xref: /aosp_15_r20/external/armnn/delegate/test/DelegateOptionsTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
24 struct StreamRedirector
25 {
26 public:
StreamRedirector__anon0606af480111::StreamRedirector27     StreamRedirector(std::ostream &stream, std::streambuf *newStreamBuffer)
28         : m_Stream(stream), m_BackupBuffer(m_Stream.rdbuf(newStreamBuffer)) {}
29 
~StreamRedirector__anon0606af480111::StreamRedirector30     ~StreamRedirector() { m_Stream.rdbuf(m_BackupBuffer); }
31 
32 private:
33     std::ostream &m_Stream;
34     std::streambuf *m_BackupBuffer;
35 };
36 
CreateAddDivTfLiteModel(tflite::TensorType tensorType,const std::vector<int32_t> & tensorShape,float quantScale=1.0f,int quantOffset=0)37 std::vector<char> CreateAddDivTfLiteModel(tflite::TensorType tensorType,
38                                           const std::vector<int32_t>& tensorShape,
39                                           float quantScale = 1.0f,
40                                           int quantOffset  = 0)
41 {
42     using namespace tflite;
43     flatbuffers::FlatBufferBuilder flatBufferBuilder;
44 
45     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
46     buffers.push_back(CreateBuffer(flatBufferBuilder));
47     buffers.push_back(CreateBuffer(flatBufferBuilder));
48     buffers.push_back(CreateBuffer(flatBufferBuilder));
49     buffers.push_back(CreateBuffer(flatBufferBuilder));
50     buffers.push_back(CreateBuffer(flatBufferBuilder));
51     buffers.push_back(CreateBuffer(flatBufferBuilder));
52 
53     auto quantizationParameters =
54         CreateQuantizationParameters(flatBufferBuilder,
55                                      0,
56                                      0,
57                                      flatBufferBuilder.CreateVector<float>({ quantScale }),
58                                      flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
59 
60 
61     std::array<flatbuffers::Offset<Tensor>, 5> tensors;
62     tensors[0] = CreateTensor(flatBufferBuilder,
63                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
64                                                                       tensorShape.size()),
65                               tensorType,
66                               1,
67                               flatBufferBuilder.CreateString("input_0"),
68                               quantizationParameters);
69     tensors[1] = CreateTensor(flatBufferBuilder,
70                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
71                                                                       tensorShape.size()),
72                               tensorType,
73                               2,
74                               flatBufferBuilder.CreateString("input_1"),
75                               quantizationParameters);
76     tensors[2] = CreateTensor(flatBufferBuilder,
77                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
78                                                                       tensorShape.size()),
79                               tensorType,
80                               3,
81                               flatBufferBuilder.CreateString("input_2"),
82                               quantizationParameters);
83     tensors[3] = CreateTensor(flatBufferBuilder,
84                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
85                                                                       tensorShape.size()),
86                               tensorType,
87                               4,
88                               flatBufferBuilder.CreateString("add"),
89                               quantizationParameters);
90     tensors[4] = CreateTensor(flatBufferBuilder,
91                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
92                                                                       tensorShape.size()),
93                               tensorType,
94                               5,
95                               flatBufferBuilder.CreateString("output"),
96                               quantizationParameters);
97 
98     // create operator
99     tflite::BuiltinOptions addBuiltinOptionsType = tflite::BuiltinOptions_AddOptions;
100     flatbuffers::Offset<void> addBuiltinOptions =
101         CreateAddOptions(flatBufferBuilder, ActivationFunctionType_NONE).Union();
102 
103     tflite::BuiltinOptions divBuiltinOptionsType = tflite::BuiltinOptions_DivOptions;
104     flatbuffers::Offset<void> divBuiltinOptions =
105         CreateAddOptions(flatBufferBuilder, ActivationFunctionType_NONE).Union();
106 
107     std::array<flatbuffers::Offset<Operator>, 2> operators;
108     const std::vector<int32_t> addInputs{0, 1};
109     const std::vector<int32_t> addOutputs{3};
110     operators[0] = CreateOperator(flatBufferBuilder,
111                                   0,
112                                   flatBufferBuilder.CreateVector<int32_t>(addInputs.data(), addInputs.size()),
113                                   flatBufferBuilder.CreateVector<int32_t>(addOutputs.data(), addOutputs.size()),
114                                   addBuiltinOptionsType,
115                                   addBuiltinOptions);
116     const std::vector<int32_t> divInputs{3, 2};
117     const std::vector<int32_t> divOutputs{4};
118     operators[1] = CreateOperator(flatBufferBuilder,
119                                   1,
