xref: /aosp_15_r20/external/armnn/delegate/test/NormalizationTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateNormalizationTfLiteModel(tflite::BuiltinOperator normalizationOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & inputTensorShape,const std::vector<int32_t> & outputTensorShape,int32_t radius,float bias,float alpha,float beta,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreateNormalizationTfLiteModel(tflite::BuiltinOperator normalizationOperatorCode,
25                                                  tflite::TensorType tensorType,
26                                                  const std::vector<int32_t>& inputTensorShape,
27                                                  const std::vector<int32_t>& outputTensorShape,
28                                                  int32_t radius,
29                                                  float bias,
30                                                  float alpha,
31                                                  float beta,
32                                                  float quantScale = 1.0f,
33                                                  int quantOffset  = 0)
34 {
35     using namespace tflite;
36     flatbuffers::FlatBufferBuilder flatBufferBuilder;
37 
38     auto quantizationParameters =
39         CreateQuantizationParameters(flatBufferBuilder,
40                                      0,
41                                      0,
42                                      flatBufferBuilder.CreateVector<float>({ quantScale }),
43                                      flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
44 
45     auto inputTensor = CreateTensor(flatBufferBuilder,
46                                     flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
47                                                                             inputTensorShape.size()),
48                                     tensorType,
49                                     1,
50                                     flatBufferBuilder.CreateString("input"),
51                                     quantizationParameters);
52 
53     auto outputTensor = CreateTensor(flatBufferBuilder,
54                                      flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
55                                                                              outputTensorShape.size()),
56                                      tensorType,
57                                      2,
58                                      flatBufferBuilder.CreateString("output"),
59                                      quantizationParameters);
60 
61     std::vector<flatbuffers::Offset<Tensor>> tensors = { inputTensor, outputTensor };
62 
63     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
64     buffers.push_back(CreateBuffer(flatBufferBuilder));
65     buffers.push_back(CreateBuffer(flatBufferBuilder));
66     buffers.push_back(CreateBuffer(flatBufferBuilder));
67 
68     std::vector<int32_t> operatorInputs = { 0 };
69     std::vector<int> subgraphInputs = { 0 };
70 
71     tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_L2NormOptions;
72     flatbuffers::Offset<void> operatorBuiltinOptions = CreateL2NormOptions(flatBufferBuilder,
73                                                                            tflite::ActivationFunctionType_NONE).Union();
74 
75     if (normalizationOperatorCode == tflite::BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION)
76     {
77         operatorBuiltinOptionsType = BuiltinOptions_LocalResponseNormalizationOptions;
78         operatorBuiltinOptions =
79             CreateLocalResponseNormalizationOptions(flatBufferBuilder, radius, bias, alpha, beta).Union();
80     }
81 
82     // create operator
83     const std::vector<int32_t> operatorOutputs{ 1 };
84     flatbuffers::Offset <Operator> normalizationOperator =
85         CreateOperator(flatBufferBuilder,
86                        0,
87                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
88                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
89                        operatorBuiltinOptionsType,
90                        operatorBuiltinOptions);
91 
92     const std::vector<int> subgraphOutputs{ 1 };
93     flatbuffers::Offset <SubGraph> subgraph =
94         CreateSubGraph(flatBufferBuilder,
95                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
96                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
97                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
98                        flatBufferBuilder.CreateVector(&normalizationOperator, 1));
99 
100     flatbuffers::Offset <flatbuffers::String> modelDescription =
101         flatBufferBuilder.CreateString("ArmnnDelegate: Normalization Operator Model");
102     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
103                                                                          normalizationOperatorCode);
104 
105     flatbuffers::Offset <Model> flatbufferModel =
106         CreateModel(flatBufferBuilder,
107                     TFLITE_SCHEMA_VERSION,
108                     flatBufferBuilder.CreateVector(&operatorCode, 1),
109                     flatBufferBuilder.CreateVector(&subgraph, 1),
110                     modelDescription,
111                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
112 
113     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
114 
115     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
116                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
117 }
118 
119 template <typename T>
NormalizationTest(tflite::BuiltinOperator normalizationOperatorCode,tflite::TensorType tensorType,const std::vector<armnn::BackendId> & backends,const std::vector<int32_t> & inputShape,std::vector<int32_t> & outputShape,std::vector<T> & inputValues,std::vector<T> & expectedOutputValues,int32_t radius=0,float bias=0.f,float alpha=0.f,float beta=0.f,float quantScale=1.0f,int quantOffset=0)120 void NormalizationTest(tflite::BuiltinOperator normalizationOperatorCode,
121                        tflite::TensorType tensorType,
122                        const std::vector<armnn::BackendId>& backends,
123                        const std::vector<int32_t>& inputShape,
124                        std::vector<int32_t>& outputShape,
125                        std::vector<T>& inputValues,
126                        std::vector<T>& expectedOutputValues,
127                        int32_t radius = 0,
128                        float bias = 0.f,
129                        float alpha = 0.f,
130                        float beta = 0.f,
131                        float quantScale = 1.0f,
132                        int quantOffset  = 0)
133 {
134     using namespace delegateTestInterpreter;
135     std::vector<char> modelBuffer = CreateNormalizationTfLiteModel(normalizationOperatorCode,
136                                                                    tensorType,
137                                                                    inputShape,
138                                                                    outputShape,
139                                                                    radius,
140                                                                    bias,
141                                                                    alpha,
142                                                                    beta,
143                                                                    quantScale,
144                                                                    quantOffset);
145 
146     // Setup interpreter with just TFLite Runtime.
