xref: /aosp_15_r20/external/armnn/src/backends/cl/workloads/ClLstmFloatWorkload.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "ClLstmFloatWorkload.hpp"
7 #include <cl/ClTensorHandle.hpp>
8 #include <armnn/backends/TensorHandle.hpp>
9 #include <cl/ClLayerSupport.hpp>
10 #include <aclCommon/ArmComputeUtils.hpp>
11 #include <aclCommon/ArmComputeTensorUtils.hpp>
12 
13 #include <armnn/utility/NumericCast.hpp>
14 
15 #include <arm_compute/runtime/CL/functions/CLLSTMLayer.h>
16 
17 #include "ClWorkloadUtils.hpp"
18 
19 namespace armnn
20 {
21 using namespace armcomputetensorutils;
22 
ClLstmFloatWorkload(const LstmQueueDescriptor & descriptor,const WorkloadInfo & info,const arm_compute::CLCompileContext & clCompileContext)23 ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor& descriptor,
24                                          const WorkloadInfo& info,
25                                          const arm_compute::CLCompileContext& clCompileContext)
26         : FloatWorkload<LstmQueueDescriptor>(descriptor, info)
27 {
28     // Report Profiling Details
29     ARMNN_REPORT_PROFILING_WORKLOAD_DESC("ClLstmFloatWorkload_Construct",
30                                          descriptor.m_Parameters,
31                                          info,
32                                          GetGuid());
33 
34     arm_compute::LSTMParams<arm_compute::ICLTensor> lstm_param;
35 
36     // Basic parameters
37     m_InputToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
38     BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
39 
40     m_InputToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
41     BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
42 
43     m_InputToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
44     BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
45 
46     m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
47     BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
48 
49     m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
50     BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
51 
52     m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
53     BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
54 
55     m_ForgetGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
56     BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
57 
58     m_CellBiasTensor = std::make_unique<arm_compute::CLTensor>();
59     BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
60 
61     m_OutputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
62     BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
63 
64     // for future reference: check the AndroidNN API for the logic here
65     if (!m_Data.m_Parameters.m_CifgEnabled)
66     {
67         m_InputToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
68         BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
69 
70         m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
71         BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
72 
73         m_CellToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
74         if (m_Data.m_CellToInputWeights != nullptr)
75         {
76             BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
77         }
78 
79         m_InputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
80         BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
81 
82         lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
83                                    m_RecurrentToInputWeightsTensor.get(),
84                                    m_Data.m_CellToInputWeights != nullptr ? m_CellToInputWeightsTensor.get() : nullptr,
85                                    m_InputGateBiasTensor.get());
86     }
87 
88     if (m_Data.m_Parameters.m_ProjectionEnabled)
89     {
90         m_ProjectionWeightsTensor = std::make_unique<arm_compute::CLTensor>();
91         BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
92 
93         m_ProjectionBiasTensor = std::make_unique<arm_compute::CLTensor>();
94         if (m_Data.m_ProjectionBias != nullptr)
95         {
96             BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
97         }
98 
99         lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
100                                          m_Data.m_ProjectionBias != nullptr ? m_ProjectionBiasTensor.get() : nullptr);
101     }
102 
103     if (m_Data.m_Parameters.m_PeepholeEnabled)
104     {
105         m_CellToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
106         BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
107 
108         m_CellToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
109         BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
110 
111         lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
112     }
113 
114     if (m_Data.m_Parameters.m_LayerNormEnabled)
115     {
116         m_InputLayerNormWeightsTensor  = std::make_unique<arm_compute::CLTensor>();
117         m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
118         m_CellLayerNormWeightsTensor   = std::make_unique<arm_compute::CLTensor>();
119         m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
120 
121         if (!m_Data.m_Parameters.m_CifgEnabled)
122         {
123             BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
124         }
125         BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
126         BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
127         BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
