xref: /aosp_15_r20/external/boringssl/src/crypto/dsa/dsa_test.cc (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  *
57  * The DSS routines are based on patches supplied by
58  * Steven Schoch <[email protected]>. */
59 
60 #include <openssl/dsa.h>
61 
62 #include <stdio.h>
63 #include <string.h>
64 
65 #include <vector>
66 
67 #include <gtest/gtest.h>
68 
69 #include <openssl/bn.h>
70 #include <openssl/crypto.h>
71 #include <openssl/err.h>
72 #include <openssl/pem.h>
73 #include <openssl/span.h>
74 
75 #include "../test/test_util.h"
76 
77 
78 // The following values are taken from the updated Appendix 5 to FIPS PUB 186
79 // and also appear in Appendix 5 to FIPS PUB 186-1.
80 
81 static const uint8_t seed[20] = {
82     0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
83     0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
84 };
85 
86 static const uint8_t fips_p[] = {
87     0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
88     0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
89     0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
90     0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
91     0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
92     0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
93 };
94 
95 static const uint8_t fips_q[] = {
96     0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
97     0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
98 };
99 
100 static const uint8_t fips_g[] = {
101     0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
102     0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
103     0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
104     0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
105     0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
106     0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
107 };
108 
109 static const uint8_t fips_x[] = {
110     0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
111     0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
112 };
113 
114 static const uint8_t fips_y[] = {
115     0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
116     0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
117     0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
118     0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
119     0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
120     0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
121 };
122 
123 static const uint8_t fips_digest[] = {
124     0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
125     0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
126 };
127 
128 // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
129 static const uint8_t fips_sig[] = {
130     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
131     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
132     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
133     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
134     0xdc, 0xd8, 0xc8,
135 };
136 
137 // fips_sig_negative is fips_sig with r encoded as a negative number.
138 static const uint8_t fips_sig_negative[] = {
139     0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
140     0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
141     0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
142     0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
143     0xd8, 0xc8,
144 };
145 
146 // fip_sig_extra is fips_sig with trailing data.
147 static const uint8_t fips_sig_extra[] = {
148     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
149     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
150     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
151     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
152     0xdc, 0xd8, 0xc8, 0x00,
153 };
154 
155 // fips_sig_lengths is fips_sig with a non-minimally encoded length.
156 static const uint8_t fips_sig_bad_length[] = {
157     0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
158     0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
159     0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
160     0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
161     0xb6, 0xdc, 0xd8, 0xc8, 0x00,
162 };
163 
164 // fips_sig_bad_r is fips_sig with a bad r value.
165 static const uint8_t fips_sig_bad_r[] = {
166     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
167     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
168     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
169     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
170     0xdc, 0xd8, 0xc8,
171 };
172 
GetFIPSDSAGroup(void)173 static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) {
174   bssl::UniquePtr<DSA> dsa(DSA_new());
175   if (!dsa) {
176     return nullptr;
177   }
178   bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
179   bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
180   bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
181   if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) {
182     return nullptr;
183   }
184   // |DSA_set0_pqg| takes ownership.
185   p.release();
186   q.release();
187   g.release();
188   return dsa;
189 }
190 
GetFIPSDSA(void)191 static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
192   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
193   if (!dsa) {
194     return nullptr;
195   }
196   bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
197   bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
198   if (!pub_key || !priv_key ||
199       !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) {
200     return nullptr;
201   }
202   // |DSA_set0_key| takes ownership.
