xref: /aosp_15_r20/external/armnn/src/backends/aclCommon/ArmComputeTensorUtils.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include <armnn/Tensor.hpp>
8 #include <armnn/DescriptorsFwd.hpp>
9 
10 #include <armnn/utility/NumericCast.hpp>
11 
12 #include <arm_compute/core/ITensor.h>
13 #include <arm_compute/core/TensorInfo.h>
14 #include <arm_compute/core/Types.h>
15 
16 #include <Half.hpp>
17 
18 namespace armnn
19 {
20 class ITensorHandle;
21 
22 namespace armcomputetensorutils
23 {
24 
25 /// Utility function to map an armnn::DataType to corresponding arm_compute::DataType.
26 arm_compute::DataType GetArmComputeDataType(armnn::DataType dataType, bool multiScales);
27 
28 /// Utility function to map an arm_compute::DataType to corresponding armnn::DataType.
29 armnn::DataType GetArmNNDataType(arm_compute::DataType datatype);
30 
31 /// Utility function used to set up an arm_compute::Coordinates from a vector of ArmNN Axes for reduction functions
32 arm_compute::Coordinates BuildArmComputeReductionCoordinates(size_t inputDimensions,
33                                                              unsigned int originalInputRank,
34                                                              const std::vector<unsigned int>& armnnAxes);
35 
36 /// Utility function used to setup an arm_compute::TensorShape object from an armnn::TensorShape.
37 arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape);
38 
39 /// Utility function used to setup an arm_compute::TensorShape object from an armnn::TensorShape. This will
40 /// attempt to reduce the number of leading 1s until the dimension length is equal to the dimensions passed in.
41 arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape, unsigned int dimensions);
42 
43 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
44 /// armnn::ITensorInfo.
45 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo);
46 
47 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
48 /// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
49 /// to the dimensions passed in.
50 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo, unsigned int dimensions);
51 
52 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
53 /// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
54 /// to the dimensions passed in.
55 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
56                                                   armnn::DataLayout dataLayout,
57                                                   unsigned int dimensions);
58 
59 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
60 /// armnn::ITensorInfo.
61 /// armnn::DataLayout.
62 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
63                                                   armnn::DataLayout dataLayout);
64 
65 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
66 /// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
67 /// to the dimensions passed in.
68 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
69                                                   armnn::DataLayout dataLayout, unsigned int dimensions);
70 
71 /// Utility function used to convert armnn::DataLayout to arm_compute::DataLayout
72 /// armnn::DataLayout.
73 arm_compute::DataLayout ConvertDataLayout(armnn::DataLayout dataLayout);
74 
75 /// Utility function used to setup an arm_compute::PoolingLayerInfo object from given
76 /// armnn::Pooling2dDescriptor
77 /// bool fpMixedPrecision
78 arm_compute::PoolingLayerInfo BuildArmComputePoolingLayerInfo(const Pooling2dDescriptor& descriptor,
79                                                               bool fpMixedPrecision = false);
80 
81 /// Utility function used to setup an arm_compute::Pooling3dLayerInfo object from given
82 /// armnn::Pooling3dDescriptor
83 /// bool fpMixedPrecision
84 arm_compute::Pooling3dLayerInfo BuildArmComputePooling3dLayerInfo(const Pooling3dDescriptor& descriptor,
85                                                                   bool fpMixedPrecision = false);
86 
87 /// Utility function to setup an arm_compute::NormalizationLayerInfo object from an armnn::NormalizationDescriptor.
88 arm_compute::NormalizationLayerInfo BuildArmComputeNormalizationLayerInfo(const NormalizationDescriptor& desc);
89 
90 /// Utility function used to setup an arm_compute::PermutationVector object from an armnn::PermutationVector.
91 /// \param perm PermutationVector used in Arm NN Permute layer
92 /// \return PermutationVector used in ACL Transpose layer
93 arm_compute::PermutationVector BuildArmComputePermutationVector(const armnn::PermutationVector& perm);
94 
95 /// Utility function used to setup an arm_compute::PermutationVector object from an armnn::PermutationVector.
96 /// \param perm PermutationVector used in Arm NN Transpose layer
97 /// \return PermutationVector used in ACL Transpose layer
98 arm_compute::PermutationVector BuildArmComputeTransposeVector(const armnn::PermutationVector& perm);
99 
100 /// Utility function used to setup an arm_compute::Size2D object from width and height values.
101 arm_compute::Size2D BuildArmComputeSize2D(const unsigned int width, const unsigned int height);
102 
103 /// Gets the appropriate PixelValue for the TensorInfo DataType
104 arm_compute::PixelValue GetPixelValue(const arm_compute::ITensorInfo* tensorInfo, float value);
105 
106 /// Computes the depth multiplier parameter for the Depthwise Conv2d ACL workload.
