xref: /aosp_15_r20/external/armnn/src/backends/tosaCommon/operatorMappings/ReshapeOperator.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "ReshapeOperator.hpp"
7 
ConvertReshapeToTosaOperator(const Layer * layer,const std::vector<const TensorInfo * > & inputs,const std::vector<const TensorInfo * > & outputs,const ReshapeDescriptor * reshapeDescriptor)8 TosaSerializationBasicBlock* ConvertReshapeToTosaOperator(const Layer* layer,
9                                                           const std::vector<const TensorInfo*>& inputs,
10                                                           const std::vector<const TensorInfo*>& outputs,
11                                                           const ReshapeDescriptor* reshapeDescriptor)
12 {
13     std::string inputName = std::string("input0_");
14     std::string outputName = std::string("output0_");
15     std::string blockName  = std::string("Op_RESHAPE_block_") + GetUniqueTosaMappingID();
16 
17     // If a layer is present then the block will be used for execution, so input and output names need to be determined
18     // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
19     if(layer != nullptr)
20     {
21         // Get the layers connected to the input slots and determine unique tensor names.
22         Layer& connectedLayer = layer->GetInputSlot(0).GetConnectedOutputSlot()->GetOwningLayer();
23         inputName = GenerateUniqueName(connectedLayer, 0);
24 
25         // Determine unique output tensor name.
26         outputName = GenerateUniqueOutputName(*layer, 0);
27     }
28 
29     TosaReshapeAttribute attribute(GetTosaTensorShape(reshapeDescriptor->m_TargetShape));
30 
31     auto* op = new TosaSerializationOperator(Op_RESHAPE,
32                                              Attribute_ReshapeAttribute,
33                                              &attribute,
34                                              {inputName},
35                                              {outputName});
36 
37     std::vector<TosaSerializationTensor*> tensors;
38 
39     // Only add input tensors if connected layer is an input layer.
40     // As intermediate or constant tensors will be created separately.
41     // There also can't be duplicate tensor.
42     if(inputName.find("input0_") != std::string::npos)
43     {
44         std::vector<int32_t> inputShape = GetTosaTensorShape(inputs[0]->GetShape());
45         DType inputDType = ArmNNToDType(inputs[0]->GetDataType());
46 
47         tensors.push_back(new TosaSerializationTensor(inputName, inputShape, inputDType, {}));
48     }
49 
50     std::vector<int32_t> outputShape = GetTosaTensorShape(outputs[0]->GetShape());
51     DType outputDType = ArmNNToDType(outputs[0]->GetDataType());
52 
53     tensors.push_back(new TosaSerializationTensor(outputName, outputShape, outputDType, {}));
54 
55     // operatorInputNames/operatorOutputNames ends up being the same as
56     // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
57     return new TosaSerializationBasicBlock(blockName, // name
58                                            {op}, // operators
59                                            tensors, // tensors
60                                            {inputName}, // inputs
61                                            {outputName}); // outputs
62 }