data))
330     {
331         return Fail("%s: Operation has invalid scalar inputs", __func__);
332     }
333 
334     // Outputs:
335     // 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
336     // with CIFG, or [batch_size, num_units * 3] without CIFG.
337     const Operand* scratchBuffer = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
338     if (!scratchBuffer)
339     {
340         return Fail("%s: Could not read output 0: scratchBuffer", __func__);
341     }
342     // 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
343     const Operand* outputStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 1, model);
344     if (!outputStateOut)
345     {
346         return Fail("%s: Could not read output 1: outputStateOut", __func__);
347     }
348     // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
349     const Operand* cellStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 2, model);
350     if (!cellStateOut)
351     {
352         return Fail("%s: Could not read output 2: cellStateOut", __func__);
353     }
354     // 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
355     //     effectively the same as the current “output state (out)” value.
356     const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 3, model);
357     if (!output)
358     {
359         return Fail("%s: Could not read output 3: output", __func__);
360     }
361 
362     // set the params structure for the AddLstmLayer call
363     armnn::LstmInputParams params;
364     params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
365     params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
366     params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
367     params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
368     params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
369     params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
370     params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
371     params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
372     params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
373     params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
374     params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
375     params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
376     params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
377     params.m_CellBias = cellBiasPin.GetConstTensorPtr();
378     params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
379     params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
380     params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
381 
382     // set the layer descriptor
383     armnn::LstmDescriptor desc;
384     desc.m_ActivationFunc = activation;
385     desc.m_ClippingThresCell = cellClip;
386     desc.m_ClippingThresProj = projClip;
387     desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
388                           params.m_RecurrentToInputWeights == nullptr ||
389                           params.m_InputGateBias == nullptr);
390     desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
391                               params.m_CellToOutputWeights != nullptr);
392     desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
393 
394     // validate the optional input groups
395     if (desc.m_CifgEnabled &&
396         (params.m_InputToInputWeights != nullptr ||
397          params.m_RecurrentToInputWeights != nullptr ||
398          params.m_InputGateBias != nullptr))
399     {
400         return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
401                     " and input gate bias must be provided", __func__);
402     }
403 
404     if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
405     {
406         return Fail("%s: projection bias should not be provided without projection weights", __func__);
407     }
408 
409     if (desc.m_PeepholeEnabled &&
410         (params.m_CellToForgetWeights == nullptr ||
411          params.m_CellToOutputWeights == nullptr ||
412          (!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
413     {
414         return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
415                     " and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
416     }
417 
418     // Check if the layer is supported
419     // Inputs
420     const armnn::TensorInfo& inputInfo         = input.GetTensorInfo();
421     const armnn::TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
422     const armnn::TensorInfo& cellStateInInfo   = cellStateIn.GetTensorInfo();
423 
424     // Outputs
425     const armnn::TensorInfo& scratchBufferInfo  = GetTensorInfoForOperand(*scratchBuffer);
426     const armnn::TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
427     const armnn::TensorInfo& cellStateOutInfo   = GetTensorInfoForOperand(*cellStateOut);
428     const armnn::TensorInfo& outputInfo         = GetTensorInfoForOperand(*output);
429 
430     // Basic parameters
431     armnn::LstmInputParamsInfo paramsInfo;
432     paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
433     paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
434     paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
435     paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
436     paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
437     paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
438     paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
439     paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
440     paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
441 
442     // Optional parameters
443     if(!desc.m_CifgEnabled)
444     {