147     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
148     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
149     CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
150     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
151     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
152     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
153 
154     // Setup interpreter with Arm NN Delegate applied.
155     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
156     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
157     CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
158     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
159     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
160     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
161 
162     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
163     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
164 
165     tfLiteInterpreter.Cleanup();
166     armnnInterpreter.Cleanup();
167 }
168 
L2NormalizationTest(std::vector<armnn::BackendId> & backends)169 void L2NormalizationTest(std::vector<armnn::BackendId>& backends)
170 {
171     // Set input data
172     std::vector<int32_t> inputShape  { 1, 1, 1, 10 };
173     std::vector<int32_t> outputShape { 1, 1, 1, 10 };
174 
175     std::vector<float> inputValues
176     {
177         1.0f,
178         2.0f,
179         3.0f,
180         4.0f,
181         5.0f,
182         6.0f,
183         7.0f,
184         8.0f,
185         9.0f,
186         10.0f
187     };
188 
189     const float approxInvL2Norm = 0.050964719f;
190     std::vector<float> expectedOutputValues
191     {
192         1.0f  * approxInvL2Norm,
193         2.0f  * approxInvL2Norm,
194         3.0f  * approxInvL2Norm,
195         4.0f  * approxInvL2Norm,
196         5.0f  * approxInvL2Norm,
197         6.0f  * approxInvL2Norm,
198         7.0f  * approxInvL2Norm,
199         8.0f  * approxInvL2Norm,
200         9.0f  * approxInvL2Norm,
201         10.0f * approxInvL2Norm
202     };
203 
204     NormalizationTest<float>(tflite::BuiltinOperator_L2_NORMALIZATION,
205                              ::tflite::TensorType_FLOAT32,
206                              backends,
207                              inputShape,
208                              outputShape,
209                              inputValues,
210                              expectedOutputValues);
211 }
212 
LocalResponseNormalizationTest(std::vector<armnn::BackendId> & backends,int32_t radius,float bias,float alpha,float beta)213 void LocalResponseNormalizationTest(std::vector<armnn::BackendId>& backends,
214                                     int32_t radius,
215                                     float bias,
216                                     float alpha,
217                                     float beta)
218 {
219     // Set input data
220     std::vector<int32_t> inputShape  { 2, 2, 2, 1 };
221     std::vector<int32_t> outputShape { 2, 2, 2, 1 };
222 
223     std::vector<float> inputValues
224     {
225         1.0f, 2.0f,
226         3.0f, 4.0f,
227         5.0f, 6.0f,
228         7.0f, 8.0f
229     };
230 
231     std::vector<float> expectedOutputValues
232     {
233         0.5f, 0.400000006f, 0.300000012f, 0.235294119f,
234         0.192307696f, 0.16216217f, 0.140000001f, 0.123076923f
235     };
236 
237     NormalizationTest<float>(tflite::BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION,
238                              ::tflite::TensorType_FLOAT32,
239                              backends,
240                              inputShape,
241                              outputShape,
242                              inputValues,
243                              expectedOutputValues,
244                              radius,
245                              bias,
246                              alpha,
247                              beta);
248 }
249 
250 } // anonymous namespace