xref: /aosp_15_r20/external/armnn/delegate/test/ActivationTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateActivationTfLiteModel(tflite::BuiltinOperator activationOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & tensorShape)24 std::vector<char> CreateActivationTfLiteModel(tflite::BuiltinOperator activationOperatorCode,
25                                               tflite::TensorType tensorType,
26                                               const std::vector <int32_t>& tensorShape)
27 {
28     using namespace tflite;
29     flatbuffers::FlatBufferBuilder flatBufferBuilder;
30 
31     std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers;
32     buffers[0] = CreateBuffer(flatBufferBuilder);
33 
34     std::array<flatbuffers::Offset<Tensor>, 2> tensors;
35     tensors[0] = CreateTensor(flatBufferBuilder,
36                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(), tensorShape.size()),
37                               tensorType);
38     tensors[1] = CreateTensor(flatBufferBuilder,
39                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(), tensorShape.size()),
40                               tensorType);
41 
42     // create operator
43     const std::vector<int> operatorInputs{0};
44     const std::vector<int> operatorOutputs{1};
45     flatbuffers::Offset <Operator> unaryOperator =
46         CreateOperator(flatBufferBuilder,
47                        0,
48                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
49                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()));
50 
51     const std::vector<int> subgraphInputs{0};
52     const std::vector<int> subgraphOutputs{1};
53     flatbuffers::Offset <SubGraph> subgraph =
54         CreateSubGraph(flatBufferBuilder,
55                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
56                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
57                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
58                        flatBufferBuilder.CreateVector(&unaryOperator, 1));
59 
60     flatbuffers::Offset <flatbuffers::String> modelDescription =
61         flatBufferBuilder.CreateString("ArmnnDelegate: Activation Operator Model");
62     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, activationOperatorCode);
63 
64     flatbuffers::Offset <Model> flatbufferModel =
65         CreateModel(flatBufferBuilder,
66                     TFLITE_SCHEMA_VERSION,
67                     flatBufferBuilder.CreateVector(&operatorCode, 1),
68                     flatBufferBuilder.CreateVector(&subgraph, 1),
69                     modelDescription,
70                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
71 
72     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
73 
74     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
75                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
76 }
77 
ActivationTest(tflite::BuiltinOperator activationOperatorCode,std::vector<armnn::BackendId> & backends,std::vector<float> & inputValues,std::vector<float> & expectedOutputValues)78 void ActivationTest(tflite::BuiltinOperator activationOperatorCode,
79                     std::vector<armnn::BackendId>& backends,
80                     std::vector<float>& inputValues,
81                     std::vector<float>& expectedOutputValues)
82 {
83     using namespace delegateTestInterpreter;
84     std::vector<int32_t> inputShape  { { 4, 1, 4} };
85     std::vector<char> modelBuffer = CreateActivationTfLiteModel(activationOperatorCode,
86                                                                 ::tflite::TensorType_FLOAT32,
87                                                                 inputShape);
88 
89     // Setup interpreter with just TFLite Runtime.
90     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
91     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
92     CHECK(tfLiteInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
93     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
94     std::vector<float>   tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
95     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
96 
97     // Setup interpreter with Arm NN Delegate applied.
98     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
99     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
100     CHECK(armnnInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
101     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
102     std::vector<float>   armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
103     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
104 
105     armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
106     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, inputShape);
107 
108     tfLiteInterpreter.Cleanup();
109     armnnInterpreter.Cleanup();
110 }
111 
112 } // anonymous namespace