445         paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
446         paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
447         if (params.m_CellToInputWeights != nullptr)
448         {
449             paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
450         }
451         paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
452     }
453 
454     if(desc.m_ProjectionEnabled)
455     {
456         paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
457         if (params.m_ProjectionBias != nullptr)
458         {
459             paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
460         }
461     }
462 
463     if(desc.m_PeepholeEnabled)
464     {
465         paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
466         paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
467     }
468 
469     bool isSupported = false;
470     armnn::BackendId setBackend;
471     FORWARD_LAYER_SUPPORT_FUNC(__func__,
472                                IsLstmSupported,
473                                data.m_Backends,
474                                isSupported,
475                                setBackend,
476                                inputInfo,
477                                outputStateInInfo,
478                                cellStateInInfo,
479                                scratchBufferInfo,
480                                outputStateOutInfo,
481                                cellStateOutInfo,
482                                outputInfo,
483                                desc,
484                                paramsInfo);
485     if (!isSupported)
486     {
487         return false;
488     }
489 
490     // Add the layer
491     armnn::IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
492     layer->SetBackendId(setBackend);
493 
494     input.Connect(layer->GetInputSlot(0));
495     outputStateIn.Connect(layer->GetInputSlot(1));
496     cellStateIn.Connect(layer->GetInputSlot(2));
497 
498     return (SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, 0, model, data) &&
499             SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 1, *layer, 1, model, data) &&
500             SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 2, *layer, 2, model, data) &&
501             SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 3, *layer, 3, model, data));
502 }
503 
ConvertL2Normalization(const Operation & operation,const Model & model,ConversionData & data)504 bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
505 {
506     ALOGV("hal_1_0::HalPolicy::ConvertL2Normalization()");
507     return ::ConvertL2Normalization<hal_1_0::HalPolicy>(operation, model, data);
508 }
509 
ConvertL2Pool2d(const Operation & operation,const Model & model,ConversionData & data)510 bool HalPolicy::ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data)
511 {
512     ALOGV("hal_1_0::HalPolicy::ConvertL2Pool2d()");
513     return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::L2, model, data);
514 }
515 
ConvertMaxPool2d(const Operation & operation,const Model & model,ConversionData & data)516 bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
517 {
518     ALOGV("hal_1_0::HalPolicy::ConvertMaxPool2d()");
519     return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Max, model, data);
520 }
521 
ConvertReLu(const Operation & operation,const Model & model,ConversionData & data)522 bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
523 {
524     ALOGV("hal_1_0::HalPolicy::ConvertReLu()");
525     return ::ConvertReLu<hal_1_0::HalPolicy>(operation, model, data);
526 }
527 
ConvertReLu1(const Operation & operation,const Model & model,ConversionData & data)528 bool HalPolicy::ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data)
529 {
530     ALOGV("hal_1_0::HalPolicy::ConvertReLu1()");
531     return ::ConvertReLu1<hal_1_0::HalPolicy>(operation, model, data);
532 }
533 
ConvertReLu6(const Operation & operation,const Model & model,ConversionData & data)534 bool HalPolicy::ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data)
535 {
536     ALOGV("hal_1_0::HalPolicy::ConvertReLu6()");
537     return ::ConvertReLu6<hal_1_0::HalPolicy>(operation, model, data);
538 }
539 
ConvertSoftmax(const Operation & operation,const Model & model,ConversionData & data)540 bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
541 {
542     ALOGV("hal_1_0::HalPolicy::ConvertSoftmax()");
543 
544     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
545     if (!input.IsValid())
546     {
547         return Fail("%s: Operation has invalid inputs", __func__);
548     }
549 
550     const Operand* outputOperand = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
551     if (!outputOperand)
552     {
553         return Fail("%s: Operation has no outputs", __func__);
554     }
555 
556     const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
557     if (IsDynamicTensor(outputInfo))
558     {
559         return Fail("%s: Dynamic output tensors are not supported", __func__);
560     }
561 
562     armnn::SoftmaxDescriptor desc;
563     if (!GetInputFloat32<hal_1_0::HalPolicy>(operation, 1, desc.m_Beta, model, data))
564     {
565         return Fail("%s: Operation has invalid inputs", __func__);
566     }
567 
568     bool isSupported = false;
569     armnn::BackendId setBackend;
570     FORWARD_LAYER_SUPPORT_FUNC(__func__,
571                                IsSoftmaxSupported,
572                                data.m_Backends,
573                                isSupported,
574                                setBackend,
575                                input.GetTensorInfo(),
576                                outputInfo,
577                                desc);
