xref: /aosp_15_r20/external/armnn/src/backends/neon/workloads/NeonLstmFloatWorkload.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonLstmFloatWorkload.hpp"
7 #include "NeonWorkloadUtils.hpp"
8 
9 #include <aclCommon/ArmComputeTensorUtils.hpp>
10 #include <aclCommon/ArmComputeUtils.hpp>
11 
12 #include <armnn/utility/NumericCast.hpp>
13 
14 #include "neon/NeonTensorHandle.hpp"
15 
16 namespace armnn
17 {
18 using namespace armcomputetensorutils;
19 
NeonLstmFloatWorkload(const LstmQueueDescriptor & descriptor,const WorkloadInfo & info)20 NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor& descriptor, const WorkloadInfo& info)
21         : FloatWorkload<LstmQueueDescriptor>(descriptor, info)
22 {
23     // Report Profiling Details
24     ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonLstmFloatWorkload_Construct",
25                                          descriptor.m_Parameters,
26                                          info,
27                                          GetGuid());
28 
29     arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
30 
31     // Basic parameters
32     m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
33     BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
34 
35     m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
36     BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
37 
38     m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
39     BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
40 
41     m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
42     BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
43 
44     m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
45     BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
46 
47     m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
48     BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
49 
50     m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
51     BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
52 
53     m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
54     BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
55 
56     m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
57     BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
58 
59     // for future reference: check the AndroidNN API for the logic here
60     if (!m_Data.m_Parameters.m_CifgEnabled)
61     {
62         m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
63         BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
64 
65         m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
66         BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
67 
68         m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
69         if (m_Data.m_CellToInputWeights != nullptr)
70         {
71             BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
72         }
73 
74         m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
75         BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
76 
77         lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
78                                    m_RecurrentToInputWeightsTensor.get(),
79                                    m_Data.m_CellToInputWeights != nullptr ? m_CellToInputWeightsTensor.get() : nullptr,
80                                    m_InputGateBiasTensor.get());
81     }
82 
83     if (m_Data.m_Parameters.m_ProjectionEnabled)
84     {
85         m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
86         BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
87 
88         m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
89         if (m_Data.m_ProjectionBias != nullptr)
90         {
91             BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
92         }
93 
94         lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
95                                          m_Data.m_ProjectionBias != nullptr ? m_ProjectionBiasTensor.get() : nullptr);
96     }
97 
98     if (m_Data.m_Parameters.m_PeepholeEnabled)
99     {
100         m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
101         BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
102 
103         m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
104         BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
105 
106         lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
107     }
108 
109     if (m_Data.m_Parameters.m_LayerNormEnabled)
110     {
111         m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
112         if (!m_Data.m_Parameters.m_CifgEnabled)
113         {
114             BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
115         }
116 
117         m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
118         BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
119 
120         m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
121         BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
122 
123         m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
124         BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
125 
126         lstm_param.set_layer_normalization_params(m_Data.m_Parameters.m_CifgEnabled ?