128 
129         lstm_param.set_layer_normalization_params(m_Data.m_Parameters.m_CifgEnabled ? nullptr :
130                                                   m_InputLayerNormWeightsTensor.get(),
131                                                   m_ForgetLayerNormWeightsTensor.get(),
132                                                   m_CellLayerNormWeightsTensor.get(),
133                                                   m_OutputLayerNormWeightsTensor.get());
134     }
135 
136     const arm_compute::ICLTensor& input           = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
137     const arm_compute::ICLTensor& output_state_in = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
138     arm_compute::ICLTensor& cell_state_in         = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
139 
140     arm_compute::ICLTensor& output_state_out      = static_cast<IClTensorHandle*>(m_Data.m_Outputs[1])->GetTensor();
141     arm_compute::ICLTensor& cell_state_out        = static_cast<IClTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
142     arm_compute::ICLTensor& output                = static_cast<IClTensorHandle*>(m_Data.m_Outputs[3])->GetTensor();
143 
144     // Get the batch_size and the num_units from the cellStateIn dimensions
145     const TensorInfo& inputTensorInfo = info.m_InputTensorInfos[2];
146     const unsigned int batch_size = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[0]);
147     const unsigned int num_units  = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[1]);
148 
149     m_ScratchBuffer = std::make_unique<arm_compute::CLTensor>();
150     if (m_Data.m_Parameters.m_CifgEnabled)
151     {
152         // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
153         armnn::TensorInfo scratchBuffer1({ batch_size, num_units * 3 }, DataType::Float32);
154         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer1);
155     }
156     else
157     {
158         // scratch_buffer [num_units * 4, batch_size] without CIFG
159         armnn::TensorInfo scratchBuffer2({ batch_size, num_units * 4 }, DataType::Float32);
160         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer2);
161     }
162 
163     float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
164     float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
165 
166     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
167     arm_compute::ActivationLayerInfo activationLayerInfo =
168         ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
169 
170     {
171         ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "ClLstmFloatWorkload_configure");
172         m_LstmLayer.configure(clCompileContext, &input, m_InputToForgetWeightsTensor.get(),
173                               m_InputToCellWeightsTensor.get(), m_InputToOutputWeightsTensor.get(),
174                               m_RecurrentToForgetWeightsTensor.get(), m_RecurrentToCellWeightsTensor.get(),
175                               m_RecurrentToOutputWeightsTensor.get(), m_ForgetGateBiasTensor.get(),
176                               m_CellBiasTensor.get(), m_OutputGateBiasTensor.get(), &output_state_in,
177                               &cell_state_in, m_ScratchBuffer.get(), &output_state_out,
178                               &cell_state_out, &output, lstm_param, activationLayerInfo,
179                               cell_threshold, projection_threshold);
180     }
181 
182     armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
183 
184     InitializeArmComputeClTensorData(*m_InputToForgetWeightsTensor,     m_Data.m_InputToForgetWeights);
185     InitializeArmComputeClTensorData(*m_InputToCellWeightsTensor,       m_Data.m_InputToCellWeights);
186     InitializeArmComputeClTensorData(*m_InputToOutputWeightsTensor,     m_Data.m_InputToOutputWeights);
187     InitializeArmComputeClTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
188     InitializeArmComputeClTensorData(*m_RecurrentToCellWeightsTensor,   m_Data.m_RecurrentToCellWeights);
189     InitializeArmComputeClTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
190     InitializeArmComputeClTensorData(*m_ForgetGateBiasTensor,           m_Data.m_ForgetGateBias);
191     InitializeArmComputeClTensorData(*m_CellBiasTensor,                 m_Data.m_CellBias);
192     InitializeArmComputeClTensorData(*m_OutputGateBiasTensor,           m_Data.m_OutputGateBias);
193 
194     if (!m_Data.m_Parameters.m_CifgEnabled)
195     {
196         InitializeArmComputeClTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
197         InitializeArmComputeClTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
198         if (m_Data.m_CellToInputWeights != nullptr)
199         {
200             InitializeArmComputeClTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
201         }
202         InitializeArmComputeClTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
203     }
204 
205     if (m_Data.m_Parameters.m_ProjectionEnabled)
206     {
207         InitializeArmComputeClTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
208         if (m_Data.m_ProjectionBias != nullptr)
209         {
210             InitializeArmComputeClTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
211         }
212     }
213 
214     if (m_Data.m_Parameters.m_PeepholeEnabled)
215     {
216         InitializeArmComputeClTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
217         InitializeArmComputeClTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
218     }
219 
220     if (m_Data.m_Parameters.m_LayerNormEnabled)