578     if (!isSupported)
579     {
580         return false;
581     }
582 
583     armnn::IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
584     layer->SetBackendId(setBackend);
585     if (!layer)
586     {
587         return Fail("%s: Could not add the SoftmaxLayer", __func__);
588     }
589     input.Connect(layer->GetInputSlot(0));
590 
591     return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
592 }
593 
ConvertSpaceToDepth(const Operation & operation,const Model & model,ConversionData & data)594 bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
595 {
596     ALOGV("hal_1_0::HalPolicy::ConvertSpaceToDepth()");
597 
598     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
599     if (!input.IsValid() )
600     {
601         return Fail("%s: Operation has invalid inputs", __func__);
602     }
603 
604     const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
605     unsigned int rank = inputInfo.GetNumDimensions();
606 
607     if (rank != 4)
608     {
609         return Fail("%s: Only inputs with rank 4 are supported", __func__);
610     }
611 
612     armnn::SpaceToDepthDescriptor desc;
613 
614     GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
615 
616     if (desc.m_BlockSize <= 1)
617     {
618         return Fail("%s: Block size must be at least 1 in all dimensions");
619     }
620 
621     const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
622     if (!output)
623     {
624         return Fail("%s: Could not read output 0", __func__);
625     }
626 
627     const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
628     if (IsDynamicTensor(outputInfo))
629     {
630         return Fail("%s: Dynamic output tensors are not supported", __func__);
631     }
632 
633     bool isSupported = false;
634     armnn::BackendId setBackend;
635     FORWARD_LAYER_SUPPORT_FUNC(__func__,
636                                IsSpaceToDepthSupported,
637                                data.m_Backends,
638                                isSupported,
639                                setBackend,
640                                inputInfo,
641                                outputInfo,
642                                desc);
643     if (!isSupported)
644     {
645         return false;
646     }
647 
648     armnn::IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
649     layer->SetBackendId(setBackend);
650     if (!layer)
651     {
652         return Fail("%s: Could not add the SpaceToDepthLayer", __func__);
653     }
654     input.Connect(layer->GetInputSlot(0));
655 
656     return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
657 }
658 
ConvertTanH(const Operation & operation,const Model & model,ConversionData & data)659 bool HalPolicy::ConvertTanH(const Operation& operation, const Model& model, ConversionData& data)
660 {
661     ALOGV("hal_1_0::HalPolicy::ConvertTanH()");
662     return ::ConvertTanH<hal_1_0::HalPolicy>(operation, model, data);
663 }
664 
ConvertReshape(const Operation & operation,const Model & model,ConversionData & data)665 bool HalPolicy::ConvertReshape(const Operation& operation, const Model& model, ConversionData& data)
666 {
667     ALOGV("hal_1_0::HalPolicy::ConvertReshape()");
668     return ::ConvertReshape<hal_1_0::HalPolicy>(operation, model, data);
669 }
670 
ConvertResizeBilinear(const Operation & operation,const Model & model,ConversionData & data)671 bool HalPolicy::ConvertResizeBilinear(const Operation& operation, const Model& model, ConversionData& data)
672 {
673     ALOGV("hal_1_0::HalPolicy::ConvertResizeBilinear()");
674 
675     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
676     if (!input.IsValid())
677     {
678         return Fail("%s: Could not read input 0", __func__);
679     }
680 
681     const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
682     if (!output)
683     {
684         return Fail("%s: Could not read output 0", __func__);
685     }
686 
687     const armnn::TensorInfo& inputInfo  = input.GetTensorInfo();
688     const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
689 
690     if (IsDynamicTensor(outputInfo))
691     {
692         return Fail("%s: Dynamic output tensors are not supported", __func__);
693     }
694 
695     armnn::ResizeDescriptor desc;
696     desc.m_Method     = armnn::ResizeMethod::Bilinear;
697     desc.m_DataLayout = armnn::DataLayout::NHWC;
698 
699     bool isSupported = false;
700     armnn::BackendId setBackend;
701     FORWARD_LAYER_SUPPORT_FUNC(__func__,
702                                IsResizeSupported,
703                                data.m_Backends,
704                                isSupported,
705                                setBackend,
706                                inputInfo,
707                                outputInfo,
708                                desc);
709     if (!isSupported)
710     {
711         return false;
712     }
713 
714     if (!GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_TargetWidth, model, data) ||
715         !GetInputScalar<hal_1_0::HalPolicy>(operation, 2, OperandType::INT32, desc.m_TargetHeight, model, data))
716     {
717         return Fail("%s: Operation has invalid inputs", __func__);
718     }
719 
720     armnn::IConnectableLayer* layer = data.m_Network->AddResizeLayer(desc);
721     layer->SetBackendId(setBackend);
722     if (!layer)
723     {
724         return Fail("%s: Could not add the ResizeLayer", __func__);
725     }
726     layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
727     input.Connect(layer->GetInputSlot(0));
728 
729     return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
730 
731 }
732 
733 } // namespace hal_1_0
734 } // namespace armnn_driver
735