1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "UnidirectionalSequenceLstmTestImpl.hpp"
7 
8 #include <armnn/utility/NumericCast.hpp>
9 
10 #include <armnn/backends/TensorHandle.hpp>
11 
12 #include <armnnTestUtils/TensorCopyUtils.hpp>
13 #include <armnnTestUtils/WorkloadTestUtils.hpp>
14 
15 #include <ResolveType.hpp>
16 
17 namespace {
18 
19 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
20 LayerTestResult<T, 3>
UnidirectionalSequenceLstmTimeMajorSingleBatchTestImpl(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory,const std::vector<T> & input,const std::vector<T> & outputExpected,const armnn::TensorShape & inputShape,const armnn::TensorShape & outputExpectedShape,float qScale=1.0f,int32_t qOffset=0,armnn::DataType constantDataType=armnn::DataType::Float32)21 UnidirectionalSequenceLstmTimeMajorSingleBatchTestImpl(
22     armnn::IWorkloadFactory& workloadFactory,
23     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
24     const armnn::ITensorHandleFactory& tensorHandleFactory,
25     const std::vector<T>& input,
26     const std::vector<T>& outputExpected,
27     const armnn::TensorShape& inputShape,
28     const armnn::TensorShape& outputExpectedShape,
29     float qScale = 1.0f,
30     int32_t qOffset = 0,
31     armnn::DataType constantDataType = armnn::DataType::Float32)
32 {
33     IgnoreUnused(memoryManager);
34     unsigned int batchSize = armnn::numeric_cast<unsigned int>(inputShape[0]);
35     unsigned int inputSize = armnn::numeric_cast<unsigned int>(inputShape[2]);
36     unsigned int outputSize = armnn::numeric_cast<unsigned int>(outputExpectedShape[2]);
37     unsigned numUnits = outputSize;
38 
39     armnn::TensorInfo inputTensorInfo({1, batchSize , inputSize}, ArmnnType,  qScale, qOffset );
40     armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, ArmnnType, qScale, qOffset);
41     armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, ArmnnType, qScale, qOffset);
42     armnn::TensorInfo outputStateOutTensorInfo({ batchSize, 1, outputSize }, ArmnnType, qScale, qOffset);
43     armnn::TensorInfo cellStateOutTensorInfo({ batchSize, 1, outputSize }, ArmnnType, qScale, qOffset);
44     armnn::TensorInfo outputTensorInfo({1, batchSize, outputSize}, ArmnnType, qScale, qOffset);
45 
46     std::vector<T> inputVector;
47     inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
48 
49     std::vector<T> cellStateInVector(batchSize * numUnits, T());
50     std::vector<T> outputStateInVector(batchSize * outputSize, T());
51 
52     std::vector<T> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
53     std::vector<T> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
54     std::vector<T> actualOutput(outputTensorInfo.GetNumElements());
55 
56     std::vector<T> outputVector;
57     outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
58 
59     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
60     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
61                                               tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
62     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
63                                               tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
64 
65     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
66             tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
67     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
68             tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
69     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
70 
71     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
72     armnn::WorkloadInfo info;
73 
74     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
75     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
76     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
77 
78     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
79     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
80     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
81 
82     armnn::TensorInfo tensorInfo4({numUnits}, constantDataType , qScale, qOffset);
83     armnn::TensorInfo tensorInfo8({numUnits, 2}, constantDataType, qScale, qOffset);
84     armnn::TensorInfo tensorInfo16({numUnits, 4}, constantDataType, qScale, qOffset);
85 
86     std::vector<float> inputToInputWeights = {-0.45018822f, -0.02338299f, -0.0870589f,
87                                               -0.34550029f, 0.04266912f, -0.15680569f,
88                                               -0.34856534f, 0.43890524f};
89 
90     std::vector<float> inputToForgetWeights = { 0.09701663f, 0.20334584f, -0.50592935f,
91                                                 -0.31343272f, -0.40032279f, 0.44781327f,
92                                                 0.01387155f, -0.35593212f};
93 
94     std::vector<float> inputToCellWeights = { -0.50013041f, 0.1370284f, 0.11810488f, 0.2013163f,
95                                               -0.20583314f, 0.44344562f, 0.22077113f,
96                                               -0.29909778f};
97 
98     std::vector<float> inputToOutputWeights = { -0.25065863f, -0.28290087f, 0.04613829f,
99                                                 0.40525138f, 0.44272184f, 0.03897077f,
100                                                 -0.1556896f, 0.19487578f};
101 
102     std::vector<float> recurrentToInputWeights = {-0.0063535f, -0.2042388f, 0.31454784f,
103                                                   -0.35746509f, 0.28902304f, 0.08183324f,
104                                                   -0.16555229f, 0.02286911f, -0.13566875f,
105                                                   0.03034258f, 0.48091322f, -0.12528998f,
106                                                   0.24077177f, -0.51332325f, -0.33502164f,
107                                                   0.10629296f};
108 
109     std::vector<float> recurrentToForgetWeights = { -0.48684245f, -0.06655136f, 0.42224967f,
110                                                     0.2112639f, 0.27654213f, 0.20864892f,
111                                                     -0.07646349f, 0.45877004f, 0.00141793f,
112                                                     -0.14609534f, 0.36447752f, 0.09196436f,
113                                                     0.28053468f, 0.01560611f, -0.20127171f,
114                                                     -0.01140004f};
115 
116     std::vector<float> recurrentToCellWeights = { -0.3407414f, 0.24443203f, -0.2078532f,
117                                                   0.26320225f, 0.05695659f, -0.00123841f,
118                                                   -0.4744786f, -0.35869038f, -0.06418842f,
119                                                   -0.13502428f, -0.501764f, 0.22830659f,
120                                                   -0.46367589f, 0.26016325f, -0.03894562f,
121                                                   -0.16368064f};
122 
123     std::vector<float> recurrentToOutputWeights = { 0.43385774f, -0.17194885f, 0.2718237f,
124                                                     0.09215671f, 0.24107647f, -0.39835793f,
125                                                     0.18212086f, 0.01301402f, 0.48572797f,
126                                                     -0.50656658f, 0.20047462f, -0.20607421f,
127                                                     -0.51818722f, -0.15390486f, 0.0468148f,
128                                                     0.39922136f};
129 
130     std::vector<float> cellToInputWeights = {0., 0., 0., 0.};
131 
132     std::vector<float> inputGateBias = {0., 0., 0., 0.};
133 
134     std::vector<float> forgetGateBias = {1., 1., 1., 1.};
135 
136     std::vector<float> cellBias = {0., 0., 0., 0.};
137 
138     std::vector<float> outputGateBias = {0., 0., 0., 0.};
139 
140     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo8);
141     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo8);
142     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo8);
143     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo8);
144     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
145     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
146     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
147     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
148     armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfo4);
149     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo4);
150     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo4);
151     armnn::ScopedTensorHandle cellBiasTensor(tensorInfo4);
152     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo4);
153 
154     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
155     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
156     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
157     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
158     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
159     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
160     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
161     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
162     AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, cellToInputWeights.data());
163     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
164     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
165     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
166     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
167 
168     data.m_InputToInputWeights = &inputToInputWeightsTensor;
169     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
170     data.m_InputToCellWeights = &inputToCellWeightsTensor;
171     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
172     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
173     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
174     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
175     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
176     data.m_InputGateBias = &inputGateBiasTensor;
177     data.m_ForgetGateBias = &forgetGateBiasTensor;
178     data.m_CellBias = &cellBiasTensor;
179     data.m_OutputGateBias = &outputGateBiasTensor;
180 
181     // Flags to set test configuration
182     data.m_Parameters.m_ActivationFunc = 4;
183     data.m_Parameters.m_CifgEnabled = false;
184     data.m_Parameters.m_PeepholeEnabled = false;
185     data.m_Parameters.m_ProjectionEnabled = false;
186     data.m_Parameters.m_ClippingThresCell = 10;
187     data.m_Parameters.m_ClippingThresProj = 0;
188     data.m_Parameters.m_TimeMajor = true;
189 
190     std::unique_ptr<armnn::IWorkload> workload
191         = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
192     inputHandle->Allocate();
193     outputStateInHandle->Allocate();
194     cellStateInHandle->Allocate();
195 
196     outputStateOutHandle->Allocate();
197     cellStateOutHandle->Allocate();
198     outputHandle->Allocate();
199 
200     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
201     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
202     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
203 
204     workload->Execute();
205 
206     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
207     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
208     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
209 
210     return LayerTestResult<T, 3>(actualOutput,
211                                  outputVector,
212                                  outputHandle->GetShape(),
213                                  outputTensorInfo.GetShape());
214 }
215 
216 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
UnidirectionalSequenceLstmLayerFloat32TestImpl(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory,const std::vector<T> & input,const std::vector<T> & outputExpected,const armnn::TensorShape & inputShape,const armnn::TensorShape & outputExpectedShape,float qScale=1.0f,int32_t qOffset=0,armnn::DataType constantDataType=armnn::DataType::Float32)217 LayerTestResult<T, 3> UnidirectionalSequenceLstmLayerFloat32TestImpl(
218     armnn::IWorkloadFactory& workloadFactory,
219     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
220     const armnn::ITensorHandleFactory& tensorHandleFactory,
221     const std::vector<T>& input,
222     const std::vector<T>& outputExpected,
223     const armnn::TensorShape& inputShape,
224     const armnn::TensorShape& outputExpectedShape,
225     float qScale = 1.0f,
226     int32_t qOffset = 0,
227     armnn::DataType constantDataType = armnn::DataType::Float32) {
228     IgnoreUnused(memoryManager);
229     unsigned int batchSize = armnn::numeric_cast<unsigned int>(inputShape[0]);
230     unsigned int timeSize = armnn::numeric_cast<unsigned int>(inputShape[1]);
231     unsigned int inputSize = armnn::numeric_cast<unsigned int>(inputShape[2]);
232     unsigned int outputSize = armnn::numeric_cast<unsigned int>(outputExpectedShape[2]);
233     unsigned numUnits = outputSize;
234 
235     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, ArmnnType, qScale, qOffset);
236     armnn::TensorInfo cellStateInTensorInfo({batchSize, numUnits}, ArmnnType, qScale, qOffset);
237     armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, ArmnnType, qScale, qOffset);
238     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, ArmnnType, qScale, qOffset);
239     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, ArmnnType, qScale, qOffset);
240     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, ArmnnType, qScale, qOffset);
241 
242     std::vector<T> inputVector;
243     inputVector.assign(input.data(), input.data() + (batchSize * timeSize * inputSize));
244 
245     std::vector<T> cellStateInVector(batchSize * numUnits, T());
246     std::vector<T> outputStateInVector(batchSize * outputSize, T());
247 
248     std::vector<T> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
249     std::vector<T> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
250     std::vector<T> actualOutput(outputTensorInfo.GetNumElements());
251 
252     std::vector<T> outputVector;
253     outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * timeSize * outputSize));
254 
255     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
256     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
257         tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
258     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
259         tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
260 
261     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
262             tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
263     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
264             tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
265     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
266 
267     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
268     armnn::WorkloadInfo info;
269 
270     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
271     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
272     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
273 
274     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
275     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
276     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
277 
278     armnn::TensorInfo tensorInfo4({numUnits}, constantDataType, qScale, qOffset);
279     armnn::TensorInfo tensorInfo12({numUnits, 3}, constantDataType, qScale, qOffset);
280     armnn::TensorInfo tensorInfo16({numUnits, 4}, constantDataType, qScale, qOffset);
281 
282     std::vector<float> inputToInputWeights = { -0.49536117f, -0.0556083915f, -0.102400711f,
283                                                -0.117484632f, 0.3298470976f, -0.1179017122f,
284                                                0.214305695f, 0.42135173085f, 0.003878414626f,
285                                                -0.348303917f, -0.1881275477f, 0.0343011027f };
286 
287     std::vector<float> inputToForgetWeights = { 0.2415594226f, 0.15400093799f, 0.4566498398f,
288                                                 -0.3810434485f, 0.268383264f, -0.009807467424f,
289                                                 -0.3522925403f, -0.24275735512f, -0.28344226125f,
290                                                 0.13512269116f, -0.4932442977f, -0.10039821991f };
291 
292     std::vector<float> inputToCellWeights = { -0.2504855627f, 0.184490025045f, -0.2480507493f,