120                                   flatBufferBuilder.CreateVector<int32_t>(divInputs.data(), divInputs.size()),
121                                   flatBufferBuilder.CreateVector<int32_t>(divOutputs.data(), divOutputs.size()),
122                                   divBuiltinOptionsType,
123                                   divBuiltinOptions);
124 
125     const std::vector<int> subgraphInputs{0, 1, 2};
126     const std::vector<int> subgraphOutputs{4};
127     flatbuffers::Offset<SubGraph> subgraph =
128         CreateSubGraph(flatBufferBuilder,
129                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
130                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
131                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
132                        flatBufferBuilder.CreateVector(operators.data(), operators.size()));
133 
134     flatbuffers::Offset<flatbuffers::String> modelDescription =
135         flatBufferBuilder.CreateString("ArmnnDelegate: Add and Div Operator Model");
136 
137     std::array<flatbuffers::Offset<OperatorCode>, 2> codes;
138     codes[0] = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_ADD);
139     codes[1] = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_DIV);
140 
141     flatbuffers::Offset<Model> flatbufferModel =
142         CreateModel(flatBufferBuilder,
143                     TFLITE_SCHEMA_VERSION,
144                     flatBufferBuilder.CreateVector(codes.data(), codes.size()),
145                     flatBufferBuilder.CreateVector(&subgraph, 1),
146                     modelDescription,
147                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
148 
149     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
150 
151     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
152                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
153 }
154 
CreateCosTfLiteModel(tflite::TensorType tensorType,const std::vector<int32_t> & tensorShape,float quantScale=1.0f,int quantOffset=0)155 std::vector<char> CreateCosTfLiteModel(tflite::TensorType tensorType,
156                                        const std::vector <int32_t>& tensorShape,
157                                        float quantScale = 1.0f,
158                                        int quantOffset = 0)
159 {
160     using namespace tflite;
161     flatbuffers::FlatBufferBuilder flatBufferBuilder;
162 
163     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
164     buffers.push_back(CreateBuffer(flatBufferBuilder));
165 
166     auto quantizationParameters =
167         CreateQuantizationParameters(flatBufferBuilder,
168                                      0,
169                                      0,
170                                      flatBufferBuilder.CreateVector<float>({quantScale}),
171                                      flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
172 
173     std::array<flatbuffers::Offset<Tensor>, 2> tensors;
174     tensors[0] = CreateTensor(flatBufferBuilder,
175                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
176                                                                       tensorShape.size()),
177                               tensorType,
178                               0,
179                               flatBufferBuilder.CreateString("input"),
180                               quantizationParameters);
181     tensors[1] = CreateTensor(flatBufferBuilder,
182                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
183                                                                       tensorShape.size()),
184                               tensorType,
185                               0,
186                               flatBufferBuilder.CreateString("output"),
187                               quantizationParameters);
188 
189     const std::vector<int32_t> operatorInputs({0});
190     const std::vector<int32_t> operatorOutputs({1});
191 
192     flatbuffers::Offset<Operator> ceilOperator =
193         CreateOperator(flatBufferBuilder,
194                        0,
195                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
196                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
197                        BuiltinOptions_NONE);
198 
199     flatbuffers::Offset<flatbuffers::String> modelDescription =
200         flatBufferBuilder.CreateString("ArmnnDelegate: CEIL Operator Model");
201     flatbuffers::Offset<OperatorCode> operatorCode =
202         CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_COS);
203 
204     const std::vector<int32_t> subgraphInputs({0});
205     const std::vector<int32_t> subgraphOutputs({1});
206     flatbuffers::Offset<SubGraph> subgraph =
207         CreateSubGraph(flatBufferBuilder,
208                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
209                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
210                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
211                        flatBufferBuilder.CreateVector(&ceilOperator, 1));
212 
213     flatbuffers::Offset<Model> flatbufferModel =
214         CreateModel(flatBufferBuilder,
215                     TFLITE_SCHEMA_VERSION,
216                     flatBufferBuilder.CreateVector(&operatorCode, 1),
217                     flatBufferBuilder.CreateVector(&subgraph, 1),
218                     modelDescription,
