xref: /aosp_15_r20/external/armnn/src/backends/neon/workloads/NeonTransposeConvolution2dWorkload.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #include "NeonTransposeConvolution2dWorkload.hpp"
6 
7 #include "NeonWorkloadUtils.hpp"
8 
9 #include <Profiling.hpp>
10 
11 #include <armnn/Types.hpp>
12 #include <armnn/utility/PolymorphicDowncast.hpp>
13 
14 #include <aclCommon/ArmComputeTensorUtils.hpp>
15 
16 #include <armnn/backends/TensorHandle.hpp>
17 
18 #include <neon/workloads/NeonWorkloadUtils.hpp>
19 
20 namespace armnn
21 {
22 
23 using namespace armcomputetensorutils;
24 
NeonTransposeConvolution2dWorkloadValidate(const TensorInfo & input,const TensorInfo & output,const TransposeConvolution2dDescriptor & descriptor,const TensorInfo & weights,const Optional<TensorInfo> & biases)25 arm_compute::Status NeonTransposeConvolution2dWorkloadValidate(const TensorInfo& input,
26                                                                const TensorInfo& output,
27                                                                const TransposeConvolution2dDescriptor& descriptor,
28                                                                const TensorInfo& weights,
29                                                                const Optional<TensorInfo>& biases)
30 {
31     const arm_compute::TensorInfo aclInputInfo   = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
32     const arm_compute::TensorInfo aclOutputInfo  = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
33     const arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.m_DataLayout);
34 
35     arm_compute::TensorInfo aclBiasesInfo;
36     arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr;
37 
38     if (descriptor.m_BiasEnabled)
39     {
40         ARMNN_ASSERT(biases.has_value());
41 
42         aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
43         optionalAclBiasesInfo = &aclBiasesInfo;
44     }
45 
46     arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor);
47 
48     return arm_compute::NEDeconvolutionLayer::validate(&aclInputInfo,
49                                                        &aclWeightsInfo,
50                                                        optionalAclBiasesInfo,
51                                                        &aclOutputInfo,
52                                                        layerInfo);
53 }
54 
NeonTransposeConvolution2dWorkload(const TransposeConvolution2dQueueDescriptor & descriptor,const WorkloadInfo & info,std::shared_ptr<arm_compute::MemoryManagerOnDemand> & memoryManager)55 NeonTransposeConvolution2dWorkload::NeonTransposeConvolution2dWorkload(
56     const TransposeConvolution2dQueueDescriptor& descriptor, const WorkloadInfo& info,
57     std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager)
58     : NeonBaseWorkload<TransposeConvolution2dQueueDescriptor>(descriptor, info)
59 {
60     m_Data.ValidateInputsOutputs("NeonTransposeConvolution2dWorkload", 1, 1);
61 
62     arm_compute::ITensor& input  = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
63     arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
64 
65     arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
66     input.info()->set_data_layout(aclDataLayout);
67     output.info()->set_data_layout(aclDataLayout);
68 
69     m_KernelTensor = std::make_unique<arm_compute::Tensor>();
70     BuildArmComputeTensor(*m_KernelTensor, m_Data.m_Weight->GetTensorInfo(), m_Data.m_Parameters.m_DataLayout);
71 
72     if (m_Data.m_Parameters.m_BiasEnabled)
73     {
74         m_BiasTensor = std::make_unique<arm_compute::Tensor>();
75         BuildArmComputeTensor(*m_BiasTensor, m_Data.m_Bias->GetTensorInfo(), m_Data.m_Parameters.m_DataLayout);
76     }
77 
78     arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
79 
80     // Add details for profiling output
81     WorkloadInfo detailsInfo;
82 
83     detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos;
84     detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos;
85     detailsInfo.m_WeightsTensorInfo = armnn::Optional<armnn::TensorInfo>(descriptor.m_Weight->GetTensorInfo());
86     if (descriptor.m_Parameters.m_BiasEnabled)
87     {
88         detailsInfo.m_BiasTensorInfo = armnn::Optional<armnn::TensorInfo>(descriptor.m_Bias->GetTensorInfo());
89     }
90 
91     // Report Profiling Details
92     ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonTransposeConvolution2dWorkload_Construct",
93                                          descriptor.m_Parameters,
94                                          detailsInfo,
95                                          this->GetGuid());
96 
97     m_Layer = std::make_unique<arm_compute::NEDeconvolutionLayer>(memoryManager);
98     m_Layer->configure(&input, m_KernelTensor.get(), m_BiasTensor.get(), &output, padStrideInfo);
99 
100     ARMNN_ASSERT(m_Layer);
101 
102     InitializeArmComputeTensorData(*m_KernelTensor, m_Data.m_Weight);
103 
104     if (m_Data.m_Parameters.m_BiasEnabled)
105     {
106         InitializeArmComputeTensorData(*m_BiasTensor, m_Data.m_Bias);
107     }
108 
109     m_Layer->prepare();
110     FreeUnusedTensors();
111 }
112 
Execute() const113 void NeonTransposeConvolution2dWorkload::Execute() const
114 {
115     ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonTransposeConvolution2dWorkload_Execute", this->GetGuid());
116     m_Layer->run();
117 }
118 
FreeUnusedTensors()119 void NeonTransposeConvolution2dWorkload::FreeUnusedTensors()
120 {
121     FreeTensorIfUnused(m_KernelTensor);
122     FreeTensorIfUnused(m_BiasTensor);
123 }
124 
125 } // namespace armnn
126