293                                               0.386399507f, -0.259465157985f, -0.16545993089f,
294                                               -0.4230232555f, 0.341664791103f, -0.18127849691f,
295                                               -0.2277662414f, -0.55275535589f, 0.34184026718f };
296 
297     std::vector<float> inputToOutputWeights = { 0.2303854227f, 0.5218806862f, -0.4865379333f,
298                                                 0.53969591851f, 0.23393625035f, -0.27140527306f,
299                                                 0.50009280443f, 0.07511717046f, 0.3998299249f,
300                                                 -0.51717478049f, 0.1889653282f, -0.367323637f };
301 
302     std::vector<float> recurrentToInputWeights = { -0.128009796112f, 0.1995525098f, -0.07745539397f, 0.1558421701f,
303                                                    -0.265254765766f, -0.38837709614f, -0.05636804124f, 0.4259087456f,
304                                                    0.17628988623f, 0.3877420127f, 0.53300309181f, -0.0959980934f,
305                                                    0.00302857416f, 0.3266998827f, -0.142509296562f, -0.04433270756f };
306 
307     std::vector<float> recurrentToForgetWeights = { -0.09499983487f, -0.08814888417f, -0.04834804721f, 0.1516668247f,
308                                                     -0.3967529535f, -0.06463699788f, 0.4952811002f, 0.003274492938f,
309                                                     -0.0968840941f, 0.17928104102f, 0.0031281141592f, -0.3387276584f,
310                                                     -0.3587934076f, 0.06705895066f, 0.22463923692f, 0.1961955726f };
311 
312     std::vector<float> recurrentToCellWeights = { -0.21938985582f, -0.3023648226f, -0.1170005202f, -0.3509177422f,
313                                                   -0.4286288613f, 0.2726137042f, 0.09216640889f, -0.06551410215f,
314                                                   0.20453298098f, 0.2393476665f, 0.11846517771f, 0.2630801796f,
315                                                   0.3954237699f, -0.19407111404f, 0.30412107706f, -0.27342408554f };
316 
317     std::vector<float> recurrentToOutputWeights = { -0.32921677827f, 0.32624614238f, -0.1388191282f, -0.17879831790f,
318                                                     -0.15185534954f, -0.16918526583f, -0.10087361183f, -0.5436913968f,
319                                                     0.016758225858f, 0.30454617738f, -0.41493862867f, -0.005565764375f,
320                                                     -0.12584099173f, -0.12319286912f, 0.2407919466f, -0.08879069983f };
321 
322     std::vector<float> inputGateBias = { 0., 0., 0., 0. };
323 
324     std::vector<float> forgetGateBias = { 1., 1., 1., 1. };
325 
326     std::vector<float> cellBias = { 0., 0., 0., 0. };
327 
328     std::vector<float> outputGateBias = { 0., 0., 0., 0. };
329 
330     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo12);
331     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo12);
332     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo12);
333     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo12);
334     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
335     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
336     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
337     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
338     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo4);
339     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo4);
340     armnn::ScopedTensorHandle cellBiasTensor(tensorInfo4);
341     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo4);
342 
343     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
344     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
345     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
346     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
347     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
348     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
349     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
350     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
351     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
352     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
353     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
354     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
355 
356     data.m_InputToInputWeights = &inputToInputWeightsTensor;
357     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
358     data.m_InputToCellWeights = &inputToCellWeightsTensor;
359     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
360     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
361     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
362     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
363     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
364     data.m_InputGateBias = &inputGateBiasTensor;
365     data.m_ForgetGateBias = &forgetGateBiasTensor;
366     data.m_CellBias = &cellBiasTensor;
367     data.m_OutputGateBias = &outputGateBiasTensor;
368 
369     // Flags to set test configuration
370     data.m_Parameters.m_ClippingThresCell = 10;
371     data.m_Parameters.m_ClippingThresProj = 0;
372     data.m_Parameters.m_ActivationFunc = 4;
373     data.m_Parameters.m_CifgEnabled = false;
374     data.m_Parameters.m_PeepholeEnabled = false;
375     data.m_Parameters.m_ProjectionEnabled = false;
376     data.m_Parameters.m_TimeMajor = false;
377 
378     std::unique_ptr<armnn::IWorkload> workload
379             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
380     inputHandle->Allocate();
381     outputStateInHandle->Allocate();
382     cellStateInHandle->Allocate();
383 
384     outputStateOutHandle->Allocate();
385     cellStateOutHandle->Allocate();
386     outputHandle->Allocate();
387 
388     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
389     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
390     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
391 
392     workload->Execute();
393 
394     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
395     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
396     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
397 
398     return LayerTestResult<T, 3>(actualOutput,
399                                  outputVector,
400                                  outputHandle->GetShape(),
401                                  outputTensorInfo.GetShape());
402 }
403 
404 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
405 LayerTestResult<T, 3>
UnidirectionalSequenceLstmLayerFloat32TimeMajorTestImpl(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory,const std::vector<T> & input,const std::vector<T> & outputExpected,const armnn::TensorShape & inputShape,const armnn::TensorShape & outputExpectedShape,float qScale=1.0f,int32_t qOffset=0,armnn::DataType constantDataType=armnn::DataType::Float32)406 UnidirectionalSequenceLstmLayerFloat32TimeMajorTestImpl(
407     armnn::IWorkloadFactory& workloadFactory,
408     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
409     const armnn::ITensorHandleFactory& tensorHandleFactory,
410     const std::vector<T>& input,
411     const std::vector<T>& outputExpected,
412     const armnn::TensorShape& inputShape,
413     const armnn::TensorShape& outputExpectedShape,
414     float qScale = 1.0f,
415     int32_t qOffset = 0,
416     armnn::DataType constantDataType = armnn::DataType::Float32) {
417     IgnoreUnused(memoryManager);
418     unsigned int batchSize = armnn::numeric_cast<unsigned int>(inputShape[1]);
419     unsigned int timeSize = armnn::numeric_cast<unsigned int>(inputShape[0]);
420     unsigned int inputSize = armnn::numeric_cast<unsigned int>(inputShape[2]);
421     unsigned int outputSize = armnn::numeric_cast<unsigned int>(outputExpectedShape[2]);
422     unsigned numUnits = outputSize;
423 
424     armnn::TensorInfo inputTensorInfo({timeSize, batchSize, inputSize}, ArmnnType, qScale, qOffset);
425     armnn::TensorInfo cellStateInTensorInfo({batchSize, numUnits}, ArmnnType, qScale, qOffset);
426     armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, ArmnnType, qScale, qOffset);
427     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
428     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
429     armnn::TensorInfo outputTensorInfo({timeSize, batchSize, outputSize}, ArmnnType, qScale, qOffset);
430 
431     std::vector<T> inputVector;
432     inputVector.assign(input.data(), input.data() + (batchSize * timeSize * inputSize));
433 
434     std::vector<T> cellStateInVector(batchSize * numUnits, T());
435     std::vector<T> outputStateInVector(batchSize * outputSize, T());
436 
437     std::vector<T> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
438     std::vector<T> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
439     std::vector<T> actualOutput(outputTensorInfo.GetNumElements());
440 
441     std::vector<T> outputVector;
442     outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * timeSize * outputSize));
443 
444     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
445     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
446         tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
447     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
448         tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
449 
450     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
451         tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
452     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
453         tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
454     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
455 
456     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
457     armnn::WorkloadInfo info;
458 
459     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
460     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
461     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
462 
463     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
464     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
465     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
466 
467     armnn::TensorInfo tensorInfo4({numUnits}, constantDataType, qScale, qOffset);
468     armnn::TensorInfo tensorInfo12({numUnits, 3}, constantDataType, qScale, qOffset);
469     armnn::TensorInfo tensorInfo16({numUnits, 4}, constantDataType, qScale, qOffset);
470 
471     std::vector<float> inputToInputWeights = { 0.27277296781539917f, 0.3813590407371521f, -0.394489049911499f,
472                                                0.2782636880874634f, -0.3793870210647583f, -0.018918335437774658f,
473                                                0.2724653482437134f, -0.19314253330230713f, -0.2947450876235962f,
474                                                -0.30253493785858154f, 0.4241350293159485f, -0.22560018301010132f };
475 
476     std::vector<float> inputToForgetWeights = { -0.2667974531650543f, -0.05505800247192383f, -0.20932340621948242f,
477                                                 -0.14345619082450867f, 0.09666192531585693f, -0.2604355812072754f,
478                                                 -0.2681812047958374f, -0.3314584493637085f, 0.4485899806022644f,
479                                                 -0.23467743396759033f, 0.5072842240333557f, -0.4192768931388855f };
480 
481     std::vector<float> inputToCellWeights = { -0.15782442688941956f, -0.027530014514923096f, 0.4789854884147644f,
482                                               0.23227906227111816f, 0.28259342908859253f, -0.030095696449279785f,
483                                               0.10071521997451782f, -0.08535495400428772f, 0.18563997745513916f,
484                                               -0.3049069046974182f, -0.478048175573349f, 0.025234103202819824f };
485 
486     std::vector<float> inputToOutputWeights = { -0.04584759473800659f, -0.2716066539287567f, 0.012970447540283203f,
487                                                 -0.4729190170764923f, -0.37422770261764526f, 0.49352723360061646f,
488                                                 0.3163864016532898f, -0.436781644821167f, -0.33074596524238586f,
489                                                 -0.32885751128196716f, -0.40959352254867554f, -0.2124689817428589f };
490 
491     std::vector<float> recurrentToInputWeights = { 0.23788475990f, -0.24948765337f, 0.50044941902f, 0.14431896805f,
492                                                    -0.115940228137f, -0.717082679f, -0.17208620906f, 0.17850610617f,
493                                                    -0.16702319684f, -0.11384502053f, -0.309785276245f, -0.3316611672f,
494                                                    0.52380162477f, -0.06839632987f, -0.391478359627f, -0.10756178963f };
495 
496     std::vector<float> recurrentToForgetWeights = { 0.11383482068f, 0.1676601767f, -0.08550968004f, 0.03399394089f,
497                                                     0.08042152225f, -0.2133381964f, 0.05182432704f, 0.38161808255f,
498                                                     -0.5018365979f, -0.08043262364f, 0.07894329014f, -0.07547105155f,
499                                                     0.12047368288f, 0.2986997961f, 0.0485043078f, -0.13372567296f };
500 
501     std::vector<float> recurrentToCellWeights = { 0.0433832928545f, 0.07587072294f, -0.120520234107f, 0.604576051f,
502                                                   -0.434353142986f, 0.009314475068f, 0.005085289478f, 0.08488202038f,
503                                                   -0.00025437487886f, 0.15245915082f, -0.1936587542f, 0.004754020f,
504                                                   -0.1582719236f, 0.3307867646f, 0.0236605107784f, 0.307716339826f };
505 
506     std::vector<float> recurrentToOutputWeights = { -0.079031050201f, 0.041414566286f, -0.583727357285f, 0.1025384515f,
507                                                     -0.172372072937f, 0.09214124082f, 0.178184121827f, -0.2439443916f,
508                                                     0.104485116899f, 0.2600405514f, 0.064414866268f, 0.24141204357f,
509                                                     0.281875759363f, -0.14234502664f, 0.15126448862f, -0.24421440064f };
510 
511     std::vector<float> inputGateBias = { 0., 0., 0., 0. };
512 
513     std::vector<float> forgetGateBias = { 1., 1., 1., 1. };
514 
515     std::vector<float> cellBias = { 0., 0., 0., 0. };
516 
517     std::vector<float> outputGateBias = { 0., 0., 0., 0. };
518 
519     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo12);
520     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo12);
521     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo12);
522     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo12);
523     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
524     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
525     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
526     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
527     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo4);
528     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo4);
529     armnn::ScopedTensorHandle cellBiasTensor(tensorInfo4);
530     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo4);
531 
532     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
533     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
534     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
535     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
536     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
537     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
538     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
539     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
540     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
541     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
542     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
543     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
544 
545     data.m_InputToInputWeights = &inputToInputWeightsTensor;
546     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
547     data.m_InputToCellWeights = &inputToCellWeightsTensor;
548     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
549     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
550     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