107 unsigned int ComputeDepthwiseConv2dDepthMultiplier(armnn::DataLayout layout,
108                                                    const arm_compute::TensorShape& weightsShape,
109                                                    const arm_compute::TensorShape& inputShape);
110 
111 /// Utility function used to setup an arm_compute::PadStrideInfo object from an ArmNN layer descriptor.
112 template <typename Descriptor>
BuildArmComputePadStrideInfo(const Descriptor & descriptor)113 arm_compute::PadStrideInfo BuildArmComputePadStrideInfo(const Descriptor &descriptor)
114 {
115     return arm_compute::PadStrideInfo(descriptor.m_StrideX,
116                                       descriptor.m_StrideY,
117                                       descriptor.m_PadLeft,
118                                       descriptor.m_PadRight,
119                                       descriptor.m_PadTop,
120                                       descriptor.m_PadBottom,
121                                       arm_compute::DimensionRoundingType::FLOOR);
122 }
123 
124 /// Sets up the given ArmCompute tensor's dimensions based on the given ArmNN tensor.
125 template <typename Tensor>
BuildArmComputeTensor(Tensor & tensor,const armnn::TensorInfo & tensorInfo)126 void BuildArmComputeTensor(Tensor& tensor, const armnn::TensorInfo& tensorInfo)
127 {
128     tensor.allocator()->init(BuildArmComputeTensorInfo(tensorInfo));
129 }
130 
131 /// Sets up the given ArmCompute tensor's dimensions based on the given ArmNN tensor.
132 template <typename Tensor>
BuildArmComputeTensor(Tensor & tensor,const armnn::TensorInfo & tensorInfo,DataLayout dataLayout)133 void BuildArmComputeTensor(Tensor& tensor, const armnn::TensorInfo& tensorInfo, DataLayout dataLayout)
134 {
135     tensor.allocator()->init(BuildArmComputeTensorInfo(tensorInfo, dataLayout));
136 }
137 
138 template <typename Tensor>
InitialiseArmComputeTensorEmpty(Tensor & tensor)139 void InitialiseArmComputeTensorEmpty(Tensor& tensor)
140 {
141     tensor.allocator()->allocate();
142 }
143 
144 /// Utility function to free unused tensors after a workload is configured and prepared
145 template <typename Tensor>
FreeTensorIfUnused(std::unique_ptr<Tensor> & tensor)146 void FreeTensorIfUnused(std::unique_ptr<Tensor>& tensor)
147 {
148     if (tensor && !tensor->is_used())
149     {
150         tensor.reset(nullptr);
151     }
152 }
153 
154 // Helper function to obtain byte offset into tensor data
GetTensorOffset(const arm_compute::ITensorInfo & info,uint32_t depthIndex,uint32_t batchIndex,uint32_t channelIndex,uint32_t y,uint32_t x)155 inline size_t GetTensorOffset(const arm_compute::ITensorInfo& info,
156                               uint32_t depthIndex,
157                               uint32_t batchIndex,
158                               uint32_t channelIndex,
159                               uint32_t y,
160                               uint32_t x)
161 {
162     arm_compute::Coordinates coords;
163     coords.set(4, static_cast<int>(depthIndex));
164     coords.set(3, static_cast<int>(batchIndex));
165     coords.set(2, static_cast<int>(channelIndex));
166     coords.set(1, static_cast<int>(y));
167     coords.set(0, static_cast<int>(x));
168     return armnn::numeric_cast<size_t>(info.offset_element_in_bytes(coords));
169 }
170 
171 // Helper function to obtain element offset into data buffer representing tensor data (assuming no strides).
GetLinearBufferOffset(const arm_compute::ITensorInfo & info,uint32_t depthIndex,uint32_t batchIndex,uint32_t channelIndex,uint32_t y,uint32_t x)172 inline size_t GetLinearBufferOffset(const arm_compute::ITensorInfo& info,
173                                     uint32_t depthIndex,
174                                     uint32_t batchIndex,
175                                     uint32_t channelIndex,
176                                     uint32_t y,
177                                     uint32_t x)
178 {
179     const arm_compute::TensorShape& shape = info.tensor_shape();
180     uint32_t width = static_cast<uint32_t>(shape[0]);
181     uint32_t height = static_cast<uint32_t>(shape[1]);
182     uint32_t numChannels = static_cast<uint32_t>(shape[2]);
183     uint32_t numBatches = static_cast<uint32_t>(shape[3]);
184     return (((depthIndex * numBatches + batchIndex) * numChannels + channelIndex) * height + y) * width + x;
185 }
186 
187 template <typename T>
CopyArmComputeITensorData(const arm_compute::ITensor & srcTensor,T * dstData)188 void CopyArmComputeITensorData(const arm_compute::ITensor& srcTensor, T* dstData)
189 {
190     // If MaxNumOfTensorDimensions is increased, this loop will need fixing.