127                                                   nullptr : m_InputLayerNormWeightsTensor.get(),
128                                                   m_ForgetLayerNormWeightsTensor.get(),
129                                                   m_CellLayerNormWeightsTensor.get(),
130                                                   m_OutputLayerNormWeightsTensor.get());
131     }
132 
133     const arm_compute::ITensor& input           = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
134     const arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
135     const arm_compute::ITensor& cell_state_in   = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
136 
137     arm_compute::ITensor& output_state_out      = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[1])->GetTensor();
138     arm_compute::ITensor& cell_state_out        = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
139     arm_compute::ITensor& output                = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[3])->GetTensor();
140 
141     // Get the batch_size and the num_units from the cellStateIn dimensions
142     const TensorInfo& inputTensorInfo = info.m_InputTensorInfos[2];
143     const unsigned int batch_size = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[0]);
144     const unsigned int num_units  = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[1]);
145 
146     m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
147     if (m_Data.m_Parameters.m_CifgEnabled)
148     {
149         // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
150         armnn::TensorInfo scratchBuffer1({ batch_size, num_units * 3 }, DataType::Float32);
151         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer1);
152     }
153     else
154     {
155         // scratch_buffer [num_units * 4, batch_size] without CIFG
156         armnn::TensorInfo scratchBuffer2({ batch_size, num_units * 4 }, DataType::Float32);
157         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer2);
158     }
159 
160     float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
161     float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
162 
163     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
164     arm_compute::ActivationLayerInfo activationLayerInfo =
165         ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
166 
167     m_LstmLayer.configure(&input, m_InputToForgetWeightsTensor.get(), m_InputToCellWeightsTensor.get(),
168                           m_InputToOutputWeightsTensor.get(), m_RecurrentToForgetWeightsTensor.get(),
169                           m_RecurrentToCellWeightsTensor.get(), m_RecurrentToOutputWeightsTensor.get(),
170                           m_ForgetGateBiasTensor.get(), m_CellBiasTensor.get(), m_OutputGateBiasTensor.get(),
171                           &output_state_in, &cell_state_in, m_ScratchBuffer.get(), &output_state_out,
172                           &cell_state_out, &output, lstm_param, activationLayerInfo,
173                           cell_threshold, projection_threshold);
174 
175     armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
176 
177     InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor,
178                                    m_Data.m_InputToForgetWeights);
179     InitializeArmComputeTensorData(*m_InputToCellWeightsTensor,
180                                    m_Data.m_InputToCellWeights);
181     InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor,
182                                    m_Data.m_InputToOutputWeights);
183     InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor,
184                                    m_Data.m_RecurrentToForgetWeights);
185     InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor,
186                                    m_Data.m_RecurrentToCellWeights);
187     InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor,
188                                    m_Data.m_RecurrentToOutputWeights);
189     InitializeArmComputeTensorData(*m_ForgetGateBiasTensor,
190                                    m_Data.m_ForgetGateBias);
191     InitializeArmComputeTensorData(*m_CellBiasTensor,
192                                    m_Data.m_CellBias);
193     InitializeArmComputeTensorData(*m_OutputGateBiasTensor,
194                                    m_Data.m_OutputGateBias);
195 
196     if (!m_Data.m_Parameters.m_CifgEnabled)
197     {
198         InitializeArmComputeTensorData(*m_InputToInputWeightsTensor,
199                                        m_Data.m_InputToInputWeights);
200         InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor,
201                                        m_Data.m_RecurrentToInputWeights);
202         if (m_Data.m_CellToInputWeights != nullptr)
203         {
204             InitializeArmComputeTensorData(*m_CellToInputWeightsTensor,
205                                            m_Data.m_CellToInputWeights);
206         }
207         InitializeArmComputeTensorData(*m_InputGateBiasTensor,
208                                        m_Data.m_InputGateBias);
209     }
210 
211     if (m_Data.m_Parameters.m_ProjectionEnabled)
212     {
213         InitializeArmComputeTensorData(*m_ProjectionWeightsTensor,
214                                        m_Data.m_ProjectionWeights);
215         if (m_Data.m_ProjectionBias != nullptr)
216         {
217             InitializeArmComputeTensorData(*m_ProjectionBiasTensor,
218                                            m_Data.m_ProjectionBias);
219         }
220     }
221 
222     if (m_Data.m_Parameters.m_PeepholeEnabled)
223     {
224         InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor,
225                                        m_Data.m_CellToForgetWeights);
226         InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor,
227                                        m_Data.m_CellToOutputWeights);
228     }
229 
230     if (m_Data.m_Parameters.m_LayerNormEnabled)
231     {
232         if (!m_Data.m_Parameters.m_CifgEnabled)
233         {
234             InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
235         }
236         InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
237         InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
