1 //
2 // Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6
7 #include <armnn/Tensor.hpp>
8 #include <armnn/DescriptorsFwd.hpp>
9
10 #include <armnn/utility/NumericCast.hpp>
11
12 #include <arm_compute/core/ITensor.h>
13 #include <arm_compute/core/TensorInfo.h>
14 #include <arm_compute/core/Types.h>
15
16 #include <Half.hpp>
17
18 namespace armnn
19 {
20 class ITensorHandle;
21
22 namespace armcomputetensorutils
23 {
24
25 /// Utility function to map an armnn::DataType to corresponding arm_compute::DataType.
26 arm_compute::DataType GetArmComputeDataType(armnn::DataType dataType, bool multiScales);
27
28 /// Utility function to map an arm_compute::DataType to corresponding armnn::DataType.
29 armnn::DataType GetArmNNDataType(arm_compute::DataType datatype);
30
31 /// Utility function used to set up an arm_compute::Coordinates from a vector of ArmNN Axes for reduction functions
32 arm_compute::Coordinates BuildArmComputeReductionCoordinates(size_t inputDimensions,
33 unsigned int originalInputRank,
34 const std::vector<unsigned int>& armnnAxes);
35
36 /// Utility function used to setup an arm_compute::TensorShape object from an armnn::TensorShape.
37 arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape);
38
39 /// Utility function used to setup an arm_compute::TensorShape object from an armnn::TensorShape. This will
40 /// attempt to reduce the number of leading 1s until the dimension length is equal to the dimensions passed in.
41 arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape, unsigned int dimensions);
42
43 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
44 /// armnn::ITensorInfo.
45 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo);
46
47 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
48 /// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
49 /// to the dimensions passed in.
50 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo, unsigned int dimensions);
51
52 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
53 /// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
54 /// to the dimensions passed in.
55 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
56 armnn::DataLayout dataLayout,
57 unsigned int dimensions);
58
59 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
60 /// armnn::ITensorInfo.
61 /// armnn::DataLayout.
62 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
63 armnn::DataLayout dataLayout);
64
65 /// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
66 /// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
67 /// to the dimensions passed in.
68 arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
69 armnn::DataLayout dataLayout, unsigned int dimensions);
70
71 /// Utility function used to convert armnn::DataLayout to arm_compute::DataLayout
72 /// armnn::DataLayout.
73 arm_compute::DataLayout ConvertDataLayout(armnn::DataLayout dataLayout);
74
75 /// Utility function used to setup an arm_compute::PoolingLayerInfo object from given
76 /// armnn::Pooling2dDescriptor
77 /// bool fpMixedPrecision
78 arm_compute::PoolingLayerInfo BuildArmComputePoolingLayerInfo(const Pooling2dDescriptor& descriptor,
79 bool fpMixedPrecision = false);
80
81 /// Utility function used to setup an arm_compute::Pooling3dLayerInfo object from given
82 /// armnn::Pooling3dDescriptor
83 /// bool fpMixedPrecision
84 arm_compute::Pooling3dLayerInfo BuildArmComputePooling3dLayerInfo(const Pooling3dDescriptor& descriptor,
85 bool fpMixedPrecision = false);
86
87 /// Utility function to setup an arm_compute::NormalizationLayerInfo object from an armnn::NormalizationDescriptor.
88 arm_compute::NormalizationLayerInfo BuildArmComputeNormalizationLayerInfo(const NormalizationDescriptor& desc);
89
90 /// Utility function used to setup an arm_compute::PermutationVector object from an armnn::PermutationVector.
91 /// \param perm PermutationVector used in Arm NN Permute layer
92 /// \return PermutationVector used in ACL Transpose layer
93 arm_compute::PermutationVector BuildArmComputePermutationVector(const armnn::PermutationVector& perm);
94
95 /// Utility function used to setup an arm_compute::PermutationVector object from an armnn::PermutationVector.
96 /// \param perm PermutationVector used in Arm NN Transpose layer
97 /// \return PermutationVector used in ACL Transpose layer
98 arm_compute::PermutationVector BuildArmComputeTransposeVector(const armnn::PermutationVector& perm);
99
100 /// Utility function used to setup an arm_compute::Size2D object from width and height values.
101 arm_compute::Size2D BuildArmComputeSize2D(const unsigned int width, const unsigned int height);
102
103 /// Gets the appropriate PixelValue for the TensorInfo DataType
104 arm_compute::PixelValue GetPixelValue(const arm_compute::ITensorInfo* tensorInfo, float value);
105
106 /// Computes the depth multiplier parameter for the Depthwise Conv2d ACL workload.