551     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
552     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
553     data.m_InputGateBias = &inputGateBiasTensor;
554     data.m_ForgetGateBias = &forgetGateBiasTensor;
555     data.m_CellBias = &cellBiasTensor;
556     data.m_OutputGateBias = &outputGateBiasTensor;
557 
558     // Flags to set test configuration
559     data.m_Parameters.m_ClippingThresCell = 10;
560     data.m_Parameters.m_ClippingThresProj = 0;
561     data.m_Parameters.m_ActivationFunc = 4;
562     data.m_Parameters.m_CifgEnabled = false;
563     data.m_Parameters.m_PeepholeEnabled = false;
564     data.m_Parameters.m_ProjectionEnabled = false;
565     data.m_Parameters.m_TimeMajor = true;
566 
567     std::unique_ptr<armnn::IWorkload> workload
568             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
569     inputHandle->Allocate();
570     outputStateInHandle->Allocate();
571     cellStateInHandle->Allocate();
572 
573     outputStateOutHandle->Allocate();
574     cellStateOutHandle->Allocate();
575     outputHandle->Allocate();
576 
577     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
578     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
579     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
580 
581     workload->Execute();
582 
583     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
584     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
585     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
586 
587     return LayerTestResult<T, 3>(actualOutput,
588                                  outputVector,
589                                  outputHandle->GetShape(),
590                                  outputTensorInfo.GetShape());
591 }
592 
593 } // anonymous namespace
594 
UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatchTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)595 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatchTest(
596     armnn::IWorkloadFactory& workloadFactory,
597     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
598     const armnn::ITensorHandleFactory& tensorHandleFactory)
599 {
600     armnn::TensorInfo inputDesc({1, 2, 2}, armnn::DataType::Float32);
601     std::vector<float> input = {2., 3., 3., 4.};
602 
603     armnn::TensorInfo outputDesc({1, 2, 4}, armnn::DataType::Float32);
604     std::vector<float> expectedOutput =
605                           {-0.02973187f, 0.1229473f,   0.20885126f, -0.15358765f,
606                            -0.0185422f,   0.11281417f,  0.24466537f, -0.1826292f};
607 
608     return UnidirectionalSequenceLstmTimeMajorSingleBatchTestImpl<armnn::DataType::Float32>(
609         workloadFactory, memoryManager, tensorHandleFactory,
610         input, expectedOutput, inputDesc.GetShape(), outputDesc.GetShape());
611 }
612 
UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatchTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)613 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatchTest(
614     armnn::IWorkloadFactory& workloadFactory,
615     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
616     const armnn::ITensorHandleFactory& tensorHandleFactory) {
617     armnn::TensorInfo inputInfo({3, 1, 3}, armnn::DataType::Float32);
618     std::vector<float> input = { 1., 2., 3., 4., 5., 4., 3., 2., 1. };
619 
620     armnn::TensorInfo outputInfo({3, 1, 4}, armnn::DataType::Float32);
621     std::vector<float> expectedOutput = { -0.0714901f, -0.162117f, -0.175168f, -0.0232934f,
622                                           -0.0424661f, -0.231802f, -0.513374f, -0.00680323f,
623                                           -0.0668735f, 0.204078f, -0.42765f, -0.0312321f };
624     return UnidirectionalSequenceLstmLayerFloat32TestImpl<armnn::DataType::Float32>(
625         workloadFactory, memoryManager, tensorHandleFactory,
626         input, expectedOutput, inputInfo.GetShape(), outputInfo.GetShape());
627 }
628 
UnidirectionalSequenceLstmLayerFloat32Test(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)629 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32Test(
630     armnn::IWorkloadFactory& workloadFactory,
631     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
632     const armnn::ITensorHandleFactory& tensorHandleFactory) {
633     armnn::TensorInfo inputInfo({3, 2, 3}, armnn::DataType::Float32);
634     std::vector<float> input = { 1., 2., 3., 4., 5., 4.,
635                                  3., 2., 1., 2., 3., 4.,
636                                  5., 4., 3., 2., 1., 2. };
637 
638     armnn::TensorInfo outputInfo({3, 2, 4}, armnn::DataType::Float32);
639     std::vector<float> expectedOutput = { -0.07149004f, -0.1621171f, -0.17516759f, -0.0232934225f,
640                                           -0.16810727f, -0.41412935f, -0.5498753f, -0.00803578f,
641                                           -0.06687349f, 0.204077631f, -0.4276504f, -0.03123213f,
642                                           -0.12000261f, -0.0941918f, -0.45639035f, -0.02870186f,
643                                           -0.03429216f, 0.20824050f, -0.6569892f, -0.004152651f,
644                                           -0.10493034f,  0.14210969f, -0.58347696f, -0.03297536f };
645     return UnidirectionalSequenceLstmLayerFloat32TestImpl<armnn::DataType::Float32>(
646         workloadFactory, memoryManager, tensorHandleFactory,
647         input, expectedOutput, inputInfo.GetShape(), outputInfo.GetShape());
648 }
649 
UnidirectionalSequenceLstmLayerFloat32TimeMajorTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)650 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32TimeMajorTest(
651     armnn::IWorkloadFactory& workloadFactory,
652     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
653     const armnn::ITensorHandleFactory& tensorHandleFactory) {
654     armnn::TensorInfo inputInfo({2, 3, 3}, armnn::DataType::Float32);
655     std::vector<float> input = { 1., 2., 3., 4., 5., 4.,
656                                  3., 2., 1., 2., 3., 4.,
657                                  5., 4., 3., 2., 1., 2. };
658 
659     armnn::TensorInfo outputInfo({2, 3, 4}, armnn::DataType::Float32);
660     std::vector<float> expectedOutput = { 0.135657698f, 0.124672532f, 0.0212090332f, -0.0530203655f,
661                                           0.106138252f, 0.0404792242f, 0.0151643595f, -0.00675163185f,
662                                           -0.0128514022f, 0.0644884035f, 0.0709072053f, -0.0454045124f,
663                                           0.16288602f,  0.16649379f,  0.02770456f, -0.03698075f,
664                                           0.11171641f,  0.043119f  ,  0.0762981f , -0.01228541f,
665                                           0.10439701f,  0.21439962f,  0.11919238f, -0.08390583f };
666     return UnidirectionalSequenceLstmLayerFloat32TimeMajorTestImpl<armnn::DataType::Float32>(
667         workloadFactory, memoryManager, tensorHandleFactory,
668         input, expectedOutput, inputInfo.GetShape(), outputInfo.GetShape());
669 }
670 
UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)671 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionTest(
672     armnn::IWorkloadFactory& workloadFactory,
673     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
674     const armnn::ITensorHandleFactory& tensorHandleFactory)
675 {
676     IgnoreUnused(memoryManager);
677     unsigned int batchSize = 2;
678     unsigned int timeSize = 3;
679     unsigned int outputSize = 5;
680     unsigned int inputSize = 4;
681     unsigned numUnits = 6;
682 
683     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
684     armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::DataType::Float32);
685     armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::DataType::Float32);
686     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
687     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
688     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
689 
690     const std::vector<float> inputVector = { 1., 2., 3., 4., 5., 4.,
691                                              3., 2., 1., 2., 3., 4.,
692                                              5., 4., 3., 2., 1., 2.,
693                                              1., 2., 3., 4., 5., 4.};
694 
695     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
696     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
697 
698     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
699     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
700     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
701 
702     const std::vector<float> expectedOutput = { -0.0135612f, -0.0263441f, 0.0314008f, -0.00883455f, 0.00763052f,
703                                                 -0.00126877f, -0.0292959f, 0.0449957f, -0.00976195f, -0.00492338f,
704                                                 -0.0175702f, -0.0431753f, 0.0597117f, -0.0169154f, 0.0142087f,
705                                                 0.00472515f, -0.0196355f, 0.0342524f, -0.00407936f, -0.0253189f,
706                                                 -0.00512944f, -0.0293754f, 0.0512771f, -0.0151874f, -0.0246433f,
707                                                 -0.00744986f, -0.0345103f, 0.0450666f, -0.00944991f, 0.0127171f };
708 
709     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
710     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
711             tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
712     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
713             tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
714 
715     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
716             tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
717     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
718             tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
719     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
720 
721     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
722     armnn::WorkloadInfo info;
723 
724     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
725     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
726     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
727 
728     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
729     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
730     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
731 
732     armnn::TensorInfo tensorInfo5({outputSize}, armnn::DataType::Float32);
733     armnn::TensorInfo tensorInfo6({numUnits}, armnn::DataType::Float32);
734     armnn::TensorInfo tensorInfo6x4({numUnits, inputSize}, armnn::DataType::Float32);
735     armnn::TensorInfo tensorInfo6x5({numUnits, outputSize}, armnn::DataType::Float32);
736     armnn::TensorInfo tensorInfo5x6({outputSize, numUnits}, armnn::DataType::Float32);
737 
738     std::vector<float> inputToInputWeights = { 0.021393683f, 0.06124551f, 0.046905167f, -0.014657677f,
739                                                -0.03149463f, 0.09171803f, 0.14647801f, 0.10797193f,
740                                                -0.0057968358f, 0.0019193048f, -0.2726754f, 0.10154029f,
741                                                -0.018539885f, 0.080349885f, -0.10262385f, -0.022599787f,
742                                                -0.09121155f, -0.008675967f, -0.045206103f, -0.0821282f,
743                                                -0.008045952f, 0.015478081f, 0.055217247f, 0.038719587f };
744 
745     std::vector<float> inputToForgetWeights = { -0.0018401089f, -0.004852237f, 0.03698424f, 0.014181704f,
746                                                 0.028273236f, -0.016726194f, -0.05249759f, -0.10204261f,
747                                                 0.00861066f, -0.040979505f, -0.009899187f, 0.01923892f,
748                                                 -0.028177269f, -0.08535103f, -0.14585495f, 0.10662567f,
749                                                 -0.01909731f, -0.017883534f, -0.0047269356f, -0.045103323f,
750                                                 0.0030784295f, 0.076784775f, 0.07463696f, 0.094531395f};
751 
752     std::vector<float> inputToCellWeights = { -0.04580283f, -0.09549462f, -0.032418985f, -0.06454633f,
753                                               -0.043528453f, 0.043018587f, -0.049152344f, -0.12418144f,
754                                               -0.078985475f, -0.07596889f, 0.019484362f, -0.11434962f,
755                                               -0.0074034138f, -0.06314844f, -0.092981495f, 0.0062155537f,
756                                               -0.025034338f, -0.0028890965f, 0.048929527f, 0.06235075f,
757                                               0.10665918f, -0.032036792f, -0.08505916f, -0.10843358f };
758 
759     std::vector<float> inputToOutputWeights = { -0.0998932f, -0.07201956f, -0.052803773f, -0.15629593f,
760                                                 -0.15001918f, -0.07650751f, 0.02359855f, -0.075155355f,
761                                                 -0.08037709f, -0.15093534f, 0.029517552f, -0.04751393f,
762                                                 0.010350531f, -0.02664851f, -0.016839722f, -0.023121163f,
763                                                 0.0077019283f, 0.012851257f, -0.05040649f, -0.0129761f,
764                                                 -0.021737747f, -0.038305793f, -0.06870586f, -0.01481247f };
765 
766     std::vector<float> inputGateBias = { 0.02234832f, 0.14757581f, 0.18176508f,
767                                          0.10380666f, 0.053110216f, -0.06928846f };
768 
769     std::vector<float> forgetGateBias = { 0.035185695f, -0.042891346f, -0.03032477f,
770                                           0.23027696f, 0.11098921f, 0.08989442f };
771 
772     std::vector<float> cellBias = { -0.024379363f, 0.0055531194f, 0.23377132f,
773                                     0.033463873f, -0.1483596f, 0.029460307f };
774 
775     std::vector<float> outputGateBias = { 0.046159424f, -0.0012809046f, 0.03563469f,
776                                           0.12648113f, 0.027195795f, 0.35373217f };
777 
778     std::vector<float> recurrentToInputWeights = { -0.001374326f, -0.078856036f, 0.10672688f, 0.029162422f,
779                                                    -0.11585556f, 0.02557986f, -0.13446963f, -0.035785314f,
780                                                    -0.01244275f, 0.025961924f, -0.02337298f, -0.044228926f,
781                                                    -0.055839065f, -0.046598054f, -0.010546039f, -0.06900766f,
782                                                    0.027239809f, 0.022582639f, -0.013296484f, -0.05459212f,
783                                                    0.08981f, -0.045407712f, 0.08682226f, -0.06867011f,
784                                                    -0.14390695f, -0.02916037f, 0.000996957f, 0.091420636f,
785                                                    0.14283475f, -0.07390571f };
786 
787     std::vector<float> recurrentToCellWeights = { -0.037322544f, 0.018592842f, 0.0056175636f, -0.06253426f,
788                                                    0.055647098f, -0.05713207f, -0.05626563f, 0.005559383f,
789                                                    0.03375411f, -0.025757805f, -0.088049285f, 0.06017052f,
790                                                    -0.06570978f, 0.007384076f, 0.035123326f, -0.07920549f,
791                                                    0.053676967f, 0.044480428f, -0.07663568f, 0.0071805613f,
792                                                    0.08089997f, 0.05143358f, 0.038261272f, 0.03339287f,
793                                                    -0.027673481f, 0.044746667f, 0.028349208f, 0.020090483f,
794                                                    -0.019443132f, -0.030755889f };
795 
796     std::vector<float> recurrentToForgetWeights = { -0.057784554f, -0.026057621f, -0.068447545f, -0.022581743f,
797                                                     0.14811787f, 0.10826372f, 0.09471067f, 0.03987225f,
798                                                     -0.0039523416f, 0.00030638507f, 0.053185795f, 0.10572994f,
799                                                     0.08414449f, -0.022036452f, -0.00066928595f, -0.09203576f,
800                                                     0.032950465f, -0.10985798f, -0.023809856f, 0.0021431844f,