238         InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
239     }
240 
241     // Force Compute Library to perform the necessary copying and reshaping, after which
242     // delete all the input tensors that will no longer be needed
243     m_LstmLayer.prepare();
244     FreeUnusedTensors();
245 }
246 
Execute() const247 void NeonLstmFloatWorkload::Execute() const
248 {
249     ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonLstmFloatWorkload_Execute", GetGuid());
250     m_LstmLayer.run();
251 }
252 
NeonLstmFloatWorkloadValidate(const TensorInfo & input,const TensorInfo & outputStateIn,const TensorInfo & cellStateIn,const TensorInfo & scratchBuffer,const TensorInfo & outputStateOut,const TensorInfo & cellStateOut,const TensorInfo & output,const LstmDescriptor & descriptor,const LstmInputParamsInfo & paramsInfo)253 arm_compute::Status NeonLstmFloatWorkloadValidate(const TensorInfo& input,
254                                                   const TensorInfo& outputStateIn,
255                                                   const TensorInfo& cellStateIn,
256                                                   const TensorInfo& scratchBuffer,
257                                                   const TensorInfo& outputStateOut,
258                                                   const TensorInfo& cellStateOut,
259                                                   const TensorInfo& output,
260                                                   const LstmDescriptor& descriptor,
261                                                   const LstmInputParamsInfo& paramsInfo)
262 {
263     arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
264 
265     // The inputs and outputs
266     const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input);
267     const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
268     const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
269     const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
270     const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
271     const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
272     const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output);
273 
274     // Basic parameters
275     const arm_compute::TensorInfo aclInputToForgetWeightsInfo
276                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
277     const arm_compute::TensorInfo aclInputToCellWeightsInfo
278                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
279     const arm_compute::TensorInfo aclInputToOutputWeightsInfo
280                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
281     const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
282                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
283     const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
284                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
285     const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
286                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
287     const arm_compute::TensorInfo aclForgetGateBiasInfo
288                                   = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
289     const arm_compute::TensorInfo aclCellBiasInfo
290                                   = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
291     const arm_compute::TensorInfo aclOutputGateBiasInfo
292                                   = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
293 
294     arm_compute::TensorInfo aclInputToInputWeightsInfo;
295     arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
296     arm_compute::TensorInfo aclCellToInputWeightsInfo;
297     arm_compute::TensorInfo aclInputGateBiasInfo;
298     arm_compute::TensorInfo aclProjectionWeightsInfo;
299     arm_compute::TensorInfo aclProjectionBiasInfo;
300     arm_compute::TensorInfo aclCellToForgetWeightsInfo;
301     arm_compute::TensorInfo aclCellToOutputWeightsInfo;
302 
303     arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
304     arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
305     arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
306     arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
307 
308 
309     if (!descriptor.m_CifgEnabled)
310     {
311         if (descriptor.m_PeepholeEnabled)
312         {
313             aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
314         }
315         aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
316         aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
317         aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
318 
319         lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo, &aclRecurrentToInputWeightsInfo,
320                                          descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
321                                          &aclInputGateBiasInfo);
322     }
323 
324     if (descriptor.m_ProjectionEnabled)
325     {
326         if (paramsInfo.m_ProjectionBias != nullptr)
327         {
328             aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
329         }
330         aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
331 
332         lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
333                                                paramsInfo.m_ProjectionBias != nullptr ?
334                                                &aclProjectionBiasInfo : nullptr);
335     }
336 
337     if (descriptor.m_PeepholeEnabled)
338     {
339         aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
340         aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
341 
342         lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
343     }
344 
345     if (descriptor.m_LayerNormEnabled)
346     {
347         if (!descriptor.m_CifgEnabled)
348         {
349             aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
350         }
351         aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
352         aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
353         aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
354 
355         lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ?
