1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 *
57 * The DSS routines are based on patches supplied by
58 * Steven Schoch <[email protected]>. */
59
60 #include <openssl/dsa.h>
61
62 #include <stdio.h>
63 #include <string.h>
64
65 #include <vector>
66
67 #include <gtest/gtest.h>
68
69 #include <openssl/bn.h>
70 #include <openssl/crypto.h>
71 #include <openssl/err.h>
72 #include <openssl/pem.h>
73 #include <openssl/span.h>
74
75 #include "../test/test_util.h"
76
77
78 // The following values are taken from the updated Appendix 5 to FIPS PUB 186
79 // and also appear in Appendix 5 to FIPS PUB 186-1.
80
81 static const uint8_t seed[20] = {
82 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
83 0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
84 };
85
86 static const uint8_t fips_p[] = {
87 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
88 0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
89 0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
90 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
91 0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
92 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
93 };
94
95 static const uint8_t fips_q[] = {
96 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
97 0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
98 };
99
100 static const uint8_t fips_g[] = {
101 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
102 0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
103 0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
104 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
105 0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
106 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
107 };
108
109 static const uint8_t fips_x[] = {
110 0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
111 0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
112 };
113
114 static const uint8_t fips_y[] = {
115 0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
116 0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
117 0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
118 0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
119 0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
120 0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
121 };
122
123 static const uint8_t fips_digest[] = {
124 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
125 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
126 };
127
128 // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
129 static const uint8_t fips_sig[] = {
130 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
131 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
132 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
133 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
134 0xdc, 0xd8, 0xc8,
135 };
136
137 // fips_sig_negative is fips_sig with r encoded as a negative number.
138 static const uint8_t fips_sig_negative[] = {
139 0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
140 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
141 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
142 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
143 0xd8, 0xc8,
144 };
145
146 // fip_sig_extra is fips_sig with trailing data.
147 static const uint8_t fips_sig_extra[] = {
148 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
149 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
150 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
151 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
152 0xdc, 0xd8, 0xc8, 0x00,
153 };
154
155 // fips_sig_lengths is fips_sig with a non-minimally encoded length.
156 static const uint8_t fips_sig_bad_length[] = {
157 0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
158 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
159 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
160 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
161 0xb6, 0xdc, 0xd8, 0xc8, 0x00,
162 };
163
164 // fips_sig_bad_r is fips_sig with a bad r value.
165 static const uint8_t fips_sig_bad_r[] = {
166 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
167 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
168 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
169 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
170 0xdc, 0xd8, 0xc8,
171 };
172
GetFIPSDSAGroup(void)173 static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) {
174 bssl::UniquePtr<DSA> dsa(DSA_new());
175 if (!dsa) {
176 return nullptr;
177 }
178 bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
179 bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
180 bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
181 if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) {
182 return nullptr;
183 }
184 // |DSA_set0_pqg| takes ownership.
185 p.release();
186 q.release();
187 g.release();
188 return dsa;
189 }
190
GetFIPSDSA(void)191 static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
192 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
193 if (!dsa) {
194 return nullptr;
195 }
196 bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
197 bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
198 if (!pub_key || !priv_key ||
199 !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) {
200 return nullptr;
201 }
202 // |DSA_set0_key| takes ownership.