107 unsigned int ComputeDepthwiseConv2dDepthMultiplier(armnn::DataLayout layout,
108 const arm_compute::TensorShape& weightsShape,
109 const arm_compute::TensorShape& inputShape);
110
111 /// Utility function used to setup an arm_compute::PadStrideInfo object from an ArmNN layer descriptor.
112 template <typename Descriptor>
BuildArmComputePadStrideInfo(const Descriptor & descriptor)113 arm_compute::PadStrideInfo BuildArmComputePadStrideInfo(const Descriptor &descriptor)
114 {
115 return arm_compute::PadStrideInfo(descriptor.m_StrideX,
116 descriptor.m_StrideY,
117 descriptor.m_PadLeft,
118 descriptor.m_PadRight,
119 descriptor.m_PadTop,
120 descriptor.m_PadBottom,
121 arm_compute::DimensionRoundingType::FLOOR);
122 }
123
124 /// Sets up the given ArmCompute tensor's dimensions based on the given ArmNN tensor.
125 template <typename Tensor>
BuildArmComputeTensor(Tensor & tensor,const armnn::TensorInfo & tensorInfo)126 void BuildArmComputeTensor(Tensor& tensor, const armnn::TensorInfo& tensorInfo)
127 {
128 tensor.allocator()->init(BuildArmComputeTensorInfo(tensorInfo));
129 }
130
131 /// Sets up the given ArmCompute tensor's dimensions based on the given ArmNN tensor.
132 template <typename Tensor>
BuildArmComputeTensor(Tensor & tensor,const armnn::TensorInfo & tensorInfo,DataLayout dataLayout)133 void BuildArmComputeTensor(Tensor& tensor, const armnn::TensorInfo& tensorInfo, DataLayout dataLayout)
134 {
135 tensor.allocator()->init(BuildArmComputeTensorInfo(tensorInfo, dataLayout));
136 }
137
138 template <typename Tensor>
InitialiseArmComputeTensorEmpty(Tensor & tensor)139 void InitialiseArmComputeTensorEmpty(Tensor& tensor)
140 {
141 tensor.allocator()->allocate();
142 }
143
144 /// Utility function to free unused tensors after a workload is configured and prepared
145 template <typename Tensor>
FreeTensorIfUnused(std::unique_ptr<Tensor> & tensor)146 void FreeTensorIfUnused(std::unique_ptr<Tensor>& tensor)
147 {
148 if (tensor && !tensor->is_used())
149 {
150 tensor.reset(nullptr);
151 }
152 }
153
154 // Helper function to obtain byte offset into tensor data
GetTensorOffset(const arm_compute::ITensorInfo & info,uint32_t depthIndex,uint32_t batchIndex,uint32_t channelIndex,uint32_t y,uint32_t x)155 inline size_t GetTensorOffset(const arm_compute::ITensorInfo& info,
156 uint32_t depthIndex,
157 uint32_t batchIndex,
158 uint32_t channelIndex,
159 uint32_t y,
160 uint32_t x)
161 {
162 arm_compute::Coordinates coords;
163 coords.set(4, static_cast<int>(depthIndex));
164 coords.set(3, static_cast<int>(batchIndex));
165 coords.set(2, static_cast<int>(channelIndex));
166 coords.set(1, static_cast<int>(y));
167 coords.set(0, static_cast<int>(x));
168 return armnn::numeric_cast<size_t>(info.offset_element_in_bytes(coords));
169 }
170
171 // Helper function to obtain element offset into data buffer representing tensor data (assuming no strides).
GetLinearBufferOffset(const arm_compute::ITensorInfo & info,uint32_t depthIndex,uint32_t batchIndex,uint32_t channelIndex,uint32_t y,uint32_t x)172 inline size_t GetLinearBufferOffset(const arm_compute::ITensorInfo& info,
173 uint32_t depthIndex,
174 uint32_t batchIndex,
175 uint32_t channelIndex,
176 uint32_t y,
177 uint32_t x)
178 {
179 const arm_compute::TensorShape& shape = info.tensor_shape();
180 uint32_t width = static_cast<uint32_t>(shape[0]);
181 uint32_t height = static_cast<uint32_t>(shape[1]);
182 uint32_t numChannels = static_cast<uint32_t>(shape[2]);
183 uint32_t numBatches = static_cast<uint32_t>(shape[3]);
184 return (((depthIndex * numBatches + batchIndex) * numChannels + channelIndex) * height + y) * width + x;
185 }
186
187 template <typename T>
CopyArmComputeITensorData(const arm_compute::ITensor & srcTensor,T * dstData)188 void CopyArmComputeITensorData(const arm_compute::ITensor& srcTensor, T* dstData)
189 {
190 // If MaxNumOfTensorDimensions is increased, this loop will need fixing.