801                                                     -0.02196096f, -0.00326074f, 0.00058621005f, -0.074678116f,
802                                                     -0.06193199f, 0.055729095f, 0.03736828f, 0.020123724f,
803                                                     0.061878487f, -0.04729229f };
804 
805     std::vector<float> recurrentToOutputWeights = { 0.025825322f, -0.05813119f, 0.09495884f,
806                                                     -0.045984812f,-0.01255415f, -0.0026479573f,
807                                                     -0.08196161f, -0.054914974f, -0.0046604523f,
808                                                     -0.029587349f, -0.044576716f, -0.07480124f,
809                                                     -0.082868785f, 0.023254942f, 0.027502948f,
810                                                     -0.0039728214f, -0.08683098f, -0.08116779f,
811                                                     -0.014675607f, -0.037924774f, -0.023314456f,
812                                                     -0.007401714f, -0.09255757f, 0.029460307f,
813                                                     -0.08829125f, -0.005139627f, -0.08989442f,
814                                                     -0.0555066f, 0.13596267f, 0.025062224f };
815 
816     std::vector<float> cellToInputWeights = { 0.040369894f, 0.030746894f, 0.24704495f,
817                                               0.018586371f, -0.037586458f, -0.15312155f };
818 
819     std::vector<float> cellToForgetWeights = { -0.01998659f, -0.15568835f, -0.24248174f,
820                                                -0.012770197f, 0.041331276f, -0.072311886f };
821 
822     std::vector<float> cellToOutputWeights = { 0.08286371f, -0.08261836f, -0.51210177f,
823                                                0.002913762f, 0.17764764f, -0.5495371f };
824 
825     std::vector<float> projectionWeights = { -0.009802181f, 0.09401916f, 0.0717386f, -0.13895074f, 0.09641832f,
826                                              0.060420845f, 0.08539281f, 0.054285463f, 0.061395317f, 0.034448683f,
827                                              -0.042991187f, 0.019801661f, -0.16840284f, -0.015726732f, -0.23041931f,
828                                              -0.024478018f, -0.10959692f, -0.013875541f, 0.18600968f, -0.061274476f,
829                                              0.0138165f, -0.08160894f, -0.07661644f, 0.032372914f, 0.16169067f,
830                                              0.22465782f, -0.03993472f, -0.004017731f, 0.08633481f, -0.28869787f };
831 
832     std::vector<float> projectionBiasVector(outputSize, 0.f); //{outputSize}
833 
834     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo6x4);
835     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo6x4);
836     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo6x4);
837     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo6x4);
838     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo6x5);
839     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo6x5);
840     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo6x5);
841     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo6x5);
842     armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfo6);
843     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo6);
844     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo6);
845     armnn::ScopedTensorHandle cellBiasTensor(tensorInfo6);
846     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo6);
847     armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfo6);
848     armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfo6);
849     armnn::ScopedTensorHandle projectionWeightsTensor(tensorInfo5x6);
850     armnn::ScopedTensorHandle projectionBiasTensor(tensorInfo5);
851 
852     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
853     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
854     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
855     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
856     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
857     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
858     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
859     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
860     AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, cellToInputWeights.data());
861     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
862     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
863     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
864     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
865     AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, cellToForgetWeights.data());
866     AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, cellToOutputWeights.data());
867     AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, projectionWeights.data());
868     AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, projectionBiasVector.data());
869 
870     data.m_InputToInputWeights = &inputToInputWeightsTensor;
871     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
872     data.m_InputToCellWeights = &inputToCellWeightsTensor;
873     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
874     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
875     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
876     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
877     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
878     data.m_CellToInputWeights = &cellToInputWeightsTensor;
879     data.m_InputGateBias = &inputGateBiasTensor;
880     data.m_ForgetGateBias = &forgetGateBiasTensor;
881     data.m_CellBias = &cellBiasTensor;
882     data.m_OutputGateBias = &outputGateBiasTensor;
883     data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
884     data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
885     data.m_ProjectionWeights = &projectionWeightsTensor;
886     data.m_ProjectionBias = &projectionBiasTensor;
887 
888     // Flags to set test configuration
889     data.m_Parameters.m_ActivationFunc = 4;
890     data.m_Parameters.m_CifgEnabled = false;
891     data.m_Parameters.m_PeepholeEnabled = true;
892     data.m_Parameters.m_ProjectionEnabled = true;
893     data.m_Parameters.m_LayerNormEnabled = false;
894     data.m_Parameters.m_TimeMajor = false;
895     data.m_Parameters.m_ClippingThresCell = 10.0f;
896 
897 
898     std::unique_ptr<armnn::IWorkload> workload
899             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
900     inputHandle->Allocate();
901     outputStateInHandle->Allocate();
902     cellStateInHandle->Allocate();
903 
904     outputStateOutHandle->Allocate();
905     cellStateOutHandle->Allocate();
906     outputHandle->Allocate();
907 
908     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
909     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
910     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
911 
912     workload->Execute();
913 
914     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
915     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
916     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
917 
918     return LayerTestResult<float, 3>(actualOutput,
919                                      expectedOutput,
920                                      outputHandle->GetShape(),
921                                      outputTensorInfo.GetShape());
922 }
923 
UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionWithLayerNormTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)924 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionWithLayerNormTest(
925     armnn::IWorkloadFactory& workloadFactory,
926     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
927     const armnn::ITensorHandleFactory& tensorHandleFactory)
928 {
929     IgnoreUnused(memoryManager);
930     unsigned int batchSize = 3;
931     unsigned int timeSize = 2;
932     unsigned int outputSize = 4;
933     unsigned int inputSize = 3;
934     unsigned numUnits = 5;
935 
936     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
937     armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::DataType::Float32);
938     armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::DataType::Float32);
939     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
940     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
941     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
942 
943     const std::vector<float> inputVector = { 1., 2., 3., 4., 5., 4.,
944                                              3., 2., 1., 2., 3., 4.,
945                                              5., 4., 3., 2., 1., 2. };
946 
947     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
948     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
949 
950     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
951     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
952     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
953 
954     const std::vector<float> expectedOutput = { 0.0642256f, 0.0343966f, 0.184122f, 0.114717f,
955                                                 0.11458f, 0.0407109f, 0.300327f, 0.174301f,
956                                                 0.0864761f, 0.0362912f, 0.178635f, 0.115689f,
957                                                 0.108008f, 0.0386623f, 0.273471f, 0.167115f,
958                                                 0.0859545f, 0.0331481f, 0.186051f, 0.11888f,
959                                                 0.106649f, 0.0276847f, 0.229863f, 0.166958f };
960 
961     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
962     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
963             tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
964     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
965             tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
966 
967     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
968             tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
969     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
970             tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
971     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
972 
973     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
974     armnn::WorkloadInfo info;
975 
976     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
977     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
978     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
979 
980     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
981     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
982     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
983 
984     armnn::TensorInfo tensorInfo4({outputSize}, armnn::DataType::Float32);
985     armnn::TensorInfo tensorInfo5({numUnits}, armnn::DataType::Float32);
986     armnn::TensorInfo tensorInfo5x3({numUnits, inputSize}, armnn::DataType::Float32);
987     armnn::TensorInfo tensorInfo5x4({numUnits, outputSize}, armnn::DataType::Float32);
988     armnn::TensorInfo tensorInfo4x5({outputSize, numUnits}, armnn::DataType::Float32);
989 
990     std::vector<float> inputToInputWeights = { -0.49536117f, -0.0556083915f, -0.102400711f,
991                                                -0.117484632f, 0.3298470976f, -0.1179017122f,
992                                                0.214305695f, 0.42135173085f, 0.003878414626f,
993                                                -0.348303917f, -0.1881275477f, 0.0343011027f,
994                                                -0.38837709614f, -0.05636804124f, 0.4259087456f};
995 
996     std::vector<float> inputToForgetWeights = { 0.2415594226f, 0.15400093799f, 0.4566498398f,
997                                                 -0.3810434485f, 0.268383264f, -0.009807467424f,
998                                                 -0.3522925403f, -0.24275735512f, -0.28344226125f,
999                                                 0.13512269116f, -0.4932442977f, -0.10039821991f,
1000                                                 0.2726137042f, 0.09216640889f, -0.06551410215f};
1001 
1002     std::vector<float> inputToCellWeights = { -0.2504855627f, 0.184490025045f, -0.2480507493f,
1003                                               0.386399507f, -0.259465157985f, -0.16545993089f,
1004                                               -0.4230232555f, 0.341664791103f, -0.18127849691f,
1005                                               -0.2277662414f, -0.55275535589f, 0.34184026718f,
1006                                               0.3954237699f, -0.19407111404f, 0.30412107706f};
1007 
1008     std::vector<float> inputToOutputWeights = { 0.2303854227f, 0.5218806862f, -0.4865379333f,
1009                                                 0.53969591851f, 0.23393625035f, -0.27140527306f,
1010                                                 0.50009280443f, 0.07511717046f, 0.3998299249f,
1011                                                 -0.51717478049f, 0.1889653282f, -0.367323637f,
1012                                                 -0.12584099173f, -0.12319286912f, 0.2407919466f};
1013 
1014     std::vector<float> inputGateBias{ 0.03f, 0.15f, 0.22f, 0.38f, 0.05f };
1015     std::vector<float> forgetGateBias{ 0.1f, -0.3f, -0.2f, 0.1f, 0.4f };
1016     std::vector<float> cellBias{ -0.05f, 0.72f, 0.25f, 0.08f, 0.1f };
1017     std::vector<float> outputGateBias{ 0.05f, -0.01f, 0.2f, 0.1f, -0.2f };
1018 
1019     std::vector<float> recurrentToInputWeights = { -0.128009796112f, 0.1995525098f, -0.07745539397f, 0.1558421701f,
1020                                                    -0.265254765766f, -0.38837709614f, -0.05636804124f, 0.4259087456f,
1021                                                    0.17628988623f, 0.3877420127f, 0.53300309181f, -0.0959980934f,
1022                                                    0.00302857416f, 0.3266998827f, -0.142509296562f, -0.04433270756f,
1023                                                    0.54066205f, -0.32668582f, -0.43562764f, -0.56094903f };
1024 
1025     std::vector<float> recurrentToForgetWeights = { -0.09499983487f, -0.08814888417f, -0.04834804721f, 0.1516668247f,
1026                                                     -0.3967529535f, -0.06463699788f, 0.4952811002f, 0.003274492938f,
1027                                                     -0.0968840941f, 0.17928104102f, 0.0031281141592f, -0.3387276584f,
1028                                                     -0.3587934076f, 0.06705895066f, 0.22463923692f, 0.1961955726f,
1029                                                     0.01841056f, -0.32764608f, -0.33027974f, -0.10826075f };
1030 
1031     std::vector<float> recurrentToCellWeights = { -0.21938985582f, -0.3023648226f, -0.1170005202f, -0.3509177422f,
1032                                                   -0.4286288613f, 0.2726137042f, 0.09216640889f, -0.06551410215f,
1033                                                   0.20453298098f, 0.2393476665f, 0.11846517771f, 0.2630801796f,
1034                                                   0.3954237699f, -0.19407111404f, 0.30412107706f, -0.27342408554f,
1035                                                   0.19069612f, -0.03026325f, -0.54532051f, 0.33003211f };
1036 
1037     std::vector<float> recurrentToOutputWeights = { -0.32921677827f, 0.32624614238f, -0.1388191282f, -0.17879831790f,
1038                                                     -0.15185534954f, -0.16918526583f, -0.10087361183f, -0.5436913968f,
1039                                                     0.016758225858f, 0.30454617738f, -0.41493862867f, -0.005565764375f,
1040                                                     -0.12584099173f, -0.12319286912f, 0.2407919466f, -0.08879069983f,
1041                                                     0.11178309f, 0.09481031f, -0.26424935f, 0.46261835f };
1042 
1043     std::vector<float> cellToInputWeights { 0.05f, 0.1f, 0.25f, 0.15f, -0.02f };
1044     std::vector<float> cellToForgetWeights { -0.02f, -0.15f, -0.25f, -0.03f, 0.15f };
1045     std::vector<float> cellToOutputWeights { 0.1f, -0.1f, -0.5f, 0.05f, 0.01f };
1046 
1047      std::vector<float> projectionWeights{ -0.1f, 0.2f, 0.01f, -0.2f,
1048                                            0.1f, 0.5f,  0.3f, 0.08f,
1049                                            0.07f, 0.2f, -0.4f,  0.2f,
1050                                            0.5f, -0.4f, 0.3f, -0.2f,
1051                                            0.3f, 0.08f, -0.07f, 0.2f};