203 pub_key.release();
204 priv_key.release();
205 return dsa;
206 }
207
TEST(DSATest,Generate)208 TEST(DSATest, Generate) {
209 bssl::UniquePtr<DSA> dsa(DSA_new());
210 ASSERT_TRUE(dsa);
211 int counter;
212 unsigned long h;
213 ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
214 nullptr));
215 EXPECT_EQ(counter, 105);
216 EXPECT_EQ(h, 2u);
217
218 auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn,
219 bssl::Span<const uint8_t> bytes) {
220 std::vector<uint8_t> buf(BN_num_bytes(bn));
221 BN_bn2bin(bn, buf.data());
222 EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg;
223 };
224 expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q);
225 expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p);
226 expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g);
227
228 ASSERT_TRUE(DSA_generate_key(dsa.get()));
229
230 std::vector<uint8_t> sig(DSA_size(dsa.get()));
231 unsigned sig_len;
232 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
233 &sig_len, dsa.get()));
234
235 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
236 sig_len, dsa.get()));
237 }
238
TEST(DSATest,GenerateParamsTooLarge)239 TEST(DSATest, GenerateParamsTooLarge) {
240 bssl::UniquePtr<DSA> dsa(DSA_new());
241 ASSERT_TRUE(dsa);
242 EXPECT_FALSE(DSA_generate_parameters_ex(
243 dsa.get(), 10001, /*seed=*/nullptr, /*seed_len=*/0,
244 /*out_counter=*/nullptr, /*out_h=*/nullptr,
245 /*cb=*/nullptr));
246 }
247
TEST(DSATest,GenerateKeyTooLarge)248 TEST(DSATest, GenerateKeyTooLarge) {
249 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
250 ASSERT_TRUE(dsa);
251 bssl::UniquePtr<BIGNUM> large_p(BN_new());
252 ASSERT_TRUE(large_p);
253 ASSERT_TRUE(BN_set_bit(large_p.get(), 10001));
254 ASSERT_TRUE(BN_set_bit(large_p.get(), 0));
255 ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/large_p.get(), /*q=*/nullptr,
256 /*g=*/nullptr));
257 large_p.release(); // |DSA_set0_pqg| takes ownership on success.
258
259 // Don't generate DSA keys if the group is too large.
260 EXPECT_FALSE(DSA_generate_key(dsa.get()));
261 }
262
TEST(DSATest,Verify)263 TEST(DSATest, Verify) {
264 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
265 ASSERT_TRUE(dsa);
266
267 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
268 sizeof(fips_sig), dsa.get()));
269 EXPECT_EQ(-1,
270 DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative,
271 sizeof(fips_sig_negative), dsa.get()));
272 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra,
273 sizeof(fips_sig_extra), dsa.get()));
274 EXPECT_EQ(-1,
275 DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length,
276 sizeof(fips_sig_bad_length), dsa.get()));
277 EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r,
278 sizeof(fips_sig_bad_r), dsa.get()));
279 }
280
TEST(DSATest,InvalidGroup)281 TEST(DSATest, InvalidGroup) {
282 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
283 ASSERT_TRUE(dsa);
284 bssl::UniquePtr<BIGNUM> zero(BN_new());
285 ASSERT_TRUE(zero);
286 ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/nullptr, /*q=*/nullptr,
287 /*g=*/zero.release()));
288
289 std::vector<uint8_t> sig(DSA_size(dsa.get()));
290 unsigned sig_len;
291 static const uint8_t kDigest[32] = {0};
292 EXPECT_FALSE(
293 DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
294 EXPECT_TRUE(
295 ErrorEquals(ERR_get_error(), ERR_LIB_DSA, DSA_R_INVALID_PARAMETERS));
296 }
297
298 // Signing and verifying should cleanly fail when the DSA object is empty.
TEST(DSATest,MissingParameters)299 TEST(DSATest, MissingParameters) {
300 bssl::UniquePtr<DSA> dsa(DSA_new());
301 ASSERT_TRUE(dsa);
302 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
303 sizeof(fips_sig), dsa.get()));
304
305 std::vector<uint8_t> sig(DSA_size(dsa.get()));
306 unsigned sig_len;
307 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
308 &sig_len, dsa.get()));
309 }
310
311 // Verifying should cleanly fail when the public key is missing.
TEST(DSATest,MissingPublic)312 TEST(DSATest, MissingPublic) {
313 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
314 ASSERT_TRUE(dsa);
315 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
316 sizeof(fips_sig), dsa.get()));
317 }
318
319 // Signing should cleanly fail when the private key is missing.
