xref: /aosp_15_r20/external/armnn/delegate/test/CastTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
CreateCastTfLiteModel(tflite::TensorType inputTensorType,tflite::TensorType outputTensorType,const std::vector<int32_t> & tensorShape,float quantScale=1.0f,int quantOffset=0)23 std::vector<char> CreateCastTfLiteModel(tflite::TensorType inputTensorType,
24                                         tflite::TensorType outputTensorType,
25                                         const std::vector <int32_t>& tensorShape,
26                                         float quantScale = 1.0f,
27                                         int quantOffset = 0)
28 {
29     using namespace tflite;
30     flatbuffers::FlatBufferBuilder flatBufferBuilder;
31 
32     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
33     buffers.push_back(CreateBuffer(flatBufferBuilder));
34     buffers.push_back(CreateBuffer(flatBufferBuilder));
35     buffers.push_back(CreateBuffer(flatBufferBuilder));
36 
37     auto quantizationParameters =
38         CreateQuantizationParameters(flatBufferBuilder,
39                                      0,
40                                      0,
41                                      flatBufferBuilder.CreateVector<float>({quantScale}),
42                                      flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
43 
44     std::array<flatbuffers::Offset<Tensor>, 2> tensors;
45     tensors[0] = CreateTensor(flatBufferBuilder,
46                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
47                                                                       tensorShape.size()),
48                               inputTensorType,
49                               1,
50                               flatBufferBuilder.CreateString("input"),
51                               quantizationParameters);
52     tensors[1] = CreateTensor(flatBufferBuilder,
53                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
54                                                                       tensorShape.size()),
55                               outputTensorType,
56                               2,
57                               flatBufferBuilder.CreateString("output"),
58                               quantizationParameters);
59 
60     const std::vector<int32_t> operatorInputs({0});
61     const std::vector<int32_t> operatorOutputs({1});
62 
63     flatbuffers::Offset<Operator> castOperator =
64         CreateOperator(flatBufferBuilder,
65                        0,
66                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
67                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
68                        BuiltinOptions_CastOptions,
69                        CreateCastOptions(flatBufferBuilder).Union());
70 
71     flatbuffers::Offset<flatbuffers::String> modelDescription =
72         flatBufferBuilder.CreateString("ArmnnDelegate: CAST Operator Model");
73     flatbuffers::Offset<OperatorCode> operatorCode =
74         CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_CAST);
75 
76     const std::vector<int32_t> subgraphInputs({0});
77     const std::vector<int32_t> subgraphOutputs({1});
78     flatbuffers::Offset<SubGraph> subgraph =
79         CreateSubGraph(flatBufferBuilder,
80                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
81                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
82                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
83                        flatBufferBuilder.CreateVector(&castOperator, 1));
84 
85     flatbuffers::Offset<Model> flatbufferModel =
86         CreateModel(flatBufferBuilder,
87                     TFLITE_SCHEMA_VERSION,
88                     flatBufferBuilder.CreateVector(&operatorCode, 1),
89                     flatBufferBuilder.CreateVector(&subgraph, 1),
90                     modelDescription,
91                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
92 
93     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
94     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
95                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
96 }
97 
98 template<typename T, typename K>
CastTest(tflite::TensorType inputTensorType,tflite::TensorType outputTensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & shape,std::vector<T> & inputValues,std::vector<K> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0)99 void CastTest(tflite::TensorType inputTensorType,
100               tflite::TensorType outputTensorType,
101               std::vector<armnn::BackendId>& backends,
102               std::vector<int32_t>& shape,
103               std::vector<T>& inputValues,
104               std::vector<K>& expectedOutputValues,
105               float quantScale = 1.0f,
106               int quantOffset = 0)
107 {
108     using namespace delegateTestInterpreter;
109     std::vector<char> modelBuffer = CreateCastTfLiteModel(inputTensorType,
110                                                           outputTensorType,
111                                                           shape,
112                                                           quantScale,
113                                                           quantOffset);
114 
115     // Setup interpreter with just TFLite Runtime.
116     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
117     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
118     CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
119     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
120     std::vector<K>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<K>(0);
121     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
122 
123     // Setup interpreter with Arm NN Delegate applied.
124     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
125     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
126     CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
127     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
128     std::vector<K>       armnnOutputValues = armnnInterpreter.GetOutputResult<K>(0);
129     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
130 
131     armnnDelegate::CompareOutputData<K>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
132     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, shape);
133 
134     tfLiteInterpreter.Cleanup();
135     armnnInterpreter.Cleanup();
136 }
137 
138 } // anonymous namespace
139