1052 
1053     std::vector<float> projectionBiasVector(outputSize, 0.f); //{outputSize}
1054 
1055     std::vector<float> inputLayerNormWeights{ 0.1f, 0.2f, 0.3f, 0.5f, 0.8f };
1056     std::vector<float> forgetLayerNormWeights{ 0.1f, 0.2f, 0.3f, 0.5f, 0.2f };
1057     std::vector<float> cellLayerNormWeights{ 0.7f, 0.2f, 0.3f, 0.8f, 0.5f };
1058     std::vector<float> outputLayerNormWeights{ 0.6f, 0.2f, 0.2f, 0.5f, 0.1f };
1059 
1060     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo5x3);
1061     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo5x3);
1062     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo5x3);
1063     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo5x3);
1064     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo5x4);
1065     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo5x4);
1066     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo5x4);
1067     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo5x4);
1068     armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfo5);
1069     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo5);
1070     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo5);
1071     armnn::ScopedTensorHandle cellBiasTensor(tensorInfo5);
1072     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo5);
1073     armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfo5);
1074     armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfo5);
1075     armnn::ScopedTensorHandle projectionWeightsTensor(tensorInfo4x5);
1076     armnn::ScopedTensorHandle projectionBiasTensor(tensorInfo4);
1077 
1078     armnn::ScopedTensorHandle inputLayerNormWeightsTensor(tensorInfo5);
1079     armnn::ScopedTensorHandle forgetLayerNormWeightsTensor(tensorInfo5);
1080     armnn::ScopedTensorHandle cellLayerNormWeightsTensor(tensorInfo5);
1081     armnn::ScopedTensorHandle outputLayerNormWeightsTensor(tensorInfo5);
1082 
1083     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
1084     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
1085     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
1086     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
1087     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
1088     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
1089     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
1090     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
1091     AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, cellToInputWeights.data());
1092     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
1093     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
1094     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
1095     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
1096     AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, cellToForgetWeights.data());
1097     AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, cellToOutputWeights.data());
1098     AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, projectionWeights.data());
1099     AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, projectionBiasVector.data());
1100 
1101     AllocateAndCopyDataToITensorHandle(&inputLayerNormWeightsTensor, inputLayerNormWeights.data());
1102     AllocateAndCopyDataToITensorHandle(&forgetLayerNormWeightsTensor, forgetLayerNormWeights.data());
1103     AllocateAndCopyDataToITensorHandle(&cellLayerNormWeightsTensor, cellLayerNormWeights.data());
1104     AllocateAndCopyDataToITensorHandle(&outputLayerNormWeightsTensor, outputLayerNormWeights.data());
1105 
1106     data.m_InputToInputWeights = &inputToInputWeightsTensor;
1107     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
1108     data.m_InputToCellWeights = &inputToCellWeightsTensor;
1109     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
1110     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
1111     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
1112     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
1113     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
1114     data.m_CellToInputWeights = &cellToInputWeightsTensor;
1115     data.m_InputGateBias = &inputGateBiasTensor;
1116     data.m_ForgetGateBias = &forgetGateBiasTensor;
1117     data.m_CellBias = &cellBiasTensor;
1118     data.m_OutputGateBias = &outputGateBiasTensor;
1119     data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
1120     data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
1121     data.m_ProjectionWeights = &projectionWeightsTensor;
1122     data.m_ProjectionBias = &projectionBiasTensor;
1123 
1124     data.m_InputLayerNormWeights = &inputLayerNormWeightsTensor;
1125     data.m_ForgetLayerNormWeights = &forgetLayerNormWeightsTensor;
1126     data.m_CellLayerNormWeights = &cellLayerNormWeightsTensor;
1127     data.m_OutputLayerNormWeights = &outputLayerNormWeightsTensor;
1128 
1129     // Flags to set test configuration
1130     data.m_Parameters.m_ActivationFunc = 4;
1131     data.m_Parameters.m_CifgEnabled = false;
1132     data.m_Parameters.m_PeepholeEnabled = true;
1133     data.m_Parameters.m_ProjectionEnabled = true;
1134     data.m_Parameters.m_LayerNormEnabled = true;
1135     data.m_Parameters.m_TimeMajor = false;
1136     data.m_Parameters.m_ClippingThresCell = 10.0f;
1137 
1138     std::unique_ptr<armnn::IWorkload> workload
1139             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
1140     inputHandle->Allocate();
1141     outputStateInHandle->Allocate();
1142     cellStateInHandle->Allocate();
1143 
1144     outputStateOutHandle->Allocate();
1145     cellStateOutHandle->Allocate();
1146     outputHandle->Allocate();
1147 
1148     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
1149     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
1150     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
1151 
1152     workload->Execute();
1153 
1154     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
1155     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
1156     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
1157 
1158     return LayerTestResult<float, 3>(actualOutput,
1159                                      expectedOutput,
1160                                      outputHandle->GetShape(),
1161                                      outputTensorInfo.GetShape());
1162 }
1163 
UnidirectionalSequenceLstmWithCifgWithPeepholeNoProjectionTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)1164 LayerTestResult<float, 3> UnidirectionalSequenceLstmWithCifgWithPeepholeNoProjectionTest(
1165     armnn::IWorkloadFactory& workloadFactory,
1166     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
1167     const armnn::ITensorHandleFactory& tensorHandleFactory)
1168 {
1169     IgnoreUnused(memoryManager);
1170     unsigned int batchSize = 3;
1171     unsigned int timeSize = 2;
1172     unsigned int inputSize = 3;
1173     unsigned int outputSize = 4;
1174     unsigned numUnits = outputSize;
1175 
1176     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
1177     armnn::TensorInfo cellStateInTensorInfo({batchSize, numUnits}, armnn::DataType::Float32);
1178     armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::DataType::Float32);
1179     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1180     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1181     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1182 
1183     std::vector<float> inputVector = { 1., 2., 3., 4., 5., 4.,
1184                                        3., 2., 1., 2., 3., 4.,
1185                                        5., 4., 3., 2., 1., 2. };
1186 
1187     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
1188     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
1189 
1190     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
1191     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
1192     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
1193 
1194     std::vector<float> outputVector = { -0.0129257f, -0.070531f, -0.153508f, -0.0392391f,
1195                                         -0.0300169f, -0.195717f, -0.528679f, -0.0818106f,
1196                                         -0.0332748f, 0.155429f, -0.353966f, -0.0801505f,
1197                                         -0.032312f, -0.0407911f, -0.435053f, -0.0932317f,
1198                                         -0.0108233f, 0.165584f, -0.640424f, -0.0447535f,
1199                                         -0.031675f, 0.125987f, -0.526695f, -0.110093f };
1200 
1201     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
1202     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
1203         tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
1204     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
1205         tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
1206 
1207     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
1208         tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
1209     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
1210         tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
1211     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
1212 
1213     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
1214     armnn::WorkloadInfo info;
1215 
1216     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
1217     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
1218     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
1219 
1220     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
1221     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
1222     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
1223 
1224     armnn::TensorInfo tensorInfo4({numUnits}, armnn::DataType::Float32);
1225     armnn::TensorInfo tensorInfo12({numUnits, 3}, armnn::DataType::Float32);
1226     armnn::TensorInfo tensorInfo16({numUnits, 4}, armnn::DataType::Float32);
1227 
1228     std::vector<float> inputToForgetWeights = { 0.2415594226f, 0.15400093799f, 0.4566498398f,
1229                                                 -0.3810434485f, 0.268383264f, -0.009807467424f,
1230                                                 -0.3522925403f, -0.24275735512f, -0.28344226125f,
1231                                                 0.13512269116f, -0.4932442977f, -0.10039821991f };
1232 
1233     std::vector<float> inputToCellWeights = { -0.2504855627f, 0.184490025045f, -0.2480507493f,
1234                                               0.386399507f, -0.259465157985f, -0.16545993089f,
1235                                               -0.4230232555f, 0.341664791103f, -0.18127849691f,
1236                                               -0.2277662414f, -0.55275535589f, 0.34184026718f };
1237 
1238     std::vector<float> inputToOutputWeights = { 0.2303854227f, 0.5218806862f, -0.4865379333f,
1239                                                 0.53969591851f, 0.23393625035f, -0.27140527306f,
1240                                                 0.50009280443f, 0.07511717046f, 0.3998299249f,
1241                                                 -0.51717478049f, 0.1889653282f, -0.367323637f };
1242 
1243     std::vector<float> recurrentToForgetWeights = { -0.09499983487f, -0.08814888417f, -0.04834804721f, 0.1516668247f,
1244                                                     -0.3967529535f, -0.06463699788f, 0.4952811002f, 0.003274492938f,
1245                                                     -0.0968840941f, 0.17928104102f, 0.0031281141592f, -0.3387276584f,
1246                                                     -0.3587934076f, 0.06705895066f, 0.22463923692f, 0.1961955726f };
1247 
1248     std::vector<float> recurrentToCellWeights = { -0.21938985582f, -0.3023648226f, -0.1170005202f, -0.3509177422f,
1249                                                   -0.4286288613f, 0.2726137042f, 0.09216640889f, -0.06551410215f,
1250                                                   0.20453298098f, 0.2393476665f, 0.11846517771f, 0.2630801796f,
1251                                                   0.3954237699f, -0.19407111404f, 0.30412107706f, -0.27342408554f };
1252 
1253     std::vector<float> recurrentToOutputWeights = { -0.32921677827f, 0.32624614238f, -0.1388191282f, -0.17879831790f,
1254                                                     -0.15185534954f, -0.16918526583f, -0.10087361183f, -0.5436913968f,
1255                                                     0.016758225858f, 0.30454617738f, -0.41493862867f, -0.005565764375f,
1256                                                     -0.12584099173f, -0.12319286912f, 0.2407919466f, -0.08879069983f };
1257 
1258     std::vector<float> cellToForgetWeights{ 0.47485286f, -0.51955009f, -0.24458408f, 0.31544167f };
1259 
1260     std::vector<float> cellToOutputWeights{ -0.17135078f, 0.82760304f, 0.85573703f, -0.77109635f };
1261 
1262     std::vector<float> forgetGateBias = { 1., 1., 1., 1. };
1263 
1264     std::vector<float> cellBias = { 0., 0., 0., 0. };
1265 
1266     std::vector<float> outputGateBias = { 0., 0., 0., 0. };
1267 
1268     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo12);
1269     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo12);
1270     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo12);
1271     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
1272     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
1273     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
1274     armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfo4);
1275     armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfo4);
1276     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo4);
1277     armnn::ScopedTensorHandle cellBiasTensor(tensorInfo4);
1278     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo4);
1279 
1280     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
1281     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
1282     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
1283     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
1284     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
1285     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
1286     AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, cellToForgetWeights.data());
1287     AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, cellToOutputWeights.data());
1288     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
1289     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
1290     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
1291 
1292     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
1293     data.m_InputToCellWeights = &inputToCellWeightsTensor;
1294     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
1295     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
1296     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
1297     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
1298     data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
1299     data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
1300     data.m_ForgetGateBias = &forgetGateBiasTensor;
1301     data.m_CellBias = &cellBiasTensor;
1302     data.m_OutputGateBias = &outputGateBiasTensor;
1303 
1304     // Flags to set test configuration
1305     data.m_Parameters.m_ClippingThresCell = 10;
1306     data.m_Parameters.m_ClippingThresProj = 0;
1307     data.m_Parameters.m_ActivationFunc = 4;
1308     data.m_Parameters.m_CifgEnabled = true;
1309     data.m_Parameters.m_PeepholeEnabled = true;
1310     data.m_Parameters.m_ProjectionEnabled = false;
1311     data.m_Parameters.m_TimeMajor = false;
1312 
1313     std::unique_ptr<armnn::IWorkload> workload
1314             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
1315     inputHandle->Allocate();
1316     outputStateInHandle->Allocate();
1317     cellStateInHandle->Allocate();
1318 
1319     outputStateOutHandle->Allocate();
1320     cellStateOutHandle->Allocate();
1321     outputHandle->Allocate();
1322 
1323     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
1324     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
1325     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
1326 
1327     workload->Execute();
1328 
1329     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
1330     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
1331     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
1332 
1333     return LayerTestResult<float, 3>(actualOutput,
1334                                      outputVector,
