xref: /aosp_15_r20/external/angle/third_party/abseil-cpp/absl/random/distributions_test.cc (revision 8975f5c5ed3d1c378011245431ada316dfb6f244)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cfloat>
18 #include <cmath>
19 #include <cstdint>
20 #include <limits>
21 #include <type_traits>
22 #include <utility>
23 #include <vector>
24 
25 #include "gtest/gtest.h"
26 #include "absl/meta/type_traits.h"
27 #include "absl/numeric/int128.h"
28 #include "absl/random/internal/distribution_test_util.h"
29 #include "absl/random/random.h"
30 
31 namespace {
32 
33 constexpr int kSize = 400000;
34 
35 class RandomDistributionsTest : public testing::Test {};
36 
37 struct Invalid {};
38 
39 template <typename A, typename B>
40 auto InferredUniformReturnT(int)
41     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
42                               std::declval<A>(), std::declval<B>()));
43 
44 template <typename, typename>
45 Invalid InferredUniformReturnT(...);
46 
47 template <typename TagType, typename A, typename B>
48 auto InferredTaggedUniformReturnT(int)
49     -> decltype(absl::Uniform(std::declval<TagType>(),
50                               std::declval<absl::InsecureBitGen&>(),
51                               std::declval<A>(), std::declval<B>()));
52 
53 template <typename, typename, typename>
54 Invalid InferredTaggedUniformReturnT(...);
55 
56 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
57 //
58 //   absl::Uniform(gen, A{}, B{})
59 //
60 // returns the type "Expect".
61 //
62 // This interface can also be used to assert that a given absl::Uniform()
63 // overload does not exist / will not compile. Given types <A, B>, the
64 // expression
65 //
66 //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
67 //
68 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
69 // resolve (via SFINAE) to the overload which returns type "Invalid". This
70 // allows tests to assert that an invocation such as
71 //
72 //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
73 //
74 // should not compile, since neither type, float nor int, can precisely
75 // represent both endpoint-values. Writing:
76 //
77 //   CheckArgsInferType<float, int, Invalid>()
78 //
79 // will assert that this overload does not exist.
80 template <typename A, typename B, typename Expect>
CheckArgsInferType()81 void CheckArgsInferType() {
82   static_assert(
83       absl::conjunction<
84           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
85           std::is_same<Expect,
86                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
87       "");
88   static_assert(
89       absl::conjunction<
90           std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
91                                         absl::IntervalOpenOpenTag, A, B>(0))>,
92           std::is_same<Expect,
93                        decltype(InferredTaggedUniformReturnT<
94                                 absl::IntervalOpenOpenTag, B, A>(0))>>::value,
95       "");
96 }
97 
98 template <typename A, typename B, typename ExplicitRet>
99 auto ExplicitUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
100     std::declval<absl::InsecureBitGen&>(), std::declval<A>(),
101     std::declval<B>()));
102 
103 template <typename, typename, typename ExplicitRet>
104 Invalid ExplicitUniformReturnT(...);
105 
106 template <typename TagType, typename A, typename B, typename ExplicitRet>
107 auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
108     std::declval<TagType>(), std::declval<absl::InsecureBitGen&>(),
109     std::declval<A>(), std::declval<B>()));
110 
111 template <typename, typename, typename, typename ExplicitRet>
112 Invalid ExplicitTaggedUniformReturnT(...);
113 
114 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
115 //
116 //   absl::Uniform<Expect>(gen, A{}, B{})
117 //
118 // returns the type "Expect", and that the function-overload has the signature
119 //
120 //   Expect(URBG&, Expect, Expect)
121 template <typename A, typename B, typename Expect>
CheckArgsReturnExpectedType()122 void CheckArgsReturnExpectedType() {
123   static_assert(
124       absl::conjunction<
125           std::is_same<Expect,
126                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
127           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
128                                    0))>>::value,
129       "");
130   static_assert(
131       absl::conjunction<
132           std::is_same<Expect,
133                        decltype(ExplicitTaggedUniformReturnT<
134                                 absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
135           std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
136                                         absl::IntervalOpenOpenTag, B, A,
137                                         Expect>(0))>>::value,
138       "");
139 }
140 
141 // Takes the type of `absl::Uniform<R>(gen)` if valid or `Invalid` otherwise.
142 template <typename R>
143 auto UniformNoBoundsReturnT(int)
144     -> decltype(absl::Uniform<R>(std::declval<absl::InsecureBitGen&>()));
145 
146 template <typename>
147 Invalid UniformNoBoundsReturnT(...);
148 
TEST_F(RandomDistributionsTest,UniformTypeInference)149 TEST_F(RandomDistributionsTest, UniformTypeInference) {
150   // Infers common types.
