xref: /aosp_15_r20/external/armnn/samples/PreImportMemorySample.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include <armnn/ArmNN.hpp>
7 
8 #include <iostream>
9 
10 // A simple example application to show the usage of Memory Management Pre Importing of Inputs and Outputs. In this
11 // sample, the users single input number is added to itself using an add layer and outputted to console as a number
12 // that is double the input. The code does not use EnqueueWorkload but instead uses runtime->Execute
13 
main()14 int main()
15 {
16     using namespace armnn;
17 
18     float number;
19     std::cout << "Please enter a number: " << std::endl;
20     std::cin >> number;
21 
22     // Turn on logging to standard output
23     // This is useful in this sample so that users can learn more about what is going on
24     armnn::ConfigureLogging(true, false, LogSeverity::Info);
25 
26     armnn::IRuntime::CreationOptions options;
27     armnn::IRuntimePtr               runtime(armnn::IRuntime::Create(options));
28 
29     armnn::NetworkId   networkIdentifier1 = 0;
30 
31     armnn::INetworkPtr testNetwork(armnn::INetwork::Create());
32     auto inputLayer1 = testNetwork->AddInputLayer(0, "input 1 layer");
33     auto inputLayer2 = testNetwork->AddInputLayer(1, "input 2 layer");
34     ARMNN_NO_DEPRECATE_WARN_BEGIN
35     auto addLayer = testNetwork->AddAdditionLayer("add layer");
36     ARMNN_NO_DEPRECATE_WARN_END
37     auto outputLayer = testNetwork->AddOutputLayer(2, "output layer");
38 
39     // Set the tensors in the network.
40     TensorInfo tensorInfo{{4}, armnn::DataType::Float32};
41 
42     inputLayer1->GetOutputSlot(0).Connect(addLayer->GetInputSlot(0));
43     inputLayer1->GetOutputSlot(0).SetTensorInfo(tensorInfo);
44     inputLayer2->GetOutputSlot(0).Connect(addLayer->GetInputSlot(1));
45     inputLayer2->GetOutputSlot(0).SetTensorInfo(tensorInfo);
46 
47     addLayer->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
48     addLayer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
49 
50     // Set preferred backend to CpuRef
51     std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
52 
53     // To hold an eventual error message if loading the network fails
54     std::string er;
55 
56     // Initialize network properties with asyncEnabled and MemorySources != MemorySource::Undefined
57     armnn::INetworkProperties networkProperties(true, MemorySource::Malloc, MemorySource::Malloc);
58 
59     // Optimize and Load the network into runtime
60     runtime->LoadNetwork(networkIdentifier1,
61                          Optimize(*testNetwork, backends, runtime->GetDeviceSpec()),
62                          er,
63                          networkProperties);
64 
65     // Create structures for input & output
66     std::vector<float> inputData1(4, number);
67     std::vector<float> inputData2(4, number);
68     ConstTensor inputTensor1(tensorInfo, inputData1.data());
69     ConstTensor inputTensor2(tensorInfo, inputData2.data());
70 
71     std::vector<float> outputData1(4);
72     Tensor outputTensor1{tensorInfo, outputData1.data()};
73 
74     // ImportInputs separates the importing and mapping of InputTensors from network execution.
75     // Allowing for a set of InputTensors to be imported and mapped once, but used in execution many times.
76     // ImportInputs is not thread safe and must not be used while other threads are calling Execute().
77     // Only compatible with AsyncEnabled networks
78 
79     // PreImport inputTensors giving pre-imported ids of 1 and 2
80     std::vector<ImportedInputId> importedInputVec = runtime->ImportInputs(networkIdentifier1,
81                                                                           {{0, inputTensor1}, {1, inputTensor2}});
82 
83     // Create a new unique WorkingMemHandle object. Create multiple handles if you wish to have
84     // overlapped Execution by calling this function from different threads.
85     auto memHandle = runtime->CreateWorkingMemHandle(networkIdentifier1);
86 
87     // Execute evaluates a network using input in inputTensors and outputs filled into outputTensors.
88     // This function performs a thread safe execution of the network. Returns once execution is complete.
89     // Will block until this and any other thread using the same workingMem object completes.
90     // Execute with PreImported inputTensor1 as well as Non-PreImported inputTensor2
91     runtime->Execute(*memHandle.get(), {}, {{2, outputTensor1}}, importedInputVec /* pre-imported ids */);
92 
93     // ImportOutputs separates the importing and mapping of OutputTensors from network execution.
94     // Allowing for a set of OutputTensors to be imported and mapped once, but used in execution many times.
95     // This function is not thread safe and must not be used while other threads are calling Execute().
96     // Only compatible with AsyncEnabled networks
97     // Provide layerBinding Id to outputTensor1
98     std::pair<LayerBindingId, class Tensor> output1{2, outputTensor1};
99     // PreImport outputTensor1
100     std::vector<ImportedOutputId> importedOutputVec = runtime->ImportOutputs(networkIdentifier1, {output1});
101 
102     // Execute with Non-PreImported inputTensor1 as well as PreImported inputTensor2
103     runtime->Execute(*memHandle.get(), {{0, inputTensor1}}, {{2, outputTensor1}}, {1 /* pre-imported id */});
104 
105     // Clear the previously PreImportedInput with the network Id and inputIds returned from ImportInputs()
106     // Note: This will happen automatically during destructor of armnn::LoadedNetwork
107     runtime->ClearImportedInputs(networkIdentifier1, importedInputVec);
108 
109     // Clear the previously PreImportedOutputs with the network Id and outputIds returned from ImportOutputs()
110     // Note: This will happen automatically during destructor of armnn::LoadedNetwork
111     runtime->ClearImportedOutputs(networkIdentifier1, importedOutputVec);
112 
113     // Execute with Non-PreImported inputTensor1, inputTensor2 and the PreImported outputTensor1
114     runtime->Execute(*memHandle.get(), {{0, inputTensor1}, {1, inputTensor2}}, {{2, outputTensor1}});
115 
116     std::cout << "Your number was " << outputData1.data()[0] << std::endl;
117 
118     return 0;
119 }
120