1335                                      outputHandle->GetShape(),
1336                                      outputTensorInfo.GetShape());
1337 }
1338 
UnidirectionalSequenceLstmLayerInt8Test(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)1339 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerInt8Test(
1340     armnn::IWorkloadFactory& workloadFactory,
1341     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
1342     const armnn::ITensorHandleFactory& tensorHandleFactory)
1343 {
1344     IgnoreUnused(memoryManager);
1345     unsigned int batchSize = 3;
1346     unsigned int timeSize = 2;
1347     unsigned int inputSize = 3;
1348     unsigned int outputSize = 4;
1349     unsigned numUnits = outputSize;
1350 
1351     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
1352     armnn::TensorInfo cellStateInTensorInfo({batchSize, numUnits}, armnn::DataType::Float32);
1353     armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::DataType::Float32);
1354     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1355     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1356     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1357 
1358     const std::vector<float> inputVector = { 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.4f,
1359                                              0.3f, 0.2f, 0.1f, 0.2f, 0.3f, 0.4f,
1360                                              0.5f, 0.4f, 0.3f, 0.2f, 0.1f, 0.2f };
1361 
1362     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
1363     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
1364 
1365     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
1366     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
1367     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
1368 
1369     const std::vector<float> outputVector = { -0.0142517f, -0.0198845f, -0.0120569f, -0.0116868f,
1370                                               -0.0350714f, -0.0343202f, -0.047504f, -0.0569789f,
1371                                               -0.0146346f, 0.0106663f, -0.0247238f, -0.0319502f,
1372                                               -0.0294759f, -0.0129935f, -0.0444175f, -0.0444354f,
1373                                               -0.0280855f, 0.00545101f, -0.051422f, -0.0463838f,
1374                                               -0.0310702f, 0.00915739f, -0.0625207f, -0.0482648f };
1375 
1376     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
1377     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
1378         tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
1379     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
1380         tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
1381 
1382     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
1383         tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
1384     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
1385         tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
1386     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
1387 
1388 
1389     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
1390     armnn::WorkloadInfo info;
1391 
1392     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
1393     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
1394     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
1395 
1396     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
1397     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
1398     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
1399 
1400     armnn::TensorInfo tensorInfoNumFp({numUnits}, armnn::DataType::Float32);
1401     armnn::TensorInfo tensorInfoNumInput({numUnits, inputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1402     armnn::TensorInfo tensorInfoNumOutput({numUnits, outputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1403 
1404     std::vector<int8_t> inputToInputWeights = { -4, -1, -1, -2, 3, -2, 2, 4, 1, -4, -2, 3 };
1405     std::vector<int8_t> inputToForgetWeights = { 2, 1, 4, -4, 3, -1, -3, -2, -3, 1, -4, -1 };
1406     std::vector<int8_t> inputToCellWeights = { -2, 1, -2, 4, -3, -2, -4, 3, -2, -2, -6, 3 };
1407     std::vector<int8_t> inputToOutputWeights = { 2, 5, -4, 5, 2, -3, 5, 7, 3, -5, 1, -4 };
1408 
1409     std::vector<int8_t> recurrentToInputWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -1, -1 };
1410     std::vector<int8_t> recurrentToForgetWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -2, -1 };
1411     std::vector<int8_t> recurrentToCellWeights = { -2, -3, -1, -3, -4, 2, 1, -1, 2, 2, 1, 2, 3, -2, 3, -3 };
1412     std::vector<int8_t> recurrentToOutputWeights = { -3, 3, -1, -2, -2, -2, -1, -5, 1, 3, -4, -1, -1, -1, 2, -1 };
1413 
1414     std::vector<float> inputGateBias = { 0., 0., 0., 0. };
1415     std::vector<float> forgetGateBias = { 1., 1., 1., 1. };
1416     std::vector<float> cellBias = { 0., 0., 0., 0. };
1417     std::vector<float> outputGateBias = { 0., 0., 0., 0. };
1418 
1419     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfoNumInput);
1420     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfoNumInput);
1421     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfoNumInput);
1422     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfoNumInput);
1423     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfoNumOutput);
1424     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfoNumOutput);
1425     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfoNumOutput);
1426     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfoNumOutput);
1427     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfoNumFp);
1428     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfoNumFp);
1429     armnn::ScopedTensorHandle cellBiasTensor(tensorInfoNumFp);
1430     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfoNumFp);
1431 
1432     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
1433     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
1434     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
1435     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
1436     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
1437     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
1438     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
1439     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
1440     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
1441     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
1442     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
1443     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
1444 
1445     data.m_InputToInputWeights = &inputToInputWeightsTensor;
1446     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
1447     data.m_InputToCellWeights = &inputToCellWeightsTensor;
1448     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
1449     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
1450     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
1451     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
1452     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
1453     data.m_InputGateBias = &inputGateBiasTensor;
1454     data.m_ForgetGateBias = &forgetGateBiasTensor;
1455     data.m_CellBias = &cellBiasTensor;
1456     data.m_OutputGateBias = &outputGateBiasTensor;
1457 
1458     // Flags to set test configuration
1459     data.m_Parameters.m_ClippingThresCell = 10;
1460     data.m_Parameters.m_ClippingThresProj = 0;
1461     data.m_Parameters.m_ActivationFunc = 4;
1462     data.m_Parameters.m_CifgEnabled = false;
1463     data.m_Parameters.m_PeepholeEnabled = false;
1464     data.m_Parameters.m_ProjectionEnabled = false;
1465     data.m_Parameters.m_TimeMajor = false;
1466 
1467     std::unique_ptr<armnn::IWorkload> workload
1468             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
1469     inputHandle->Allocate();
1470     outputStateInHandle->Allocate();
1471     cellStateInHandle->Allocate();
1472 
1473     outputStateOutHandle->Allocate();
1474     cellStateOutHandle->Allocate();
1475     outputHandle->Allocate();
1476 
1477     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
1478     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
1479     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
1480 
1481     workload->Execute();
1482 
1483     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
1484     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
1485     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
1486 
1487     return LayerTestResult<float, 3>(actualOutput,
1488                                  outputVector,
1489                                  outputHandle->GetShape(),
1490                                  outputTensorInfo.GetShape());
1491 }
1492 
UnidirectionalSequenceLstmLayerInt8TimeMajorTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)1493 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerInt8TimeMajorTest(
1494     armnn::IWorkloadFactory& workloadFactory,
1495     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
1496     const armnn::ITensorHandleFactory& tensorHandleFactory)
1497 {
1498     IgnoreUnused(memoryManager);
1499     unsigned int batchSize = 3;
1500     unsigned int timeSize = 2;
1501     unsigned int inputSize = 3;
1502     unsigned int outputSize = 4;
1503     unsigned numUnits = outputSize;
1504 
1505     armnn::TensorInfo inputTensorInfo({timeSize, batchSize, inputSize}, armnn::DataType::Float32);
1506     armnn::TensorInfo cellStateInTensorInfo({batchSize, numUnits}, armnn::DataType::Float32);
1507     armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::DataType::Float32);
1508     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1509     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1510     armnn::TensorInfo outputTensorInfo({timeSize, batchSize, outputSize}, armnn::DataType::Float32);
1511 
1512     const std::vector<float> inputVector = { 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.4f,
1513                                              0.3f, 0.2f, 0.1f, 0.2f, 0.3f, 0.4f,
1514                                              0.5f, 0.4f, 0.3f, 0.2f, 0.1f, 0.2f };
1515 
1516     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
1517     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
1518 
1519     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
1520     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
1521     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
1522 
1523     const std::vector<float> outputVector = { -0.0142517f, -0.0198845f, -0.0120122f, -0.0116868f,
1524                                               -0.0261295f, -0.0188487f, -0.0345463f, -0.049733f,
1525                                               -0.0146346f, 0.0106663f, -0.0247238f, -0.0319502f,
1526                                               -0.0291863f, -0.0369402f, -0.0354071f, -0.0296529f,
1527                                               -0.0419539f, -0.00617731f, -0.0814796f, -0.0804005f,
1528                                               -0.0244737f, 0.0119905f, -0.0457527f, -0.0331862f };
1529     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
1530     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
1531         tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
1532     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
1533         tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
1534 
1535     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
1536         tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
1537     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
1538         tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
1539     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
1540 
1541 
1542     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
1543     armnn::WorkloadInfo info;
1544 
1545     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
1546     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
1547     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
1548 
1549     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
1550     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
1551     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
1552 
1553     armnn::TensorInfo tensorInfoNumFp({numUnits}, armnn::DataType::Float32);
1554     armnn::TensorInfo tensorInfoNumInput({numUnits, inputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1555     armnn::TensorInfo tensorInfoNumOutput({numUnits, outputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1556 
1557     std::vector<int8_t> inputToInputWeights = { -4, -1, -1, -2, 3, -2, 2, 4, 1, -4, -2, 3 };
1558     std::vector<int8_t> inputToForgetWeights = { 2, 1, 4, -4, 3, -1, -3, -2, -3, 1, -4, -1 };
1559     std::vector<int8_t> inputToCellWeights = { -2, 1, -2, 4, -3, -2, -4, 3, -2, -2, -6, 3 };
1560     std::vector<int8_t> inputToOutputWeights = { 2, 5, -4, 5, 2, -3, 5, 7, 3, -5, 1, -4 };
1561 
1562     std::vector<int8_t> recurrentToInputWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -1, -1 };
1563     std::vector<int8_t> recurrentToForgetWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -2, -1 };
1564     std::vector<int8_t> recurrentToCellWeights = { -2, -3, -1, -3, -4, 2, 1, -1, 2, 2, 1, 2, 3, -2, 3, -3 };
1565     std::vector<int8_t> recurrentToOutputWeights = { -3, 3, -1, -2, -2, -2, -1, -5, 1, 3, -4, -1, -1, -1, 2, -1 };
1566 
1567 
1568     std::vector<float> inputGateBias = { 0., 0., 0., 0. };
1569     std::vector<float> forgetGateBias = { 1., 1., 1., 1. };
1570     std::vector<float> cellBias = { 0., 0., 0., 0. };
1571     std::vector<float> outputGateBias = { 0., 0., 0., 0. };
1572 
1573     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfoNumInput);
1574     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfoNumInput);
1575     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfoNumInput);
1576     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfoNumInput);
1577     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfoNumOutput);
1578     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfoNumOutput);
1579     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfoNumOutput);
1580     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfoNumOutput);
1581     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfoNumFp);
1582     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfoNumFp);
1583     armnn::ScopedTensorHandle cellBiasTensor(tensorInfoNumFp);
1584     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfoNumFp);
1585 
1586     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
1587     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
1588     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
1589     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
1590     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
1591     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
1592     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
1593     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
1594     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
1595     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
1596     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
1597     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
1598 
1599     data.m_InputToInputWeights = &inputToInputWeightsTensor;
1600     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
1601     data.m_InputToCellWeights = &inputToCellWeightsTensor;
1602     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
1603     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
1604     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
1605     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
1606     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
1607     data.m_InputGateBias = &inputGateBiasTensor;
1608     data.m_ForgetGateBias = &forgetGateBiasTensor;
1609     data.m_CellBias = &cellBiasTensor;
1610     data.m_OutputGateBias = &outputGateBiasTensor;
1611 
1612     // Flags to set test configuration
1613     data.m_Parameters.m_ClippingThresCell = 10;
1614     data.m_Parameters.m_ClippingThresProj = 0;
1615     data.m_Parameters.m_ActivationFunc = 4;
1616     data.m_Parameters.m_CifgEnabled = false;
1617     data.m_Parameters.m_PeepholeEnabled = false;
1618     data.m_Parameters.m_ProjectionEnabled = false;
1619     data.m_Parameters.m_TimeMajor = true;
1620 