151   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
152   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
153   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
154   CheckArgsInferType<int16_t, int16_t, int16_t>();
155   CheckArgsInferType<int32_t, int32_t, int32_t>();
156   CheckArgsInferType<int64_t, int64_t, int64_t>();
157   CheckArgsInferType<float, float, float>();
158   CheckArgsInferType<double, double, double>();
159 
160   // Explicitly-specified return-values override inferences.
161   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
162   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
163   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
164   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
165   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
166   CheckArgsReturnExpectedType<float, float, double>();
167   CheckArgsReturnExpectedType<int, int, int16_t>();
168 
169   // Properly promotes uint16_t.
170   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
171   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
172   CheckArgsInferType<uint16_t, int32_t, int32_t>();
173   CheckArgsInferType<uint16_t, int64_t, int64_t>();
174   CheckArgsInferType<uint16_t, float, float>();
175   CheckArgsInferType<uint16_t, double, double>();
176 
177   // Properly promotes int16_t.
178   CheckArgsInferType<int16_t, int32_t, int32_t>();
179   CheckArgsInferType<int16_t, int64_t, int64_t>();
180   CheckArgsInferType<int16_t, float, float>();
181   CheckArgsInferType<int16_t, double, double>();
182 
183   // Invalid (u)int16_t-pairings do not compile.
184   // See "CheckArgsInferType" comments above, for how this is achieved.
185   CheckArgsInferType<uint16_t, int16_t, Invalid>();
186   CheckArgsInferType<int16_t, uint32_t, Invalid>();
187   CheckArgsInferType<int16_t, uint64_t, Invalid>();
188 
189   // Properly promotes uint32_t.
190   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
191   CheckArgsInferType<uint32_t, int64_t, int64_t>();
192   CheckArgsInferType<uint32_t, double, double>();
193 
194   // Properly promotes int32_t.
195   CheckArgsInferType<int32_t, int64_t, int64_t>();
196   CheckArgsInferType<int32_t, double, double>();
197 
198   // Invalid (u)int32_t-pairings do not compile.
199   CheckArgsInferType<uint32_t, int32_t, Invalid>();
200   CheckArgsInferType<int32_t, uint64_t, Invalid>();
201   CheckArgsInferType<int32_t, float, Invalid>();
202   CheckArgsInferType<uint32_t, float, Invalid>();
203 
204   // Invalid (u)int64_t-pairings do not compile.
205   CheckArgsInferType<uint64_t, int64_t, Invalid>();
206   CheckArgsInferType<int64_t, float, Invalid>();
207   CheckArgsInferType<int64_t, double, Invalid>();
208 
209   // Properly promotes float.
210   CheckArgsInferType<float, double, double>();
211 }
212 
TEST_F(RandomDistributionsTest,UniformExamples)213 TEST_F(RandomDistributionsTest, UniformExamples) {
214   // Examples.
215   absl::InsecureBitGen gen;
216   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
217   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
218   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
219                              static_cast<uint16_t>(0), 1.0f));
220   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
221   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
222   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
223   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
224   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
225 }
226 
TEST_F(RandomDistributionsTest,UniformNoBounds)227 TEST_F(RandomDistributionsTest, UniformNoBounds) {
228   absl::InsecureBitGen gen;
229 
230   absl::Uniform<uint8_t>(gen);
231   absl::Uniform<uint16_t>(gen);
232   absl::Uniform<uint32_t>(gen);
233   absl::Uniform<uint64_t>(gen);
234   absl::Uniform<absl::uint128>(gen);
235 
236   // Compile-time validity tests.
237 
238   // Allows unsigned ints.
239   testing::StaticAssertTypeEq<uint8_t,
240                               decltype(UniformNoBoundsReturnT<uint8_t>(0))>();
241   testing::StaticAssertTypeEq<uint16_t,
242                               decltype(UniformNoBoundsReturnT<uint16_t>(0))>();
243   testing::StaticAssertTypeEq<uint32_t,
244                               decltype(UniformNoBoundsReturnT<uint32_t>(0))>();
245   testing::StaticAssertTypeEq<uint64_t,
246                               decltype(UniformNoBoundsReturnT<uint64_t>(0))>();
247   testing::StaticAssertTypeEq<
248       absl::uint128, decltype(UniformNoBoundsReturnT<absl::uint128>(0))>();
249 
250   // Disallows signed ints.
251   testing::StaticAssertTypeEq<Invalid,
252                               decltype(UniformNoBoundsReturnT<int8_t>(0))>();
253   testing::StaticAssertTypeEq<Invalid,
254                               decltype(UniformNoBoundsReturnT<int16_t>(0))>();
255   testing::StaticAssertTypeEq<Invalid,
256                               decltype(UniformNoBoundsReturnT<int32_t>(0))>();
257   testing::StaticAssertTypeEq<Invalid,
258                               decltype(UniformNoBoundsReturnT<int64_t>(0))>();
259   testing::StaticAssertTypeEq<
260       Invalid, decltype(UniformNoBoundsReturnT<absl::int128>(0))>();
261 
262   // Disallows float types.