191 static_assert(MaxNumOfTensorDimensions == 5, "Please update CopyArmComputeITensorData");
192 {
193 const arm_compute::ITensorInfo& info = *srcTensor.info();
194 const arm_compute::TensorShape& shape = info.tensor_shape();
195 const uint8_t* const bufferPtr = srcTensor.buffer();
196 uint32_t width = static_cast<uint32_t>(shape[0]);
197 uint32_t height = static_cast<uint32_t>(shape[1]);
198 uint32_t numChannels = static_cast<uint32_t>(shape[2]);
199 uint32_t numBatches = static_cast<uint32_t>(shape[3]);
200 uint32_t depth = static_cast<uint32_t>(shape[4]);
201
202 for (unsigned int depthIndex = 0; depthIndex < depth; ++depthIndex)
203 {
204 for (unsigned int batchIndex = 0; batchIndex < numBatches; ++batchIndex)
205 {
206 for (unsigned int channelIndex = 0; channelIndex < numChannels; ++channelIndex)
207 {
208 for (unsigned int y = 0; y < height; ++y)
209 {
210 // Copies one row from arm_compute tensor buffer to linear memory buffer.
211 // A row is the largest contiguous region we can copy, as the tensor data may be using strides.
212 memcpy(
213 dstData + GetLinearBufferOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
214 bufferPtr + GetTensorOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
215 width * sizeof(T));
216 }
217 }
218 }
219 }
220 }
221 }
222
223 template <typename T>
CopyArmComputeITensorData(const T * srcData,arm_compute::ITensor & dstTensor)224 void CopyArmComputeITensorData(const T* srcData, arm_compute::ITensor& dstTensor)
225 {
226 // If MaxNumOfTensorDimensions is increased, this loop will need fixing.
227 static_assert(MaxNumOfTensorDimensions == 5, "Please update CopyArmComputeITensorData");
228 {
229 const arm_compute::ITensorInfo& info = *dstTensor.info();
230 const arm_compute::TensorShape& shape = info.tensor_shape();
231 uint8_t* const bufferPtr = dstTensor.buffer();
232 uint32_t width = static_cast<uint32_t>(shape[0]);
233 uint32_t height = static_cast<uint32_t>(shape[1]);
234 uint32_t numChannels = static_cast<uint32_t>(shape[2]);
235 uint32_t numBatches = static_cast<uint32_t>(shape[3]);
236 uint32_t depth = static_cast<uint32_t>(shape[4]);
237
238 for (unsigned int depthIndex = 0; depthIndex < depth; ++depthIndex)
239 {
240 for (unsigned int batchIndex = 0; batchIndex < numBatches; ++batchIndex)
241 {
242 for (unsigned int channelIndex = 0; channelIndex < numChannels; ++channelIndex)
243 {
244 for (unsigned int y = 0; y < height; ++y)
245 {
246 // Copies one row from linear memory buffer to arm_compute tensor buffer.
247 // A row is the largest contiguous region we can copy, as the tensor data may be using strides.
248 memcpy(
249 bufferPtr + GetTensorOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
250 srcData + GetLinearBufferOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
251 width * sizeof(T));
252 }
253 }
254 }
255 }
256 }
257 }
258
259 /// Construct a TensorShape object from an ArmCompute object based on arm_compute::Dimensions.
260 /// \tparam ArmComputeType Any type that implements the Dimensions interface
261 /// \tparam T Shape value type
262 /// \param shapelike An ArmCompute object that implements the Dimensions interface
263 /// \param initial A default value to initialise the shape with
264 /// \return A TensorShape object filled from the Acl shapelike object.
265 template<typename ArmComputeType, typename T>
GetTensorShape(const ArmComputeType & shapelike,T initial)266 TensorShape GetTensorShape(const ArmComputeType& shapelike, T initial)
267 {
268 std::vector<unsigned int> s(MaxNumOfTensorDimensions, initial);
269 for (unsigned int i=0; i < shapelike.num_dimensions(); ++i)
270 {
271 s[(shapelike.num_dimensions()-1)-i] = armnn::numeric_cast<unsigned int>(shapelike[i]);
272 }
273 return TensorShape(armnn::numeric_cast<unsigned int>(shapelike.num_dimensions()), s.data());
274 };
275
276 /// Get the strides from an ACL strides object
GetStrides(const arm_compute::Strides & strides)277 inline TensorShape GetStrides(const arm_compute::Strides& strides)
278 {
279 return GetTensorShape(strides, 0U);
280 }
281
282 /// Get the shape from an ACL shape object
GetShape(const arm_compute::TensorShape & shape)283 inline TensorShape GetShape(const arm_compute::TensorShape& shape)
284 {
285 return GetTensorShape(shape, 1U);
286 }
287
288 } // namespace armcomputetensorutils
289 } // namespace armnn
290