1621     std::unique_ptr<armnn::IWorkload> workload
1622             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
1623     inputHandle->Allocate();
1624     outputStateInHandle->Allocate();
1625     cellStateInHandle->Allocate();
1626 
1627     outputStateOutHandle->Allocate();
1628     cellStateOutHandle->Allocate();
1629     outputHandle->Allocate();
1630 
1631     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
1632     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
1633     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
1634 
1635     workload->Execute();
1636 
1637     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
1638     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
1639     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
1640 
1641     return LayerTestResult<float, 3>(actualOutput,
1642                                  outputVector,
1643                                  outputHandle->GetShape(),
1644                                  outputTensorInfo.GetShape());
1645 }
1646 
UnidirectionalSequenceLstmLayerInt8NoCifgWithPeepholeWithProjectionTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)1647 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerInt8NoCifgWithPeepholeWithProjectionTest(
1648     armnn::IWorkloadFactory& workloadFactory,
1649     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
1650     const armnn::ITensorHandleFactory& tensorHandleFactory)
1651 {
1652     IgnoreUnused(memoryManager);
1653     unsigned int batchSize = 3;
1654     unsigned int timeSize = 2;
1655     unsigned int outputSize = 4;
1656     unsigned int inputSize = 3;
1657     unsigned numUnits = 4;
1658 
1659     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
1660     armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::DataType::Float32);
1661     armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::DataType::Float32);
1662     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1663     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1664     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1665 
1666     const std::vector<float> inputVector = { 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.4f,
1667                                              0.3f, 0.2f, 0.1f, 0.2f, 0.3f, 0.4f,
1668                                              0.5f, 0.4f, 0.3f, 0.2f, 0.1f, 0.2f };
1669 
1670     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
1671     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
1672 
1673     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
1674     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
1675     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
1676 
1677     const std::vector<float> expectedOutput = { 0.612103f, 1.56788f, 0.31966f, 1.42956f,
1678                                                 0.909718f, 3.07916f, -0.560586f, 3.8907f,
1679                                                 0.753671f, 1.77485f, 0.365122f, 1.60077f,
1680                                                 0.812644f, 2.79092f, -0.605396f, 3.61742f,
1681                                                 0.791857f, 1.64353f, 0.316588f, 1.55192f,
1682                                                 0.807265f, 2.47012f, -0.539598f, 3.25654f };
1683 
1684     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
1685     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
1686             tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
1687     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
1688             tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
1689 
1690     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
1691             tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
1692     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
1693             tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
1694     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
1695 
1696     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
1697     armnn::WorkloadInfo info;
1698 
1699     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
1700     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
1701     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
1702 
1703     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
1704     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
1705     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
1706 
1707     armnn::TensorInfo tensorInfoOut({outputSize}, armnn::DataType::Float32);
1708     armnn::TensorInfo tensorInfoNumFp({numUnits}, armnn::DataType::Float32);
1709     armnn::TensorInfo tensorInfoNum({numUnits}, armnn::DataType::QAsymmS8, 0.1f, 0);
1710     armnn::TensorInfo tensorInfoNumInput({numUnits, inputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1711     armnn::TensorInfo tensorInfoNumOutput({numUnits, outputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1712     armnn::TensorInfo tensorInfoOutNum({outputSize, numUnits}, armnn::DataType::QAsymmS8, 0.1f, 0);
1713 
1714     std::vector<int8_t> inputToInputWeights = { -4, -1, -1, -2, 3, -2, 2, 4, 1, -4, -2, 3 };
1715     std::vector<int8_t> inputToForgetWeights = { 2, 1, 4, -4, 3, -1, -3, -2, -3, 1, -4, -1 };
1716     std::vector<int8_t> inputToCellWeights = { -2, 1, -2, 4, -3, -2, -4, 3, -2, -2, -6, 3 };
1717     std::vector<int8_t> inputToOutputWeights = { 2, 5, -4, 5, 2, -3, 5, 7, 3, -5, 1, -4 };
1718 
1719     std::vector<int8_t> recurrentToInputWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -1, -1 };
1720     std::vector<int8_t> recurrentToForgetWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -2, -1 };
1721     std::vector<int8_t> recurrentToCellWeights = { -2, -3, -1, -3, -4, 2, 1, -1, 2, 2, 1, 2, 3, -2, 3, -3 };
1722     std::vector<int8_t> recurrentToOutputWeights = { -3, 3, -1, -2, -2, -2, -1, -5, 1, 3, -4, -1, -1, -1, 2, -1 };
1723 
1724     std::vector<float> inputGateBias = { 0.02234832f,  0.14757581f,   0.18176508f,  0.10380666f};
1725     std::vector<float> forgetGateBias = { 0.035185695f, -0.042891346f, -0.3032477f, 0.23027696f};
1726     std::vector<float> cellBias = { -0.124379363f, 0.55531194f, 0.23377132f,   0.033463873f };
1727     std::vector<float> outputGateBias = { 0.046159424f,  -0.12809046f, 0.03563469f, 0.12648113f };
1728 
1729     std::vector<int8_t> cellToInputWeights = { 5, 10, 25, 15 };
1730     std::vector<int8_t> cellToForgetWeights = { -5, 15, 25, 3 };
1731     std::vector<int8_t> cellToOutputWeights = { 10, -10, -5, 50 };
1732 
1733     std::vector<int8_t> projectionWeights = { -25, 51, 3, -5, 25, 127, 77, 20, 18, 51, -10, 51, -25, 88, 77, -13 };
1734 
1735     std::vector<float> projectionBiasVector(outputSize, 0.f); //{outputSize}
1736 
1737     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfoNumInput);
1738     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfoNumInput);
1739     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfoNumInput);
1740     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfoNumInput);
1741     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfoNumOutput);
1742     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfoNumOutput);
1743     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfoNumOutput);
1744     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfoNumOutput);
1745     armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfoNum);
1746     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfoNumFp);
1747     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfoNumFp);
1748     armnn::ScopedTensorHandle cellBiasTensor(tensorInfoNumFp);
1749     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfoNumFp);
1750     armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfoNum);
1751     armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfoNum);
1752     armnn::ScopedTensorHandle projectionWeightsTensor(tensorInfoOutNum);
1753     armnn::ScopedTensorHandle projectionBiasTensor(tensorInfoOut);
1754 
1755     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
1756     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
1757     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
1758     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
1759     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
1760     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
1761     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
1762     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
1763     AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, cellToInputWeights.data());
1764     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
1765     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
1766     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
1767     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
1768     AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, cellToForgetWeights.data());
1769     AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, cellToOutputWeights.data());
1770     AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, projectionWeights.data());
1771     AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, projectionBiasVector.data());
1772 
1773     data.m_InputToInputWeights = &inputToInputWeightsTensor;
1774     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
1775     data.m_InputToCellWeights = &inputToCellWeightsTensor;
1776     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
1777     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
1778     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
1779     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
1780     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
1781     data.m_CellToInputWeights = &cellToInputWeightsTensor;
1782     data.m_InputGateBias = &inputGateBiasTensor;
1783     data.m_ForgetGateBias = &forgetGateBiasTensor;
1784     data.m_CellBias = &cellBiasTensor;
1785     data.m_OutputGateBias = &outputGateBiasTensor;
1786     data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
1787     data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
1788     data.m_ProjectionWeights = &projectionWeightsTensor;
1789     data.m_ProjectionBias = &projectionBiasTensor;
1790 
1791     // Flags to set test configuration
1792     data.m_Parameters.m_ActivationFunc = 4;
1793     data.m_Parameters.m_CifgEnabled = false;
1794     data.m_Parameters.m_PeepholeEnabled = true;
1795     data.m_Parameters.m_ProjectionEnabled = true;
1796     data.m_Parameters.m_LayerNormEnabled = false;
1797     data.m_Parameters.m_TimeMajor = false;
1798     data.m_Parameters.m_ClippingThresCell = 10.0f;
1799 
1800 
1801     std::unique_ptr<armnn::IWorkload> workload
1802             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
1803     inputHandle->Allocate();
1804     outputStateInHandle->Allocate();
1805     cellStateInHandle->Allocate();
1806 
1807     outputStateOutHandle->Allocate();
1808     cellStateOutHandle->Allocate();
1809     outputHandle->Allocate();
1810 
1811     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
1812     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
1813     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
1814 
1815     workload->Execute();
1816 
1817     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
1818     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
1819     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
1820 
1821     return LayerTestResult<float, 3>(actualOutput,
1822                                      expectedOutput,
1823                                      outputHandle->GetShape(),
1824                                      outputTensorInfo.GetShape());
1825 }
1826 
UnidirectionalSequenceLstmLayerInt8NoCifgWithPeepholeWithProjectionWithLayerNormTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)1827 LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerInt8NoCifgWithPeepholeWithProjectionWithLayerNormTest(
1828     armnn::IWorkloadFactory& workloadFactory,
1829     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
1830     const armnn::ITensorHandleFactory& tensorHandleFactory)
1831 {
1832     IgnoreUnused(memoryManager);
1833     unsigned int batchSize = 3;
1834     unsigned int timeSize = 2;
1835     unsigned int outputSize = 4;
1836     unsigned int inputSize = 3;
1837     unsigned numUnits = 5;
1838 
1839     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
1840     armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::DataType::Float32);
1841     armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::DataType::Float32);
1842     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1843     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1844     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
1845 
1846     const std::vector<float> inputVector = { 1., 8., 3., 4., 5., 4.,
1847                                              3., 2., 1., 2., 3., 4.,
1848                                              5., 4., 3., 2., 1., 2. };
1849 
1850     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
1851     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
1852 
1853     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
1854     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
1855     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
1856 
1857     const std::vector<float> expectedOutput = { 0.0471276f, 0.0168155f, 0.0789885f, 0.16550f,
1858                                                 0.0643133f, -0.0400722f, 0.100593f, 0.197722f,
1859                                                 0.0465562f, -0.0600682f, 0.0622087f, 0.115053f,
1860                                                 0.056287f, -0.0566218f, 0.0856832f, 0.148484f,
1861                                                 0.0457859f, -0.0588112f, 0.0623636f, 0.114333f,
1862                                                 0.0509271f, -0.0754262f, 0.058600f, 0.0801288f };
1863 
1864     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
1865     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
1866             tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
1867     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
1868             tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
1869 
1870     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
1871             tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
1872     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
1873             tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
1874     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
1875 
1876     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
1877     armnn::WorkloadInfo info;
1878 
1879     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
1880     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
1881     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
1882 
1883     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
1884     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
1885     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
1886 
1887     armnn::TensorInfo tensorInfoOut({outputSize}, armnn::DataType::Float32);
1888     armnn::TensorInfo tensorInfoNumFp({numUnits}, armnn::DataType::Float32);
1889     armnn::TensorInfo tensorInfoNum({numUnits}, armnn::DataType::QAsymmS8, 0.1f, 0);
1890     armnn::TensorInfo tensorInfoNumInput({numUnits, inputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1891     armnn::TensorInfo tensorInfoNumOutput({numUnits, outputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
1892     armnn::TensorInfo tensorInfoOutNum({outputSize, numUnits}, armnn::DataType::QAsymmS8, 0.1f, 0);
1893 
1894     std::vector<int8_t> inputToInputWeights = { -4, -1, -1, -2, 3, -2, 2, 4, 1, -4, -2, 3, 2, 2, -4 };
1895     std::vector<int8_t> inputToForgetWeights = { 2, 1, 4, -4, 3, -1, -3, -2, -3, 1, -4, -1, -3, -2, -4 };
1896     std::vector<int8_t> inputToCellWeights = { -2, 1, -2, 4, -3, -2, -4, 3, -2, -2, -6, 3, 2, 5, -4 };
1897     std::vector<int8_t> inputToOutputWeights = { 2, 5, -4, 5, 2, -3, 5, 7, 3, -5, 1, -4, -4, -1, -1 };
1898 
1899     std::vector<float> inputGateBias = { 0.03f, 0.15f, 0.22f, 0.38f, 0.05f };
1900     std::vector<float> forgetGateBias = { 0.1f, -0.3f, -0.2f, 0.1f, 0.4f };
1901     std::vector<float> cellBias = { -0.05f, 0.72f, 0.25f, 0.08f, 0.1f };
1902     std::vector<float> outputGateBias = { 0.05f, -0.01f, 0.2f, 0.1f, -0.2f };
1903 
