xref: /aosp_15_r20/external/armnn/delegate/test/PreluTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreatePreluTfLiteModel(tflite::BuiltinOperator preluOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & inputShape,const std::vector<int32_t> & alphaShape,const std::vector<int32_t> & outputShape,std::vector<float> & alphaData,bool alphaIsConstant)24 std::vector<char> CreatePreluTfLiteModel(tflite::BuiltinOperator preluOperatorCode,
25                                          tflite::TensorType tensorType,
26                                          const std::vector<int32_t>& inputShape,
27                                          const std::vector<int32_t>& alphaShape,
28                                          const std::vector<int32_t>& outputShape,
29                                          std::vector<float>& alphaData,
30                                          bool alphaIsConstant)
31 {
32     using namespace tflite;
33     flatbuffers::FlatBufferBuilder flatBufferBuilder;
34 
35     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
36     buffers.push_back(CreateBuffer(flatBufferBuilder));
37     buffers.push_back(CreateBuffer(flatBufferBuilder));
38     buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(
39         reinterpret_cast<const uint8_t *>(alphaData.data()), sizeof(float) * alphaData.size())));
40     buffers.push_back(CreateBuffer(flatBufferBuilder));
41 
42 
43     auto quantizationParameters =
44         CreateQuantizationParameters(flatBufferBuilder,
45                                      0,
46                                      0,
47                                      flatBufferBuilder.CreateVector<float>({ 1.0f }),
48                                      flatBufferBuilder.CreateVector<int64_t>({ 0 }));
49 
50     auto inputTensor = CreateTensor(flatBufferBuilder,
51                                     flatBufferBuilder.CreateVector<int32_t>(inputShape.data(),
52                                                                           inputShape.size()),
53                                     tensorType,
54                                     1,
55                                     flatBufferBuilder.CreateString("input"),
56                                     quantizationParameters);
57 
58     auto alphaTensor = CreateTensor(flatBufferBuilder,
59                                     flatBufferBuilder.CreateVector<int32_t>(alphaShape.data(),
60                                                                           alphaShape.size()),
61                                     tensorType,
62                                     2,
63                                     flatBufferBuilder.CreateString("alpha"),
64                                     quantizationParameters);
65 
66     auto outputTensor = CreateTensor(flatBufferBuilder,
67                                      flatBufferBuilder.CreateVector<int32_t>(outputShape.data(),
68                                                                            outputShape.size()),
69                                      tensorType,
70                                      3,
71                                      flatBufferBuilder.CreateString("output"),
72                                      quantizationParameters);
73 
74     std::vector<flatbuffers::Offset<Tensor>> tensors = { inputTensor, alphaTensor, outputTensor };
75 
76     const std::vector<int> operatorInputs{0, 1};
77     const std::vector<int> operatorOutputs{2};
78     flatbuffers::Offset <Operator> preluOperator =
79         CreateOperator(flatBufferBuilder,
80                        0,
81                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
82                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()));
83 
84     std::vector<int> subgraphInputs{0};
85     if (!alphaIsConstant)
86     {
87         subgraphInputs.push_back(1);
88     }
89 
90     const std::vector<int> subgraphOutputs{2};
91     flatbuffers::Offset <SubGraph> subgraph =
92         CreateSubGraph(flatBufferBuilder,
93                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
94                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
95                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
96                        flatBufferBuilder.CreateVector(&preluOperator, 1));
97 
98     flatbuffers::Offset <flatbuffers::String> modelDescription =
99         flatBufferBuilder.CreateString("ArmnnDelegate: Prelu Operator Model");
100     flatbuffers::Offset <OperatorCode> opCode = CreateOperatorCode(flatBufferBuilder, preluOperatorCode);
101 
102     flatbuffers::Offset <Model> flatbufferModel =
103         CreateModel(flatBufferBuilder,
104                     TFLITE_SCHEMA_VERSION,
105                     flatBufferBuilder.CreateVector(&opCode, 1),
106                     flatBufferBuilder.CreateVector(&subgraph, 1),
107                     modelDescription,
108                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
109 
110     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
111 
112     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
113                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
114 }
115 
PreluTest(tflite::BuiltinOperator preluOperatorCode,tflite::TensorType tensorType,const std::vector<armnn::BackendId> & backends,const std::vector<int32_t> & inputShape,const std::vector<int32_t> & alphaShape,std::vector<int32_t> & outputShape,std::vector<float> & inputData,std::vector<float> & alphaData,std::vector<float> & expectedOutput,bool alphaIsConstant)116 void PreluTest(tflite::BuiltinOperator preluOperatorCode,
117                tflite::TensorType tensorType,
118                const std::vector<armnn::BackendId>& backends,
119                const std::vector<int32_t>& inputShape,
120                const std::vector<int32_t>& alphaShape,
121                std::vector<int32_t>& outputShape,
122                std::vector<float>& inputData,
123                std::vector<float>& alphaData,
124                std::vector<float>& expectedOutput,
125                bool alphaIsConstant)
126 {
127     using namespace delegateTestInterpreter;
128 
129     std::vector<char> modelBuffer = CreatePreluTfLiteModel(preluOperatorCode,
130                                                            tensorType,
131                                                            inputShape,
132                                                            alphaShape,
133                                                            outputShape,
134                                                            alphaData,
135                                                            alphaIsConstant);
136 
137 
138     // Setup interpreter with just TFLite Runtime.
139     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
140     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
141 
142     // Setup interpreter with Arm NN Delegate applied.
143     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
144     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
145 
146     CHECK(armnnInterpreter.FillInputTensor<float>(inputData, 0) == kTfLiteOk);
147     CHECK(tfLiteInterpreter.FillInputTensor<float>(inputData, 0) == kTfLiteOk);
148 
149     // Set alpha data if not constant
150     if (!alphaIsConstant)
151     {
152         CHECK(tfLiteInterpreter.FillInputTensor<float>(alphaData, 1) == kTfLiteOk);
153         CHECK(armnnInterpreter.FillInputTensor<float>(alphaData, 1) == kTfLiteOk);
154     }
155 
156     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
157     std::vector<float>   tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
158 
159     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
160     std::vector<float>   armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
161 
162     armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutput);
163 
164     // Don't compare shapes on dynamic output tests, as output shape gets cleared.
165     if(!outputShape.empty())
166     {
167         std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
168         std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
169         armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
170     }
171 
172     tfLiteInterpreter.Cleanup();
173     armnnInterpreter.Cleanup();
174 }
175 } // anonymous namespace