221     {
222         if (!m_Data.m_Parameters.m_CifgEnabled)
223         {
224             InitializeArmComputeClTensorData(*m_InputLayerNormWeightsTensor,  m_Data.m_InputLayerNormWeights);
225         }
226 
227         InitializeArmComputeClTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
228         InitializeArmComputeClTensorData(*m_CellLayerNormWeightsTensor,   m_Data.m_CellLayerNormWeights);
229         InitializeArmComputeClTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
230     }
231 
232     // Force Compute Library to perform the necessary copying and reshaping, after which
233     // delete all the input tensors that will no longer be needed
234     m_LstmLayer.prepare();
235     FreeUnusedTensors();
236 }
237 
Execute() const238 void ClLstmFloatWorkload::Execute() const
239 {
240     ARMNN_SCOPED_PROFILING_EVENT_CL_GUID("ClLstmFloatWorkload_Execute", GetGuid());
241     RunClFunction(m_LstmLayer, CHECK_LOCATION());
242 }
243 
ClLstmFloatWorkloadValidate(const TensorInfo & input,const TensorInfo & outputStateIn,const TensorInfo & cellStateIn,const TensorInfo & scratchBuffer,const TensorInfo & outputStateOut,const TensorInfo & cellStateOut,const TensorInfo & output,const LstmDescriptor & descriptor,const LstmInputParamsInfo & paramsInfo)244 arm_compute::Status ClLstmFloatWorkloadValidate(const TensorInfo& input, const TensorInfo& outputStateIn,
245                                                 const TensorInfo& cellStateIn, const TensorInfo& scratchBuffer,
246                                                 const TensorInfo& outputStateOut, const TensorInfo& cellStateOut,
247                                                 const TensorInfo& output, const LstmDescriptor& descriptor,
248                                                 const LstmInputParamsInfo& paramsInfo)
249 {
250     arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
251 
252     // The inputs and the outputs
253     const arm_compute::TensorInfo aclInputInfo  = BuildArmComputeTensorInfo(input);
254     const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
255     const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
256     const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
257     const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
258     const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
259     const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output);
260 
261     // Basic parameters
262     const arm_compute::TensorInfo aclInputToForgetWeightsInfo
263                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
264     const arm_compute::TensorInfo aclInputToCellWeightsInfo
265                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
266     const arm_compute::TensorInfo aclInputToOutputWeightsInfo
267                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
268     const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
269                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
270     const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
271                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
272     const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
273                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
274     const arm_compute::TensorInfo aclForgetGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
275     const arm_compute::TensorInfo aclCellBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
276     const arm_compute::TensorInfo aclOutputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
277 
278     arm_compute::TensorInfo aclInputToInputWeightsInfo;
279     arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
280     arm_compute::TensorInfo aclCellToInputWeightsInfo;
281     arm_compute::TensorInfo aclInputGateBiasInfo;
282     arm_compute::TensorInfo aclProjectionWeightsInfo;
283     arm_compute::TensorInfo aclProjectionBiasInfo;
284     arm_compute::TensorInfo aclCellToForgetWeightsInfo;
285     arm_compute::TensorInfo aclCellToOutputWeightsInfo;
286     arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
287     arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
288     arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
289     arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
290 
291     if (!descriptor.m_CifgEnabled)
292     {
293         aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
294         aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
295 
296         if (paramsInfo.m_CellToInputWeights != nullptr)
297         {
298             aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
299         }
300         aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
301         lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo, &aclRecurrentToInputWeightsInfo,
302                                          paramsInfo.m_CellToInputWeights != nullptr ?
303                                          &aclCellToInputWeightsInfo: nullptr,
304                                          &aclInputGateBiasInfo);
305     }
306 
307     if (descriptor.m_ProjectionEnabled)
308     {
309         aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
310 
311         if (paramsInfo.m_ProjectionBias != nullptr)
312         {
313             aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
314         }
315         lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
316                                                paramsInfo.m_ProjectionBias != nullptr ?
