xref: /aosp_15_r20/external/armnn/delegate/test/FillTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
24 template <typename T>
CreateFillTfLiteModel(tflite::BuiltinOperator fillOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & inputShape,const std::vector<int32_t> & tensorShape,const std::vector<T> fillValue)25 std::vector<char> CreateFillTfLiteModel(tflite::BuiltinOperator fillOperatorCode,
26                                         tflite::TensorType tensorType,
27                                         const std::vector<int32_t>& inputShape,
28                                         const std::vector <int32_t>& tensorShape,
29                                         const std::vector<T> fillValue)
30 {
31     using namespace tflite;
32     flatbuffers::FlatBufferBuilder flatBufferBuilder;
33 
34     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
35     buffers.push_back(CreateBuffer(flatBufferBuilder));
36     buffers.push_back(
37         CreateBuffer(flatBufferBuilder,
38                      flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(tensorShape.data()),
39                                                     sizeof(int32_t) * tensorShape.size())));
40     buffers.push_back(
41         CreateBuffer(flatBufferBuilder,
42                      flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(fillValue.data()),
43                                                     sizeof(T) * fillValue.size())));
44     buffers.push_back(CreateBuffer(flatBufferBuilder));
45 
46     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
47     tensors[0] = CreateTensor(flatBufferBuilder,
48                               flatBufferBuilder.CreateVector<int32_t>(inputShape.data(),
49                                                                       inputShape.size()),
50                               tflite::TensorType_INT32,
51                               1,
52                               flatBufferBuilder.CreateString("dims"));
53 
54     std::vector<int32_t> fillShape = {};
55     tensors[1] = CreateTensor(flatBufferBuilder,
56                               flatBufferBuilder.CreateVector<int32_t>(fillShape.data(),
57                                                                       fillShape.size()),
58                               tensorType,
59                               2,
60                               flatBufferBuilder.CreateString("value"));
61 
62     tensors[2] = CreateTensor(flatBufferBuilder,
63                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
64                                                                       tensorShape.size()),
65                               tensorType,
66                               3,
67                               flatBufferBuilder.CreateString("output"));
68 
69     tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_FillOptions;
70     flatbuffers::Offset<void> operatorBuiltinOptions = CreateFillOptions(flatBufferBuilder).Union();
71 
72     // create operator
73     const std::vector<int> operatorInputs{ {0, 1} };
74     const std::vector<int> operatorOutputs{ 2 };
75     flatbuffers::Offset <Operator> fillOperator =
76         CreateOperator(flatBufferBuilder,
77                        0,
78                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
79                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
80                        operatorBuiltinOptionsType,
81                        operatorBuiltinOptions);
82 
83     const std::vector<int> subgraphInputs{ {0, 1} };
84     const std::vector<int> subgraphOutputs{ 2 };
85     flatbuffers::Offset <SubGraph> subgraph =
86         CreateSubGraph(flatBufferBuilder,
87                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
88                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
89                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
90                        flatBufferBuilder.CreateVector(&fillOperator, 1));
91 
92     flatbuffers::Offset <flatbuffers::String> modelDescription =
93         flatBufferBuilder.CreateString("ArmnnDelegate: Fill Operator Model");
94     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
95                                                                          fillOperatorCode);
96 
97     flatbuffers::Offset <Model> flatbufferModel =
98         CreateModel(flatBufferBuilder,
99                     TFLITE_SCHEMA_VERSION,
100                     flatBufferBuilder.CreateVector(&operatorCode, 1),
101                     flatBufferBuilder.CreateVector(&subgraph, 1),
102                     modelDescription,
103                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
104 
105     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
106 
107     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
108                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
109 
110 }
111 
112 template <typename T>
FillTest(tflite::BuiltinOperator fillOperatorCode,tflite::TensorType tensorType,const std::vector<armnn::BackendId> & backends,std::vector<int32_t> & inputShape,std::vector<int32_t> & tensorShape,std::vector<T> & expectedOutputValues,T fillValue)113 void FillTest(tflite::BuiltinOperator fillOperatorCode,
114               tflite::TensorType tensorType,
115               const std::vector<armnn::BackendId>& backends,
116               std::vector<int32_t >& inputShape,
117               std::vector<int32_t >& tensorShape,
118               std::vector<T>& expectedOutputValues,
119               T fillValue)
120 {
121     using namespace delegateTestInterpreter;
122     std::vector<char> modelBuffer = CreateFillTfLiteModel<T>(fillOperatorCode,
123                                                              tensorType,
124                                                              inputShape,
125                                                              tensorShape,
126                                                              {fillValue});
127 
128     // Setup interpreter with just TFLite Runtime.
129     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
130     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
131     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
132     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
133     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
134 
135     // Setup interpreter with Arm NN Delegate applied.
136     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
137     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
138     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
139     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
140     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
141 
142     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
143     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, tensorShape);
144 
145     tfLiteInterpreter.Cleanup();
146     armnnInterpreter.Cleanup();
147 }
148 
149 } // anonymous namespace
150