TEST(DSATest,MissingPrivate)320 TEST(DSATest, MissingPrivate) {
321 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
322 ASSERT_TRUE(dsa);
323
324 std::vector<uint8_t> sig(DSA_size(dsa.get()));
325 unsigned sig_len;
326 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
327 &sig_len, dsa.get()));
328 }
329
330 // A zero private key is invalid and can cause signing to loop forever.
TEST(DSATest,ZeroPrivateKey)331 TEST(DSATest, ZeroPrivateKey) {
332 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
333 ASSERT_TRUE(dsa);
334 bssl::UniquePtr<BIGNUM> zero(BN_new());
335 ASSERT_TRUE(zero);
336 ASSERT_TRUE(DSA_set0_key(dsa.get(), /*pub_key=*/nullptr,
337 /*priv_key=*/zero.release()));
338
339 static const uint8_t kZeroDigest[32] = {0};
340 std::vector<uint8_t> sig(DSA_size(dsa.get()));
341 unsigned sig_len;
342 EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(),
343 &sig_len, dsa.get()));
344 }
345
346 // If the "field" is actually a ring and the "generator" of the multiplicative
347 // subgroup is actually nilpotent with low degree, DSA signing never completes.
348 // Test that we give up in the infinite loop.
TEST(DSATest,NilpotentGenerator)349 TEST(DSATest, NilpotentGenerator) {
350 static const char kPEM[] = R"(
351 -----BEGIN DSA PRIVATE KEY-----
352 MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z
353 E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB
354 Epvg
355 -----END DSA PRIVATE KEY-----
356 )";
357 bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
358 ASSERT_TRUE(bio);
359 bssl::UniquePtr<DSA> dsa(
360 PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
361 ASSERT_TRUE(dsa);
362
363 std::vector<uint8_t> sig(DSA_size(dsa.get()));
364 unsigned sig_len;
365 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
366 &sig_len, dsa.get()));
367 }
368
TEST(DSATest,Overwrite)369 TEST(DSATest, Overwrite) {
370 // Load an arbitrary DSA private key and use it.
371 static const char kPEM[] = R"(
372 -----BEGIN DSA PRIVATE KEY-----
373 MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk
374 GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p
375 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9
376 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D
377 qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI
378 i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW
379 TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6
380 VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV
381 ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM
382 RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb
383 Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY
384 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8
385 P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+
386 +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+
387 PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL
388 k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx
389 SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F
390 s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A==
391 -----END DSA PRIVATE KEY-----
392 )";
393 bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
394 ASSERT_TRUE(bio);
395 bssl::UniquePtr<DSA> dsa(
396 PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
397 ASSERT_TRUE(dsa);
398
399 std::vector<uint8_t> sig(DSA_size(dsa.get()));
400 unsigned sig_len;
401 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
402 &sig_len, dsa.get()));
403 sig.resize(sig_len);
404 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
405 sig.size(), dsa.get()));
406
407 // Overwrite it with the sample key.
408 bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
409 ASSERT_TRUE(p);
410 bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
411 ASSERT_TRUE(q);
412 bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
413 ASSERT_TRUE(g);
414 ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get()));
415 // |DSA_set0_pqg| takes ownership on success.
416 p.release();
417 q.release();
418 g.release();
419 bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
420 ASSERT_TRUE(pub_key);
421 bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
422 ASSERT_TRUE(priv_key);
423 ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get()));
424 // |DSA_set0_key| takes ownership on success.
425 pub_key.release();
426 priv_key.release();
427
428 // The key should now work correctly for the new parameters.
429 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
430 sizeof(fips_sig), dsa.get()));
431
432 // Test signing by verifying it round-trips through the real key.
433 sig.resize(DSA_size(dsa.get()));
434 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
435 &sig_len, dsa.get()));
436 sig.resize(sig_len);
437 dsa = GetFIPSDSA();
438 ASSERT_TRUE(dsa);
439 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
440 sig.size(), dsa.get()));
441 }
442