263   testing::StaticAssertTypeEq<Invalid,
264                               decltype(UniformNoBoundsReturnT<float>(0))>();
265   testing::StaticAssertTypeEq<Invalid,
266                               decltype(UniformNoBoundsReturnT<double>(0))>();
267 }
268 
TEST_F(RandomDistributionsTest,UniformNonsenseRanges)269 TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
270   // The ranges used in this test are undefined behavior.
271   // The results are arbitrary and subject to future changes.
272 
273 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
274   // We're using an x87-compatible FPU, and intermediate operations can be
275   // performed with 80-bit floats. This produces slightly different results from
276   // what we expect below.
277   GTEST_SKIP()
278       << "Skipping the test because we detected x87 floating-point semantics";
279 #endif
280 
281   absl::InsecureBitGen gen;
282 
283   // <uint>
284   EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
285   EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
286   EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
287   EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
288 
289   constexpr auto m = (std::numeric_limits<uint64_t>::max)();
290 
291   EXPECT_EQ(m, absl::Uniform(gen, m, m));
292   EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
293   EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
294   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
295   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
296   EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
297 
298   // <int>
299   EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
300   EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
301   EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
302   EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
303 
304   constexpr auto l = (std::numeric_limits<int64_t>::min)();
305   constexpr auto r = (std::numeric_limits<int64_t>::max)();
306 
307   EXPECT_EQ(l, absl::Uniform(gen, l, l));
308   EXPECT_EQ(r, absl::Uniform(gen, r, r));
309   EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
310   EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
311   EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
312   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
313   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
314   EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
315 
316   // <double>
317   const double e = std::nextafter(1.0, 2.0);  // 1 + epsilon
318   const double f = std::nextafter(1.0, 0.0);  // 1 - epsilon
319   const double g = std::numeric_limits<double>::denorm_min();
320 
321   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
322   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
323   EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
324 
325   EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
326   EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
327   EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
328 }
329 
330 // TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest,UniformReal)331 TEST_F(RandomDistributionsTest, UniformReal) {
332   std::vector<double> values(kSize);
333 
334   absl::InsecureBitGen gen;
335   for (int i = 0; i < kSize; i++) {
336     values[i] = absl::Uniform(gen, 0, 1.0);
337   }
338 
339   const auto moments =
340       absl::random_internal::ComputeDistributionMoments(values);
341   EXPECT_NEAR(0.5, moments.mean, 0.02);
342   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
343   EXPECT_NEAR(0.0, moments.skewness, 0.02);
344   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
345 }
346 
TEST_F(RandomDistributionsTest,UniformInt)347 TEST_F(RandomDistributionsTest, UniformInt) {
348   std::vector<double> values(kSize);
349 
350   absl::InsecureBitGen gen;
351   for (int i = 0; i < kSize; i++) {
352     const int64_t kMax = 1000000000000ll;
353     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
354     // convert to double.
355     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
356   }
357 
358   const auto moments =
359       absl::random_internal::ComputeDistributionMoments(values);
360   EXPECT_NEAR(0.5, moments.mean, 0.02);
361   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
362   EXPECT_NEAR(0.0, moments.skewness, 0.02);
363   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
364 
365   /*
366   // NOTE: These are not supported by absl::Uniform, which is specialized
367   // on integer and real valued types.