356                                                         nullptr : &aclInputLayerNormWeightsInfo,
357                                                         &aclForgetLayerNormWeightsInfo,
358                                                         &aclCellLayerNormWeightsInfo,
359                                                         &aclOutputLayerNormWeightsInfo);
360     }
361 
362     float cell_threshold = descriptor.m_ClippingThresCell;
363     float projection_threshold = descriptor.m_ClippingThresProj;
364 
365     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
366     arm_compute::ActivationLayerInfo activationLayerInfo =
367         ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
368 
369     return arm_compute::NELSTMLayer::validate(&aclInputInfo,
370                                               &aclInputToForgetWeightsInfo,
371                                               &aclInputToCellWeightsInfo,
372                                               &aclInputToOutputWeightsInfo,
373                                               &aclRecurrentToForgetWeightsInfo,
374                                               &aclRecurrentToCellWeightsInfo,
375                                               &aclRecurrentToOutputWeightsInfo,
376                                               &aclForgetGateBiasInfo,
377                                               &aclCellBiasInfo,
378                                               &aclOutputGateBiasInfo,
379                                               &aclOutputStateInInfo,
380                                               &aclCellStateInInfo,
381                                               &aclScratchBufferInfo,
382                                               &aclOutputStateOutInfo,
383                                               &aclCellStateOutInfo,
384                                               &aclOutputInfo,
385                                               lstm_params_info,
386                                               activationLayerInfo,
387                                               cell_threshold,
388                                               projection_threshold);
389 }
390 
FreeUnusedTensors()391 void NeonLstmFloatWorkload::FreeUnusedTensors()
392 {
393     FreeTensorIfUnused(m_InputToInputWeightsTensor);
394     FreeTensorIfUnused(m_InputToForgetWeightsTensor);
395     FreeTensorIfUnused(m_InputToCellWeightsTensor);
396     FreeTensorIfUnused(m_InputToOutputWeightsTensor);
397     FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
398     FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
399     FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
400     FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
401     FreeTensorIfUnused(m_CellToInputWeightsTensor);
402     FreeTensorIfUnused(m_CellToForgetWeightsTensor);
403     FreeTensorIfUnused(m_CellToOutputWeightsTensor);
404     FreeTensorIfUnused(m_InputGateBiasTensor);
405     FreeTensorIfUnused(m_ForgetGateBiasTensor);
406     FreeTensorIfUnused(m_CellBiasTensor);
407     FreeTensorIfUnused(m_OutputGateBiasTensor);
408     FreeTensorIfUnused(m_ProjectionWeightsTensor);
409     FreeTensorIfUnused(m_ProjectionBiasTensor);
410     FreeTensorIfUnused(m_ScratchBuffer);
411     FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
412     FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
413     FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
414     FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
415 }
416 
ReplaceInputTensorHandle(ITensorHandle * tensorHandle,unsigned int slot)417 void NeonLstmFloatWorkload::ReplaceInputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
418 {
419     ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
420     this->m_Data.m_Inputs[slot] = tensorHandle;
421     try
422     {
423         Reconfigure();
424     }
425     catch(armnn::UnimplementedException& e)
426     {
427         // Cannot reconfigure, revert the slot back and throw the exception.
428         this->m_Data.m_Inputs[slot] = backupHandle;
429         throw e;
430     }
431 }
432 
433 // Replace output tensor handle with the given TensorHandle
ReplaceOutputTensorHandle(ITensorHandle * tensorHandle,unsigned int slot)434 void NeonLstmFloatWorkload::ReplaceOutputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
435 {
436     ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
437     this->m_Data.m_Inputs[slot] = tensorHandle;
438     try
439     {
440         Reconfigure();
441     }
442     catch(armnn::UnimplementedException& e)
443     {
444         // Cannot reconfigure, revert the slot back and throw the exception.
445         this->m_Data.m_Inputs[slot] = backupHandle;
446         throw e;
447     }
448 }
449 
Reconfigure()450 void NeonLstmFloatWorkload::Reconfigure()
451 {
452     throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
453 }
454 
455 } //namespace armnn
456