203   pub_key.release();
204   priv_key.release();
205   return dsa;
206 }
207 
TEST(DSATest,Generate)208 TEST(DSATest, Generate) {
209   bssl::UniquePtr<DSA> dsa(DSA_new());
210   ASSERT_TRUE(dsa);
211   int counter;
212   unsigned long h;
213   ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
214                                          nullptr));
215   EXPECT_EQ(counter, 105);
216   EXPECT_EQ(h, 2u);
217 
218   auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn,
219                             bssl::Span<const uint8_t> bytes) {
220     std::vector<uint8_t> buf(BN_num_bytes(bn));
221     BN_bn2bin(bn, buf.data());
222     EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg;
223   };
224   expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q);
225   expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p);
226   expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g);
227 
228   ASSERT_TRUE(DSA_generate_key(dsa.get()));
229 
230   std::vector<uint8_t> sig(DSA_size(dsa.get()));
231   unsigned sig_len;
232   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
233                        &sig_len, dsa.get()));
234 
235   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
236                           sig_len, dsa.get()));
237 }
238 
TEST(DSATest,GenerateParamsTooLarge)239 TEST(DSATest, GenerateParamsTooLarge) {
240   bssl::UniquePtr<DSA> dsa(DSA_new());
241   ASSERT_TRUE(dsa);
242   EXPECT_FALSE(DSA_generate_parameters_ex(
243       dsa.get(), 10001, /*seed=*/nullptr, /*seed_len=*/0,
244       /*out_counter=*/nullptr, /*out_h=*/nullptr,
245       /*cb=*/nullptr));
246 }
247 
TEST(DSATest,GenerateKeyTooLarge)248 TEST(DSATest, GenerateKeyTooLarge) {
249   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
250   ASSERT_TRUE(dsa);
251   bssl::UniquePtr<BIGNUM> large_p(BN_new());
252   ASSERT_TRUE(large_p);
253   ASSERT_TRUE(BN_set_bit(large_p.get(), 10001));
254   ASSERT_TRUE(BN_set_bit(large_p.get(), 0));
255   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/large_p.get(), /*q=*/nullptr,
256                            /*g=*/nullptr));
257   large_p.release();  // |DSA_set0_pqg| takes ownership on success.
258 
259   // Don't generate DSA keys if the group is too large.
260   EXPECT_FALSE(DSA_generate_key(dsa.get()));
261 }
262 
TEST(DSATest,Verify)263 TEST(DSATest, Verify) {
264   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
265   ASSERT_TRUE(dsa);
266 
267   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
268                           sizeof(fips_sig), dsa.get()));
269   EXPECT_EQ(-1,
270             DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative,
271                        sizeof(fips_sig_negative), dsa.get()));
272   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra,
273                            sizeof(fips_sig_extra), dsa.get()));
274   EXPECT_EQ(-1,
275             DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length,
276                        sizeof(fips_sig_bad_length), dsa.get()));
277   EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r,
278                           sizeof(fips_sig_bad_r), dsa.get()));
279 }
280 
TEST(DSATest,InvalidGroup)281 TEST(DSATest, InvalidGroup) {
282   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
283   ASSERT_TRUE(dsa);
284   bssl::UniquePtr<BIGNUM> zero(BN_new());
285   ASSERT_TRUE(zero);
286   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/nullptr, /*q=*/nullptr,
287                            /*g=*/zero.release()));
288 
289   std::vector<uint8_t> sig(DSA_size(dsa.get()));
290   unsigned sig_len;
291   static const uint8_t kDigest[32] = {0};
292   EXPECT_FALSE(
293       DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
294   EXPECT_TRUE(
295       ErrorEquals(ERR_get_error(), ERR_LIB_DSA, DSA_R_INVALID_PARAMETERS));
296 }
297 
298 // Signing and verifying should cleanly fail when the DSA object is empty.
TEST(DSATest,MissingParameters)299 TEST(DSATest, MissingParameters) {
300   bssl::UniquePtr<DSA> dsa(DSA_new());
301   ASSERT_TRUE(dsa);
302   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
303                            sizeof(fips_sig), dsa.get()));
304 
305   std::vector<uint8_t> sig(DSA_size(dsa.get()));
306   unsigned sig_len;
307   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
308                         &sig_len, dsa.get()));
309 }
310 
311 // Verifying should cleanly fail when the public key is missing.
TEST(DSATest,MissingPublic)312 TEST(DSATest, MissingPublic) {
313   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
314   ASSERT_TRUE(dsa);
315   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
316                            sizeof(fips_sig), dsa.get()));
317 }
318 
319 // Signing should cleanly fail when the private key is missing.