368 
369   enum E { E0, E1 };    // enum
370   enum S : int { S0, S1 };    // signed enum
371   enum U : unsigned int { U0, U1 };  // unsigned enum
372 
373   absl::Uniform(gen, E0, E1);
374   absl::Uniform(gen, S0, S1);
375   absl::Uniform(gen, U0, U1);
376   */
377 }
378 
TEST_F(RandomDistributionsTest,Exponential)379 TEST_F(RandomDistributionsTest, Exponential) {
380   std::vector<double> values(kSize);
381 
382   absl::InsecureBitGen gen;
383   for (int i = 0; i < kSize; i++) {
384     values[i] = absl::Exponential<double>(gen);
385   }
386 
387   const auto moments =
388       absl::random_internal::ComputeDistributionMoments(values);
389   EXPECT_NEAR(1.0, moments.mean, 0.02);
390   EXPECT_NEAR(1.0, moments.variance, 0.025);
391   EXPECT_NEAR(2.0, moments.skewness, 0.1);
392   EXPECT_LT(5.0, moments.kurtosis);
393 }
394 
TEST_F(RandomDistributionsTest,PoissonDefault)395 TEST_F(RandomDistributionsTest, PoissonDefault) {
396   std::vector<double> values(kSize);
397 
398   absl::InsecureBitGen gen;
399   for (int i = 0; i < kSize; i++) {
400     values[i] = absl::Poisson<int64_t>(gen);
401   }
402 
403   const auto moments =
404       absl::random_internal::ComputeDistributionMoments(values);
405   EXPECT_NEAR(1.0, moments.mean, 0.02);
406   EXPECT_NEAR(1.0, moments.variance, 0.02);
407   EXPECT_NEAR(1.0, moments.skewness, 0.025);
408   EXPECT_LT(2.0, moments.kurtosis);
409 }
410 
TEST_F(RandomDistributionsTest,PoissonLarge)411 TEST_F(RandomDistributionsTest, PoissonLarge) {
412   constexpr double kMean = 100000000.0;
413   std::vector<double> values(kSize);
414 
415   absl::InsecureBitGen gen;
416   for (int i = 0; i < kSize; i++) {
417     values[i] = absl::Poisson<int64_t>(gen, kMean);
418   }
419 
420   const auto moments =
421       absl::random_internal::ComputeDistributionMoments(values);
422   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
423   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
424   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
425   EXPECT_LT(2.0, moments.kurtosis);
426 }
427 
TEST_F(RandomDistributionsTest,Bernoulli)428 TEST_F(RandomDistributionsTest, Bernoulli) {
429   constexpr double kP = 0.5151515151;
430   std::vector<double> values(kSize);
431 
432   absl::InsecureBitGen gen;
433   for (int i = 0; i < kSize; i++) {
434     values[i] = absl::Bernoulli(gen, kP);
435   }
436 
437   const auto moments =
438       absl::random_internal::ComputeDistributionMoments(values);
439   EXPECT_NEAR(kP, moments.mean, 0.01);
440 }
441 
TEST_F(RandomDistributionsTest,Beta)442 TEST_F(RandomDistributionsTest, Beta) {
443   constexpr double kAlpha = 2.0;
444   constexpr double kBeta = 3.0;
445   std::vector<double> values(kSize);
446 
447   absl::InsecureBitGen gen;
448   for (int i = 0; i < kSize; i++) {
449     values[i] = absl::Beta(gen, kAlpha, kBeta);
450   }
451 
452   const auto moments =
453       absl::random_internal::ComputeDistributionMoments(values);
454   EXPECT_NEAR(0.4, moments.mean, 0.01);
455 }
456 
TEST_F(RandomDistributionsTest,Zipf)457 TEST_F(RandomDistributionsTest, Zipf) {
458   std::vector<double> values(kSize);
459 
460   absl::InsecureBitGen gen;
461   for (int i = 0; i < kSize; i++) {
462     values[i] = absl::Zipf<int64_t>(gen, 100);
463   }
464 
465   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
466   // Given the parameter v = 1, this gives the following function:
467   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
468   const auto moments =
469       absl::random_internal::ComputeDistributionMoments(values);
470   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
471 }
472 
TEST_F(RandomDistributionsTest,ZipfWithZeroMax)473 TEST_F(RandomDistributionsTest, ZipfWithZeroMax) {
474   absl::InsecureBitGen gen;
475   for (int i = 0; i < 100; ++i) {
476     EXPECT_EQ(0, absl::Zipf(gen, 0));
477   }
478 }
479 
TEST_F(RandomDistributionsTest,Gaussian)480 TEST_F(RandomDistributionsTest, Gaussian) {
481   std::vector<double> values(kSize);
482 
483   absl::InsecureBitGen gen;
484   for (int i = 0; i < kSize; i++) {
485     values[i] = absl::Gaussian<double>(gen);
486   }
487 
488   const auto moments =
489       absl::random_internal::ComputeDistributionMoments(values);
490   EXPECT_NEAR(0.0, moments.mean, 0.02);
491   EXPECT_NEAR(1.0, moments.variance, 0.04);
492   EXPECT_NEAR(0, moments.skewness, 0.2);
493   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
494 }
495 
TEST_F(RandomDistributionsTest,LogUniform)496 TEST_F(RandomDistributionsTest, LogUniform) {
497   std::vector<double> values(kSize);
498 
499   absl::InsecureBitGen gen;
500   for (int i = 0; i < kSize; i++) {
501     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
502   }
503 
504   // The mean is the sum of the fractional means of the uniform distributions:
505   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
506   // [64..127][128..255][256..511][512..1023]
507   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
508                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
509                       (2.0 * 11.0);
510 
511   const auto moments =
512       absl::random_internal::ComputeDistributionMoments(values);
513   EXPECT_NEAR(mean, moments.mean, 2) << moments;
514 }
515 
516 }  // namespace
517