317                                                &aclProjectionBiasInfo: nullptr);
318     }
319 
320     if (descriptor.m_PeepholeEnabled)
321     {
322         aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
323         aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
324         lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
325     }
326 
327     float cell_threshold = descriptor.m_ClippingThresCell;
328     float projection_threshold = descriptor.m_ClippingThresProj;
329 
330     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
331     arm_compute::ActivationLayerInfo activationLayerInfo =
332         ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
333 
334     if (descriptor.m_LayerNormEnabled)
335     {
336         if (!descriptor.m_CifgEnabled)
337         {
338             aclInputLayerNormWeightsInfo  = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
339         }
340 
341         aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
342 
343         aclCellLayerNormWeightsInfo   = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
344 
345         aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
346 
347         lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ?
348                                                         nullptr : &aclInputLayerNormWeightsInfo,
349                                                         &aclForgetLayerNormWeightsInfo,
350                                                         &aclCellLayerNormWeightsInfo,
351                                                         &aclOutputLayerNormWeightsInfo);
352     }
353 
354     return arm_compute::CLLSTMLayer::validate(&aclInputInfo, &aclInputToForgetWeightsInfo,
355                                               &aclInputToCellWeightsInfo,
356                                               &aclInputToOutputWeightsInfo,
357                                               &aclRecurrentToForgetWeightsInfo,
358                                               &aclRecurrentToCellWeightsInfo,
359                                               &aclRecurrentToOutputWeightsInfo,
360                                               &aclForgetGateBiasInfo,
361                                               &aclCellBiasInfo,
362                                               &aclOutputGateBiasInfo,
363                                               &aclOutputStateInInfo, &aclCellStateInInfo,
364                                               &aclScratchBufferInfo, &aclOutputStateOutInfo,
365                                               &aclCellStateOutInfo, &aclOutputInfo,
366                                               lstm_params_info, activationLayerInfo,
367                                               cell_threshold, projection_threshold);
368 }
369 
FreeUnusedTensors()370 void ClLstmFloatWorkload::FreeUnusedTensors()
371 {
372     FreeTensorIfUnused(m_InputToInputWeightsTensor);
373     FreeTensorIfUnused(m_InputToForgetWeightsTensor);
374     FreeTensorIfUnused(m_InputToCellWeightsTensor);
375     FreeTensorIfUnused(m_InputToOutputWeightsTensor);
376     FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
377     FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
378     FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
379     FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
380     FreeTensorIfUnused(m_CellToInputWeightsTensor);
381     FreeTensorIfUnused(m_CellToForgetWeightsTensor);
382     FreeTensorIfUnused(m_CellToOutputWeightsTensor);
383     FreeTensorIfUnused(m_InputGateBiasTensor);
384     FreeTensorIfUnused(m_ForgetGateBiasTensor);
385     FreeTensorIfUnused(m_CellBiasTensor);
386     FreeTensorIfUnused(m_OutputGateBiasTensor);
387     FreeTensorIfUnused(m_ProjectionWeightsTensor);
388     FreeTensorIfUnused(m_ProjectionBiasTensor);
389     FreeTensorIfUnused(m_ScratchBuffer);
390     FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
391     FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
392     FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
393     FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
394 }
395 
ReplaceInputTensorHandle(ITensorHandle * tensorHandle,unsigned int slot)396 void ClLstmFloatWorkload::ReplaceInputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
397 {
398     ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
399     this->m_Data.m_Inputs[slot] = tensorHandle;
400     try
401     {
402         Reconfigure();
403     }
404     catch(armnn::UnimplementedException& e)
405     {
406         // Cannot reconfigure, revert the slot back and throw the exception.
407         this->m_Data.m_Inputs[slot] = backupHandle;
408         throw e;
409     }
410 }
411 
412 // Replace output tensor handle with the given TensorHandle
ReplaceOutputTensorHandle(ITensorHandle * tensorHandle,unsigned int slot)413 void ClLstmFloatWorkload::ReplaceOutputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
414 {
415     ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
416     this->m_Data.m_Inputs[slot] = tensorHandle;
417     try
418     {
419         Reconfigure();
420     }
421     catch(armnn::UnimplementedException& e)
422     {
423         // Cannot reconfigure, revert the slot back and throw the exception.
424         this->m_Data.m_Inputs[slot] = backupHandle;
425         throw e;
426     }
427 }
428 
Reconfigure()429 void ClLstmFloatWorkload::Reconfigure()
430 {
431     throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
432 }
433 
434 } //namespace armnn
435