219                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
220 
221     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
222     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
223                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
224 }
225 
226 template <typename T>
DelegateOptionTest(tflite::TensorType tensorType,std::vector<int32_t> & tensorShape,std::vector<T> & input0Values,std::vector<T> & input1Values,std::vector<T> & input2Values,std::vector<T> & expectedOutputValues,const armnnDelegate::DelegateOptions & delegateOptions,float quantScale=1.0f,int quantOffset=0)227 void DelegateOptionTest(tflite::TensorType tensorType,
228                         std::vector<int32_t>& tensorShape,
229                         std::vector<T>& input0Values,
230                         std::vector<T>& input1Values,
231                         std::vector<T>& input2Values,
232                         std::vector<T>& expectedOutputValues,
233                         const armnnDelegate::DelegateOptions& delegateOptions,
234                         float quantScale = 1.0f,
235                         int quantOffset  = 0)
236 {
237     using namespace delegateTestInterpreter;
238     std::vector<char> modelBuffer = CreateAddDivTfLiteModel(tensorType,
239                                                             tensorShape,
240                                                             quantScale,
241                                                             quantOffset);
242 
243     // Setup interpreter with just TFLite Runtime.
244     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
245     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
246     CHECK(tfLiteInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
247     CHECK(tfLiteInterpreter.FillInputTensor<T>(input1Values, 1) == kTfLiteOk);
248     CHECK(tfLiteInterpreter.FillInputTensor<T>(input2Values, 2) == kTfLiteOk);
249     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
250     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
251     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
252 
253     // Setup interpreter with Arm NN Delegate applied.
254     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, delegateOptions);
255     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
256     CHECK(armnnInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
257     CHECK(armnnInterpreter.FillInputTensor<T>(input1Values, 1) == kTfLiteOk);
258     CHECK(armnnInterpreter.FillInputTensor<T>(input2Values, 2) == kTfLiteOk);
259     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
260     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
261     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
262 
263     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
264     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, tensorShape);
265 
266     tfLiteInterpreter.Cleanup();
267     armnnInterpreter.Cleanup();
268 }
269 
270 template <typename T>
DelegateOptionNoFallbackTest(tflite::TensorType tensorType,std::vector<int32_t> & tensorShape,std::vector<T> & inputValues,std::vector<T> & expectedOutputValues,const armnnDelegate::DelegateOptions & delegateOptions,float quantScale=1.0f,int quantOffset=0)271 void DelegateOptionNoFallbackTest(tflite::TensorType tensorType,
272                                   std::vector<int32_t>& tensorShape,
273                                   std::vector<T>& inputValues,
274                                   std::vector<T>& expectedOutputValues,
275                                   const armnnDelegate::DelegateOptions& delegateOptions,
276                                   float quantScale = 1.0f,
277                                   int quantOffset  = 0)
278 {
279     using namespace delegateTestInterpreter;
280     std::vector<char> modelBuffer = CreateCosTfLiteModel(tensorType,
281                                                          tensorShape,
282                                                          quantScale,
283                                                          quantOffset);
284 
285     // Setup interpreter with just TFLite Runtime.
286     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
287     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
288     CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
289     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
290     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
291     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
292     tfLiteInterpreter.Cleanup();
293 
294     try
295     {
296         auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, delegateOptions);
297         CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
298         CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
299         CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
300         std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
301         std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
302         armnnInterpreter.Cleanup();
303 
304         armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
305         armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, tensorShape);
306     }
307     catch (const armnn::Exception& e)
308     {
309         // Forward the exception message to std::cout
310         std::cout << e.what() << std::endl;
311     }
312 }
313 
314 } // anonymous namespace