xref: /aosp_15_r20/external/armnn/delegate/test/QuantizationTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateQuantizationTfLiteModel(tflite::BuiltinOperator quantizationOperatorCode,tflite::TensorType inputTensorType,tflite::TensorType outputTensorType,const std::vector<int32_t> & inputTensorShape,const std::vector<int32_t> & outputTensorShape,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreateQuantizationTfLiteModel(tflite::BuiltinOperator quantizationOperatorCode,
25                                                 tflite::TensorType inputTensorType,
26                                                 tflite::TensorType outputTensorType,
27                                                 const std::vector <int32_t>& inputTensorShape,
28                                                 const std::vector <int32_t>& outputTensorShape,
29                                                 float quantScale = 1.0f,
30                                                 int quantOffset  = 0)
31 {
32     using namespace tflite;
33     flatbuffers::FlatBufferBuilder flatBufferBuilder;
34 
35     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
36     buffers.push_back(CreateBuffer(flatBufferBuilder));
37     buffers.push_back(CreateBuffer(flatBufferBuilder));
38     buffers.push_back(CreateBuffer(flatBufferBuilder));
39 
40 
41     auto quantizationParameters =
42             CreateQuantizationParameters(flatBufferBuilder,
43                                          0,
44                                          0,
45                                          flatBufferBuilder.CreateVector<float>({ quantScale }),
46                                          flatBufferBuilder.CreateVector<int64_t>({ quantOffset }),
47                                          QuantizationDetails_CustomQuantization);
48 
49     std::array<flatbuffers::Offset<Tensor>, 2> tensors;
50     tensors[0] = CreateTensor(flatBufferBuilder,
51                               flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
52                                                                       inputTensorShape.size()),
53                               inputTensorType,
54                               1,
55                               flatBufferBuilder.CreateString("input"),
56                               quantizationParameters);
57     tensors[1] = CreateTensor(flatBufferBuilder,
58                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
59                                                                       outputTensorShape.size()),
60                               outputTensorType,
61                               2,
62                               flatBufferBuilder.CreateString("output"),
63                               quantizationParameters);
64 
65     // create operator
66     tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
67     flatbuffers::Offset<void> operatorBuiltinOptions = 0;
68     switch (quantizationOperatorCode)
69     {
70         case BuiltinOperator_QUANTIZE:
71         {
72             operatorBuiltinOptionsType = BuiltinOptions_QuantizeOptions;
73             operatorBuiltinOptions = CreateQuantizeOptions(flatBufferBuilder).Union();
74             break;
75         }
76         case BuiltinOperator_DEQUANTIZE:
77         {
78             operatorBuiltinOptionsType = BuiltinOptions_DequantizeOptions;
79             operatorBuiltinOptions = CreateDequantizeOptions(flatBufferBuilder).Union();
80             break;
81         }
82         default:
83             break;
84     }
85 
86     const std::vector<int32_t> operatorInputs{0};
87     const std::vector<int32_t> operatorOutputs{1};
88     flatbuffers::Offset <Operator> quantizationOperator =
89             CreateOperator(flatBufferBuilder,
90                            0,
91                            flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
92                            flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
93                            operatorBuiltinOptionsType,
94                            operatorBuiltinOptions);
95 
96     const std::vector<int> subgraphInputs{0};
97     const std::vector<int> subgraphOutputs{1};
98     flatbuffers::Offset <SubGraph> subgraph =
99             CreateSubGraph(flatBufferBuilder,
100                            flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
101                            flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
102                            flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
103                            flatBufferBuilder.CreateVector(&quantizationOperator, 1));
104 
105     flatbuffers::Offset <flatbuffers::String> modelDescription =
106             flatBufferBuilder.CreateString("ArmnnDelegate: Quantization Operator Model");
107     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, quantizationOperatorCode);
108 
109     flatbuffers::Offset <Model> flatbufferModel =
110             CreateModel(flatBufferBuilder,
111                         TFLITE_SCHEMA_VERSION,
112                         flatBufferBuilder.CreateVector(&operatorCode, 1),
113                         flatBufferBuilder.CreateVector(&subgraph, 1),
114                         modelDescription,
115                         flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
116 
117     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
118 
119     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
120                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
121 }
122 
123 template <typename InputT, typename OutputT>
QuantizationTest(tflite::BuiltinOperator quantizeOperatorCode,tflite::TensorType inputTensorType,tflite::TensorType outputTensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & inputShape,std::vector<int32_t> & outputShape,std::vector<InputT> & inputValues,std::vector<OutputT> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0)124 void QuantizationTest(tflite::BuiltinOperator quantizeOperatorCode,
125                       tflite::TensorType inputTensorType,
126                       tflite::TensorType outputTensorType,
127                       std::vector<armnn::BackendId>& backends,
128                       std::vector<int32_t>& inputShape,
129                       std::vector<int32_t>& outputShape,
130                       std::vector<InputT>&  inputValues,
131                       std::vector<OutputT>& expectedOutputValues,
132                       float quantScale = 1.0f,
133                       int quantOffset  = 0)
134 {
135     using namespace delegateTestInterpreter;
136     std::vector<char> modelBuffer = CreateQuantizationTfLiteModel(quantizeOperatorCode,
137                                                                   inputTensorType,
138                                                                   outputTensorType,
139                                                                   inputShape,
140                                                                   outputShape,
141                                                                   quantScale,
142                                                                   quantOffset);
143 
144     // Setup interpreter with just TFLite Runtime.
145     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
146     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
147     CHECK(tfLiteInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk);
148     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
149     std::vector<OutputT> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<OutputT>(0);
150     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
151 
152     // Setup interpreter with Arm NN Delegate applied.
153     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
154     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
155     CHECK(armnnInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk);
156     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
157     std::vector<OutputT> armnnOutputValues = armnnInterpreter.GetOutputResult<OutputT>(0);
158     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
159 
160     armnnDelegate::CompareOutputData<OutputT>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
161     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
162 
163     tfLiteInterpreter.Cleanup();
164     armnnInterpreter.Cleanup();
165 }
166 
167 } // anonymous namespace