1904     std::vector<int8_t> recurrentToInputWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3,
1905                                                     5, -1, 1, 3, -1, -1, -1, 4, 2, 3 };
1906 
1907     std::vector<int8_t> recurrentToForgetWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3,
1908                                                      5, -1, 1, 3, -2, -1, -1, 2, 2, 1 };
1909 
1910     std::vector<int8_t> recurrentToCellWeights = { -2, -3, -1, -3, -4, 2, 1, -1, 2, 2,
1911                                                    1, 2, 3, -2, 3, -3,  -1, -5, 1, 3 };
1912 
1913     std::vector<int8_t> recurrentToOutputWeights = { -3, 3, -1, -2, -2, -2, -1, -5, 1, 3,
1914                                                      -4, -1, -1, -1, 2, -1, 5, 1, -3, -4 };
1915 
1916     std::vector<int8_t> cellToInputWeights = { 5, 3, 8, -5, 2 };
1917     std::vector<int8_t> cellToForgetWeights = { -2, -7, 5, -3, 4 };
1918     std::vector<int8_t> cellToOutputWeights = { 9, -10 , -5, 5, 1 };
1919 
1920     std::vector<int8_t> projectionWeights = { -1, 2, 1, -2, 1, 5, 3, 8, 7, 2,
1921                                               -4, 2, 5, -4, 3, -2, 3, 8, -7, 2 };
1922 
1923     std::vector<float> projectionBiasVector(outputSize, 0.f); //{outputSize}
1924 
1925     std::vector<float> inputLayerNormWeights = { 0.1f, 0.2f, -0.3f, -0.1f, 0.5f };
1926     std::vector<float> forgetLayerNormWeights = { -0.1f, 0.2f, 0.3f, 0.5f, 0.2f };
1927     std::vector<float> cellLayerNormWeights = { 0.5f, 0.2f, 0.3f, 0.4f, -0.5f };
1928     std::vector<float> outputLayerNormWeights = { 0.6f, -0.2f, -0.2f, 0.5f, 0.1f };
1929 
1930     armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfoNumInput);
1931     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfoNumInput);
1932     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfoNumInput);
1933     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfoNumInput);
1934     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfoNumOutput);
1935     armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfoNumOutput);
1936     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfoNumOutput);
1937     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfoNumOutput);
1938     armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfoNum);
1939     armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfoNumFp);
1940     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfoNumFp);
1941     armnn::ScopedTensorHandle cellBiasTensor(tensorInfoNumFp);
1942     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfoNumFp);
1943     armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfoNum);
1944     armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfoNum);
1945     armnn::ScopedTensorHandle projectionWeightsTensor(tensorInfoOutNum);
1946     armnn::ScopedTensorHandle projectionBiasTensor(tensorInfoOut);
1947 
1948     armnn::ScopedTensorHandle inputLayerNormWeightsTensor(tensorInfoNumFp);
1949     armnn::ScopedTensorHandle forgetLayerNormWeightsTensor(tensorInfoNumFp);
1950     armnn::ScopedTensorHandle cellLayerNormWeightsTensor(tensorInfoNumFp);
1951     armnn::ScopedTensorHandle outputLayerNormWeightsTensor(tensorInfoNumFp);
1952 
1953     AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
1954     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
1955     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
1956     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
1957     AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
1958     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
1959     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
1960     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
1961     AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, cellToInputWeights.data());
1962     AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
1963     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
1964     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
1965     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
1966     AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, cellToForgetWeights.data());
1967     AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, cellToOutputWeights.data());
1968     AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, projectionWeights.data());
1969     AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, projectionBiasVector.data());
1970 
1971     AllocateAndCopyDataToITensorHandle(&inputLayerNormWeightsTensor, inputLayerNormWeights.data());
1972     AllocateAndCopyDataToITensorHandle(&forgetLayerNormWeightsTensor, forgetLayerNormWeights.data());
1973     AllocateAndCopyDataToITensorHandle(&cellLayerNormWeightsTensor, cellLayerNormWeights.data());
1974     AllocateAndCopyDataToITensorHandle(&outputLayerNormWeightsTensor, outputLayerNormWeights.data());
1975 
1976     data.m_InputToInputWeights = &inputToInputWeightsTensor;
1977     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
1978     data.m_InputToCellWeights = &inputToCellWeightsTensor;
1979     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
1980     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
1981     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
1982     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
1983     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
1984     data.m_CellToInputWeights = &cellToInputWeightsTensor;
1985     data.m_InputGateBias = &inputGateBiasTensor;
1986     data.m_ForgetGateBias = &forgetGateBiasTensor;
1987     data.m_CellBias = &cellBiasTensor;
1988     data.m_OutputGateBias = &outputGateBiasTensor;
1989     data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
1990     data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
1991     data.m_ProjectionWeights = &projectionWeightsTensor;
1992     data.m_ProjectionBias = &projectionBiasTensor;
1993 
1994     data.m_InputLayerNormWeights = &inputLayerNormWeightsTensor;
1995     data.m_ForgetLayerNormWeights = &forgetLayerNormWeightsTensor;
1996     data.m_CellLayerNormWeights = &cellLayerNormWeightsTensor;
1997     data.m_OutputLayerNormWeights = &outputLayerNormWeightsTensor;
1998 
1999     // Flags to set test configuration
2000     data.m_Parameters.m_ActivationFunc = 4;
2001     data.m_Parameters.m_CifgEnabled = false;
2002     data.m_Parameters.m_PeepholeEnabled = true;
2003     data.m_Parameters.m_ProjectionEnabled = true;
2004     data.m_Parameters.m_LayerNormEnabled = true;
2005     data.m_Parameters.m_TimeMajor = false;
2006     data.m_Parameters.m_ClippingThresCell = 10.0f;
2007 
2008     std::unique_ptr<armnn::IWorkload> workload
2009             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
2010     inputHandle->Allocate();
2011     outputStateInHandle->Allocate();
2012     cellStateInHandle->Allocate();
2013 
2014     outputStateOutHandle->Allocate();
2015     cellStateOutHandle->Allocate();
2016     outputHandle->Allocate();
2017 
2018     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
2019     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
2020     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
2021 
2022     workload->Execute();
2023 
2024     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
2025     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
2026     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
2027 
2028     return LayerTestResult<float, 3>(actualOutput,
2029                                      expectedOutput,
2030                                      outputHandle->GetShape(),
2031                                      outputTensorInfo.GetShape());
2032 }
2033 
UnidirectionalSequenceLstmInt8WithCifgWithPeepholeNoProjectionTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)2034 LayerTestResult<float, 3> UnidirectionalSequenceLstmInt8WithCifgWithPeepholeNoProjectionTest(
2035     armnn::IWorkloadFactory& workloadFactory,
2036     const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
2037     const armnn::ITensorHandleFactory& tensorHandleFactory)
2038 {
2039     IgnoreUnused(memoryManager);
2040     unsigned int batchSize = 3;
2041     unsigned int timeSize = 2;
2042     unsigned int inputSize = 3;
2043     unsigned int outputSize = 4;
2044     unsigned numUnits = outputSize;
2045 
2046     armnn::TensorInfo inputTensorInfo({batchSize, timeSize, inputSize}, armnn::DataType::Float32);
2047     armnn::TensorInfo cellStateInTensorInfo({batchSize, numUnits}, armnn::DataType::Float32);
2048     armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::DataType::Float32);
2049     armnn::TensorInfo outputStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
2050     armnn::TensorInfo cellStateOutTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
2051     armnn::TensorInfo outputTensorInfo({batchSize, timeSize, outputSize}, armnn::DataType::Float32);
2052 
2053     const std::vector<float> inputVector = { 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.4f,
2054                                              0.3f, 0.2f, 0.1f, 0.2f, 0.3f, 0.4f,
2055                                              0.5f, 0.4f, 0.3f, 0.2f, 0.1f, 0.2f };
2056 
2057     std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
2058     std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
2059 
2060     std::vector<float> actualOutputStateOut(outputStateOutTensorInfo.GetNumElements());
2061     std::vector<float> actualCellStateOut(cellStateOutTensorInfo.GetNumElements());
2062     std::vector<float> actualOutput(outputTensorInfo.GetNumElements());
2063 
2064     const std::vector<float> outputVector = { -0.0072104f, -0.00991171f, -0.00650478f, -0.00713055f,
2065                                               -0.0191782f, -0.0161269f, -0.0233683f, -0.054299f,
2066                                               -0.00783725f, 0.00635271f, -0.0126718f, -0.022613f,
2067                                               -0.0161351f, -0.00775868f, -0.021054f, -0.0339778f,
2068                                               -0.0146392f, 0.00330261f, -0.0258733f, -0.0407797f,
2069                                               -0.0174297f, 0.0050105f, -0.0266275f, -0.0362564f };
2070 
2071     std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
2072     std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
2073         tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
2074     std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
2075         tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
2076 
2077     std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
2078         tensorHandleFactory.CreateTensorHandle(outputStateOutTensorInfo);
2079     std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
2080         tensorHandleFactory.CreateTensorHandle(cellStateOutTensorInfo);
2081     std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
2082 
2083     armnn::UnidirectionalSequenceLstmQueueDescriptor data;
2084     armnn::WorkloadInfo info;
2085 
2086     AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
2087     AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
2088     AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
2089 
2090     AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
2091     AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
2092     AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
2093 
2094     armnn::TensorInfo tensorInfoNumFp({numUnits}, armnn::DataType::Float32);
2095     armnn::TensorInfo tensorInfoNum({numUnits}, armnn::DataType::QAsymmS8, 0.1f, 0);
2096     armnn::TensorInfo tensorInfoNumInput({numUnits, inputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
2097     armnn::TensorInfo tensorInfoNumOutput({numUnits, outputSize}, armnn::DataType::QAsymmS8, 0.1f, 0);
2098 
2099     std::vector<int8_t> inputToForgetWeights = { 2, 1, 4, -4, 3, -1, -3, -2, -3, 1, -4, -1 };
2100     std::vector<int8_t> inputToCellWeights = { -2, 1, -2, 4, -3, -2, -4, 3, -2, -2, -6, 3 };
2101     std::vector<int8_t> inputToOutputWeights = { 2, 5, -4, 5, 2, -3, 5, 7, 3, -5, 1, -4 };
2102 
2103     std::vector<int8_t> recurrentToForgetWeights = { -1, 1, -1, 1, -3, -4, -1, 4, 2, 3, 5, -1, 1, 3, -2, -1 };
2104     std::vector<int8_t> recurrentToCellWeights = { -2, -3, -1, -3, -4, 2, 1, -1, 2, 2, 1, 2, 3, -2, 3, -3 };
2105     std::vector<int8_t> recurrentToOutputWeights = { -3, 3, -1, -2, -2, -2, -1, -5, 1, 3, -4, -1, -1, -1, 2, -1 };
2106 
2107     std::vector<int8_t> cellToForgetWeights = { 47, -52, -24, 31 };
2108     std::vector<int8_t> cellToOutputWeights = { -17, 82, 85, -77 };
2109 
2110     std::vector<float> forgetGateBias = { 1., 1., 1., 1. };
2111     std::vector<float> cellBias = { 0., 0., 0., 0. };
2112     std::vector<float> outputGateBias = { 0., 0., 0., 0. };
2113 
2114     armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfoNumInput);
2115     armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfoNumInput);
2116     armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfoNumInput);
2117     armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfoNumOutput);
2118     armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfoNumOutput);
2119     armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfoNumOutput);
2120     armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfoNum);
2121     armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfoNum);
2122     armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfoNumFp);
2123     armnn::ScopedTensorHandle cellBiasTensor(tensorInfoNumFp);
2124     armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfoNumFp);
2125 
2126     AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
2127     AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
2128     AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
2129     AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
2130     AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
2131     AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
2132     AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, cellToForgetWeights.data());
2133     AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, cellToOutputWeights.data());
2134     AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
2135     AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
2136     AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
2137 
2138     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
2139     data.m_InputToCellWeights = &inputToCellWeightsTensor;
2140     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
2141     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
2142     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
2143     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
2144     data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
2145     data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
2146     data.m_ForgetGateBias = &forgetGateBiasTensor;
2147     data.m_CellBias = &cellBiasTensor;
2148     data.m_OutputGateBias = &outputGateBiasTensor;
2149 
2150     // Flags to set test configuration
2151     data.m_Parameters.m_ClippingThresCell = 10;
2152     data.m_Parameters.m_ClippingThresProj = 0;
2153     data.m_Parameters.m_ActivationFunc = 4;
2154     data.m_Parameters.m_CifgEnabled = true;
2155     data.m_Parameters.m_PeepholeEnabled = true;
2156     data.m_Parameters.m_ProjectionEnabled = false;
2157     data.m_Parameters.m_TimeMajor = false;
2158 
2159     std::unique_ptr<armnn::IWorkload> workload
2160             = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
2161     inputHandle->Allocate();
2162     outputStateInHandle->Allocate();
2163     cellStateInHandle->Allocate();
2164 
2165     outputStateOutHandle->Allocate();
2166     cellStateOutHandle->Allocate();
2167     outputHandle->Allocate();
2168 
2169     CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
2170     CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
2171     CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
2172 
2173     workload->Execute();
2174 
2175     CopyDataFromITensorHandle(actualOutputStateOut.data(), outputStateOutHandle.get());
2176     CopyDataFromITensorHandle(actualCellStateOut.data(), cellStateOutHandle.get());
2177     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
2178 
2179     return LayerTestResult<float, 3>(actualOutput,
2180                                      outputVector,
2181                                      outputHandle->GetShape(),
2182                                      outputTensorInfo.GetShape());
2183 }
2184