xref: /aosp_15_r20/external/armnn/delegate/test/LogicalTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateLogicalBinaryTfLiteModel(tflite::BuiltinOperator logicalOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & input0TensorShape,const std::vector<int32_t> & input1TensorShape,const std::vector<int32_t> & outputTensorShape,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreateLogicalBinaryTfLiteModel(tflite::BuiltinOperator logicalOperatorCode,
25                                                  tflite::TensorType tensorType,
26                                                  const std::vector <int32_t>& input0TensorShape,
27                                                  const std::vector <int32_t>& input1TensorShape,
28                                                  const std::vector <int32_t>& outputTensorShape,
29                                                  float quantScale = 1.0f,
30                                                  int quantOffset  = 0)
31 {
32     using namespace tflite;
33     flatbuffers::FlatBufferBuilder flatBufferBuilder;
34 
35     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
36     buffers.push_back(CreateBuffer(flatBufferBuilder));
37     buffers.push_back(CreateBuffer(flatBufferBuilder));
38     buffers.push_back(CreateBuffer(flatBufferBuilder));
39     buffers.push_back(CreateBuffer(flatBufferBuilder));
40 
41     auto quantizationParameters =
42         CreateQuantizationParameters(flatBufferBuilder,
43                                      0,
44                                      0,
45                                      flatBufferBuilder.CreateVector<float>({ quantScale }),
46                                      flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
47 
48 
49     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
50     tensors[0] = CreateTensor(flatBufferBuilder,
51                               flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
52                                                                       input0TensorShape.size()),
53                               tensorType,
54                               1,
55                               flatBufferBuilder.CreateString("input_0"),
56                               quantizationParameters);
57     tensors[1] = CreateTensor(flatBufferBuilder,
58                               flatBufferBuilder.CreateVector<int32_t>(input1TensorShape.data(),
59                                                                       input1TensorShape.size()),
60                               tensorType,
61                               2,
62                               flatBufferBuilder.CreateString("input_1"),
63                               quantizationParameters);
64     tensors[2] = CreateTensor(flatBufferBuilder,
65                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
66                                                                       outputTensorShape.size()),
67                               tensorType,
68                               3,
69                               flatBufferBuilder.CreateString("output"),
70                               quantizationParameters);
71 
72     // create operator
73     tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
74     flatbuffers::Offset<void> operatorBuiltinOptions = 0;
75     switch (logicalOperatorCode)
76     {
77         case BuiltinOperator_LOGICAL_AND:
78         {
79             operatorBuiltinOptionsType = BuiltinOptions_LogicalAndOptions;
80             operatorBuiltinOptions = CreateLogicalAndOptions(flatBufferBuilder).Union();
81             break;
82         }
83         case BuiltinOperator_LOGICAL_OR:
84         {
85             operatorBuiltinOptionsType = BuiltinOptions_LogicalOrOptions;
86             operatorBuiltinOptions = CreateLogicalOrOptions(flatBufferBuilder).Union();
87             break;
88         }
89         default:
90             break;
91     }
92     const std::vector<int32_t> operatorInputs{ {0, 1} };
93     const std::vector<int32_t> operatorOutputs{ 2 };
94     flatbuffers::Offset <Operator> logicalBinaryOperator =
95         CreateOperator(flatBufferBuilder,
96                        0,
97                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
98                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
99                        operatorBuiltinOptionsType,
100                        operatorBuiltinOptions);
101 
102     const std::vector<int> subgraphInputs{ {0, 1} };
103     const std::vector<int> subgraphOutputs{ 2 };
104     flatbuffers::Offset <SubGraph> subgraph =
105         CreateSubGraph(flatBufferBuilder,
106                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
107                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
108                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
109                        flatBufferBuilder.CreateVector(&logicalBinaryOperator, 1));
110 
111     flatbuffers::Offset <flatbuffers::String> modelDescription =
112         flatBufferBuilder.CreateString("ArmnnDelegate: Logical Binary Operator Model");
113     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, logicalOperatorCode);
114 
115     flatbuffers::Offset <Model> flatbufferModel =
116         CreateModel(flatBufferBuilder,
117                     TFLITE_SCHEMA_VERSION,
118                     flatBufferBuilder.CreateVector(&operatorCode, 1),
119                     flatBufferBuilder.CreateVector(&subgraph, 1),
120                     modelDescription,
121                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
122 
123     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
124 
125     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
126                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
127 }
128 
LogicalBinaryTest(tflite::BuiltinOperator logicalOperatorCode,tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & input0Shape,std::vector<int32_t> & input1Shape,std::vector<int32_t> & expectedOutputShape,std::vector<bool> & input0Values,std::vector<bool> & input1Values,std::vector<bool> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0)129 void LogicalBinaryTest(tflite::BuiltinOperator logicalOperatorCode,
130                        tflite::TensorType tensorType,
131                        std::vector<armnn::BackendId>& backends,
132                        std::vector<int32_t>& input0Shape,
133                        std::vector<int32_t>& input1Shape,
134                        std::vector<int32_t>& expectedOutputShape,
135                        std::vector<bool>& input0Values,
136                        std::vector<bool>& input1Values,
137                        std::vector<bool>& expectedOutputValues,
138                        float quantScale = 1.0f,
139                        int quantOffset  = 0)
140 {
141     using namespace delegateTestInterpreter;
142     std::vector<char> modelBuffer = CreateLogicalBinaryTfLiteModel(logicalOperatorCode,
143                                                                    tensorType,
144                                                                    input0Shape,
145                                                                    input1Shape,
146                                                                    expectedOutputShape,
147                                                                    quantScale,
148                                                                    quantOffset);
149 
150     // Setup interpreter with just TFLite Runtime.
151     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
152     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
153     CHECK(tfLiteInterpreter.FillInputTensor(input0Values, 0) == kTfLiteOk);
154     CHECK(tfLiteInterpreter.FillInputTensor(input1Values, 1) == kTfLiteOk);
155     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
156     std::vector<bool>    tfLiteOutputValues = tfLiteInterpreter.GetOutputResult(0);
157     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
158 
159     // Setup interpreter with Arm NN Delegate applied.
160     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
161     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
162     CHECK(armnnInterpreter.FillInputTensor(input0Values, 0) == kTfLiteOk);
163     CHECK(armnnInterpreter.FillInputTensor(input1Values, 1) == kTfLiteOk);
164     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
165     std::vector<bool>    armnnOutputValues = armnnInterpreter.GetOutputResult(0);
166     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
167 
168     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
169 
170     armnnDelegate::CompareData(expectedOutputValues, armnnOutputValues, expectedOutputValues.size());
171     armnnDelegate::CompareData(expectedOutputValues, tfLiteOutputValues, expectedOutputValues.size());
172     armnnDelegate::CompareData(tfLiteOutputValues, armnnOutputValues, expectedOutputValues.size());
173 
174     tfLiteInterpreter.Cleanup();
175     armnnInterpreter.Cleanup();
176 }
177 
178 } // anonymous namespace