191     static_assert(MaxNumOfTensorDimensions == 5, "Please update CopyArmComputeITensorData");
192     {
193         const arm_compute::ITensorInfo& info = *srcTensor.info();
194         const arm_compute::TensorShape& shape = info.tensor_shape();
195         const uint8_t* const bufferPtr = srcTensor.buffer();
196         uint32_t width = static_cast<uint32_t>(shape[0]);
197         uint32_t height = static_cast<uint32_t>(shape[1]);
198         uint32_t numChannels = static_cast<uint32_t>(shape[2]);
199         uint32_t numBatches = static_cast<uint32_t>(shape[3]);
200         uint32_t depth = static_cast<uint32_t>(shape[4]);
201 
202         for (unsigned int depthIndex = 0; depthIndex < depth; ++depthIndex)
203         {
204             for (unsigned int batchIndex = 0; batchIndex < numBatches; ++batchIndex)
205             {
206                 for (unsigned int channelIndex = 0; channelIndex < numChannels; ++channelIndex)
207                 {
208                     for (unsigned int y = 0; y < height; ++y)
209                     {
210                         // Copies one row from arm_compute tensor buffer to linear memory buffer.
211                         // A row is the largest contiguous region we can copy, as the tensor data may be using strides.
212                         memcpy(
213                          dstData + GetLinearBufferOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
214                          bufferPtr + GetTensorOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
215                          width * sizeof(T));
216                     }
217                 }
218             }
219         }
220     }
221 }
222 
223 template <typename T>
CopyArmComputeITensorData(const T * srcData,arm_compute::ITensor & dstTensor)224 void CopyArmComputeITensorData(const T* srcData, arm_compute::ITensor& dstTensor)
225 {
226     // If MaxNumOfTensorDimensions is increased, this loop will need fixing.
227     static_assert(MaxNumOfTensorDimensions == 5, "Please update CopyArmComputeITensorData");
228     {
229         const arm_compute::ITensorInfo& info = *dstTensor.info();
230         const arm_compute::TensorShape& shape = info.tensor_shape();
231         uint8_t* const bufferPtr = dstTensor.buffer();
232         uint32_t width = static_cast<uint32_t>(shape[0]);
233         uint32_t height = static_cast<uint32_t>(shape[1]);
234         uint32_t numChannels = static_cast<uint32_t>(shape[2]);
235         uint32_t numBatches = static_cast<uint32_t>(shape[3]);
236         uint32_t depth = static_cast<uint32_t>(shape[4]);
237 
238         for (unsigned int depthIndex = 0; depthIndex < depth; ++depthIndex)
239         {
240             for (unsigned int batchIndex = 0; batchIndex < numBatches; ++batchIndex)
241             {
242                 for (unsigned int channelIndex = 0; channelIndex < numChannels; ++channelIndex)
243                 {
244                     for (unsigned int y = 0; y < height; ++y)
245                     {
246                         // Copies one row from linear memory buffer to arm_compute tensor buffer.
247                         // A row is the largest contiguous region we can copy, as the tensor data may be using strides.
248                         memcpy(
249                          bufferPtr + GetTensorOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
250                          srcData + GetLinearBufferOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
251                          width * sizeof(T));
252                     }
253                 }
254             }
255         }
256     }
257 }
258 
259 /// Construct a TensorShape object from an ArmCompute object based on arm_compute::Dimensions.
260 /// \tparam ArmComputeType Any type that implements the Dimensions interface
261 /// \tparam T Shape value type
262 /// \param shapelike An ArmCompute object that implements the Dimensions interface
263 /// \param initial A default value to initialise the shape with
264 /// \return A TensorShape object filled from the Acl shapelike object.
265 template<typename ArmComputeType, typename T>
GetTensorShape(const ArmComputeType & shapelike,T initial)266 TensorShape GetTensorShape(const ArmComputeType& shapelike, T initial)
267 {
268     std::vector<unsigned int> s(MaxNumOfTensorDimensions, initial);
269     for (unsigned int i=0; i < shapelike.num_dimensions(); ++i)
270     {
271         s[(shapelike.num_dimensions()-1)-i] = armnn::numeric_cast<unsigned int>(shapelike[i]);
272     }
273     return TensorShape(armnn::numeric_cast<unsigned int>(shapelike.num_dimensions()), s.data());
274 };
275 
276 /// Get the strides from an ACL strides object
GetStrides(const arm_compute::Strides & strides)277 inline TensorShape GetStrides(const arm_compute::Strides& strides)
278 {
279     return GetTensorShape(strides, 0U);
280 }
281 
282 /// Get the shape from an ACL shape object
GetShape(const arm_compute::TensorShape & shape)283 inline TensorShape GetShape(const arm_compute::TensorShape& shape)
284 {
285     return GetTensorShape(shape, 1U);
286 }
287 
288 } // namespace armcomputetensorutils
289 } // namespace armnn
290