TEST(DSATest,MissingPrivate)320 TEST(DSATest, MissingPrivate) {
321   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
322   ASSERT_TRUE(dsa);
323 
324   std::vector<uint8_t> sig(DSA_size(dsa.get()));
325   unsigned sig_len;
326   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
327                         &sig_len, dsa.get()));
328 }
329 
330 // A zero private key is invalid and can cause signing to loop forever.
TEST(DSATest,ZeroPrivateKey)331 TEST(DSATest, ZeroPrivateKey) {
332   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
333   ASSERT_TRUE(dsa);
334   bssl::UniquePtr<BIGNUM> zero(BN_new());
335   ASSERT_TRUE(zero);
336   ASSERT_TRUE(DSA_set0_key(dsa.get(), /*pub_key=*/nullptr,
337                            /*priv_key=*/zero.release()));
338 
339   static const uint8_t kZeroDigest[32] = {0};
340   std::vector<uint8_t> sig(DSA_size(dsa.get()));
341   unsigned sig_len;
342   EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(),
343                         &sig_len, dsa.get()));
344 }
345 
346 // If the "field" is actually a ring and the "generator" of the multiplicative
347 // subgroup is actually nilpotent with low degree, DSA signing never completes.
348 // Test that we give up in the infinite loop.
TEST(DSATest,NilpotentGenerator)349 TEST(DSATest, NilpotentGenerator) {
350   static const char kPEM[] = R"(
351 -----BEGIN DSA PRIVATE KEY-----
352 MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z
353 E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB
354 Epvg
355 -----END DSA PRIVATE KEY-----
356 )";
357   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
358   ASSERT_TRUE(bio);
359   bssl::UniquePtr<DSA> dsa(
360       PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
361   ASSERT_TRUE(dsa);
362 
363   std::vector<uint8_t> sig(DSA_size(dsa.get()));
364   unsigned sig_len;
365   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
366                         &sig_len, dsa.get()));
367 }
368 
TEST(DSATest,Overwrite)369 TEST(DSATest, Overwrite) {
370   // Load an arbitrary DSA private key and use it.
371   static const char kPEM[] = R"(
372 -----BEGIN DSA PRIVATE KEY-----
373 MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk
374 GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p
375 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9
376 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D
377 qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI
378 i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW
379 TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6
380 VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV
381 ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM
382 RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb
383 Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY
384 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8
385 P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+
386 +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+
387 PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL
388 k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx
389 SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F
390 s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A==
391 -----END DSA PRIVATE KEY-----
392 )";
393   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
394   ASSERT_TRUE(bio);
395   bssl::UniquePtr<DSA> dsa(
396       PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
397   ASSERT_TRUE(dsa);
398 
399   std::vector<uint8_t> sig(DSA_size(dsa.get()));
400   unsigned sig_len;
401   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
402                        &sig_len, dsa.get()));
403   sig.resize(sig_len);
404   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
405                           sig.size(), dsa.get()));
406 
407   // Overwrite it with the sample key.
408   bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
409   ASSERT_TRUE(p);
410   bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
411   ASSERT_TRUE(q);
412   bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
413   ASSERT_TRUE(g);
414   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get()));
415   // |DSA_set0_pqg| takes ownership on success.
416   p.release();
417   q.release();
418   g.release();
419   bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
420   ASSERT_TRUE(pub_key);
421   bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
422   ASSERT_TRUE(priv_key);
423   ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get()));
424   // |DSA_set0_key| takes ownership on success.
425   pub_key.release();
426   priv_key.release();
427 
428   // The key should now work correctly for the new parameters.
429   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
430                           sizeof(fips_sig), dsa.get()));
431 
432   // Test signing by verifying it round-trips through the real key.
433   sig.resize(DSA_size(dsa.get()));
434   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
435                        &sig_len, dsa.get()));
436   sig.resize(sig_len);
437   dsa = GetFIPSDSA();
438   ASSERT_TRUE(dsa);
439   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
440                           sig.size(), dsa.get()));
441 }
442