xref: /aosp_15_r20/external/armnn/delegate/test/BatchMatMulTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
CreateBatchMatMulTfLiteModel(tflite::BuiltinOperator bmmOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & LHSInputTensorShape,const std::vector<int32_t> & RHSInputTensorShape,const std::vector<int32_t> & outputTensorShape,bool adjX=false,bool adjY=false,float quantScale=1.0f,int quantOffset=0)23 std::vector<char> CreateBatchMatMulTfLiteModel(
24         tflite::BuiltinOperator bmmOperatorCode,
25         tflite::TensorType tensorType,
26         const std::vector <int32_t>& LHSInputTensorShape,
27         const std::vector <int32_t>& RHSInputTensorShape,
28         const std::vector <int32_t>& outputTensorShape,
29         bool adjX = false,
30         bool adjY = false,
31         float quantScale = 1.0f,
32         int quantOffset  = 0)
33 {
34     using namespace tflite;
35     flatbuffers::FlatBufferBuilder flatBufferBuilder;
36 
37     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
38     buffers.push_back(CreateBuffer(flatBufferBuilder));
39     buffers.push_back(CreateBuffer(flatBufferBuilder));
40     buffers.push_back(CreateBuffer(flatBufferBuilder));
41     buffers.push_back(CreateBuffer(flatBufferBuilder));
42 
43     auto quantizationParameters =
44             CreateQuantizationParameters(flatBufferBuilder,
45                                          0,
46                                          0,
47                                          flatBufferBuilder.CreateVector<float>({ quantScale }),
48                                          flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
49 
50     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
51     tensors[0] = CreateTensor(flatBufferBuilder,
52                               flatBufferBuilder.CreateVector<int32_t>(LHSInputTensorShape.data(),
53                                                                       LHSInputTensorShape.size()),
54                               tensorType,
55                               1,
56                               flatBufferBuilder.CreateString("LHSInput"),
57                               quantizationParameters);
58 
59     tensors[1] = CreateTensor(flatBufferBuilder,
60                               flatBufferBuilder.CreateVector<int32_t>(RHSInputTensorShape.data(),
61                                                                       RHSInputTensorShape.size()),
62                               tensorType,
63                               2,
64                               flatBufferBuilder.CreateString("RHSInput"),
65                               quantizationParameters);
66 
67     tensors[2] = CreateTensor(flatBufferBuilder,
68                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
69                                                                       outputTensorShape.size()),
70                               tensorType,
71                               3,
72                               flatBufferBuilder.CreateString("output"),
73                               quantizationParameters);
74 
75     // create operator
76     tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_BatchMatMulOptions;
77     flatbuffers::Offset<void> operatorBuiltinOptions = CreateBatchMatMulOptions(flatBufferBuilder,
78                                                                                 adjX,
79                                                                                 adjY).Union();
80 
81     const std::vector<int32_t> operatorInputs{{0, 1}};
82     const std::vector<int32_t> operatorOutputs{2};
83     flatbuffers::Offset <Operator> bmmOperator =
84             CreateOperator(flatBufferBuilder,
85                            0,
86                            flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
87                            flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(),
88                                                                    operatorOutputs.size()),
89                            operatorBuiltinOptionsType,
90                            operatorBuiltinOptions);
91 
92     const std::vector<int> subgraphInputs{{0, 1}};
93     const std::vector<int> subgraphOutputs{2};
94     flatbuffers::Offset <SubGraph> subgraph =
95             CreateSubGraph(flatBufferBuilder,
96                            flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
97                            flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
98                            flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(),
99                                                                    subgraphOutputs.size()),
100                            flatBufferBuilder.CreateVector(&bmmOperator, 1));
101 
102     flatbuffers::Offset <flatbuffers::String> modelDescription =
103             flatBufferBuilder.CreateString("ArmnnDelegate: BatchMatMul Operator Model");
104     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, bmmOperatorCode);
105 
106     flatbuffers::Offset <Model> flatbufferModel =
107             CreateModel(flatBufferBuilder,
108                         TFLITE_SCHEMA_VERSION,
109                         flatBufferBuilder.CreateVector(&operatorCode, 1),
110                         flatBufferBuilder.CreateVector(&subgraph, 1),
111                         modelDescription,
112                         flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
113 
114     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
115 
116     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
117                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
118 }
119 
120 template <typename T>
BatchMatMulTest(tflite::BuiltinOperator bmmOperatorCode,tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & LHSInputShape,std::vector<int32_t> & RHSInputShape,std::vector<int32_t> & outputShape,std::vector<T> & LHSInputValues,std::vector<T> & RHSInputValues,std::vector<T> & expectedOutputValues,bool adjX=false,bool adjY=false,float quantScale=1.0f,int quantOffset=0)121 void BatchMatMulTest(tflite::BuiltinOperator bmmOperatorCode,
122                    tflite::TensorType tensorType,
123                    std::vector<armnn::BackendId>& backends,
124                    std::vector<int32_t>& LHSInputShape,
125                    std::vector<int32_t>& RHSInputShape,
126                    std::vector<int32_t>& outputShape,
127                    std::vector<T>& LHSInputValues,
128                    std::vector<T>& RHSInputValues,
129                    std::vector<T>& expectedOutputValues,
130                    bool adjX = false,
131                    bool adjY = false,
132                    float quantScale = 1.0f,
133                    int quantOffset  = 0)
134 {
135     using namespace delegateTestInterpreter;
136     std::vector<char> modelBuffer = CreateBatchMatMulTfLiteModel(bmmOperatorCode,
137                                                                  tensorType,
138                                                                  LHSInputShape,
139                                                                  RHSInputShape,
140                                                                  outputShape,
141                                                                  adjX,
142                                                                  adjY,
143                                                                  quantScale,
144                                                                  quantOffset);
145 
146     // Setup interpreter with just TFLite Runtime.
147     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
148     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
149     CHECK(tfLiteInterpreter.FillInputTensor<T>(LHSInputValues, 0) == kTfLiteOk);
150     CHECK(tfLiteInterpreter.FillInputTensor<T>(RHSInputValues, 1) == kTfLiteOk);
151     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
152     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
153     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
154 
155     // Setup interpreter with Arm NN Delegate applied.
156     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
157     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
158     CHECK(armnnInterpreter.FillInputTensor<T>(LHSInputValues, 0) == kTfLiteOk);
159     CHECK(armnnInterpreter.FillInputTensor<T>(RHSInputValues, 1) == kTfLiteOk);
160     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
161     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
162     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
163 
164     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
165     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
166 
167     tfLiteInterpreter.Cleanup();
168     armnnInterpreter.Cleanup();
169 }
170 
171 } // anonymous namespace
172 
173 
174 
175 
176