1 /* Originally written by Bodo Moeller for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * [email protected].
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * ([email protected]). This product includes software written by Tim
52 * Hudson ([email protected]).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <string.h>
71
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75
76 #include "internal.h"
77 #include "../../internal.h"
78
79
80 // Most method functions in this file are designed to work with non-trivial
81 // representations of field elements if necessary (see ecp_mont.c): while
82 // standard modular addition and subtraction are used, the field_mul and
83 // field_sqr methods will be used for multiplication, and field_encode and
84 // field_decode (if defined) will be used for converting between
85 // representations.
86 //
87 // Functions here specifically assume that if a non-trivial representation is
88 // used, it is a Montgomery representation (i.e. 'encoding' means multiplying
89 // by some factor R).
90
ec_GFp_simple_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)91 int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
92 const BIGNUM *a, const BIGNUM *b,
93 BN_CTX *ctx) {
94 // p must be a prime > 3
95 if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
96 OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
97 return 0;
98 }
99
100 int ret = 0;
101 BN_CTX_start(ctx);
102 BIGNUM *tmp = BN_CTX_get(ctx);
103 if (tmp == NULL) {
104 goto err;
105 }
106
107 if (!BN_MONT_CTX_set(&group->field, p, ctx) ||
108 !ec_bignum_to_felem(group, &group->a, a) ||
109 !ec_bignum_to_felem(group, &group->b, b) ||
110 // Reuse Z from the generator to cache the value one.
111 !ec_bignum_to_felem(group, &group->generator.raw.Z, BN_value_one())) {
112 goto err;
113 }
114
115 // group->a_is_minus3
116 if (!BN_copy(tmp, a) ||
117 !BN_add_word(tmp, 3)) {
118 goto err;
119 }
120 group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field.N));
121
122 ret = 1;
123
124 err:
125 BN_CTX_end(ctx);
126 return ret;
127 }
128
ec_GFp_simple_group_get_curve(const EC_GROUP * group,BIGNUM * p,BIGNUM * a,BIGNUM * b)129 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
130 BIGNUM *b) {
131 if ((p != NULL && !BN_copy(p, &group->field.N)) ||
132 (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) ||
133 (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) {
134 return 0;
135 }
136 return 1;
137 }
138
ec_GFp_simple_point_init(EC_JACOBIAN * point)139 void ec_GFp_simple_point_init(EC_JACOBIAN *point) {
140 OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM));
141 OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM));
142 OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM));
143 }
144
ec_GFp_simple_point_copy(EC_JACOBIAN * dest,const EC_JACOBIAN * src)145 void ec_GFp_simple_point_copy(EC_JACOBIAN *dest, const EC_JACOBIAN *src) {
146 OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM));
147 OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM));
148 OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM));
149 }
150
ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group,EC_JACOBIAN * point)151 void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
152 EC_JACOBIAN *point) {
153 // Although it is strictly only necessary to zero Z, we zero the entire point
154 // in case |point| was stack-allocated and yet to be initialized.
155 ec_GFp_simple_point_init(point);
156 }
157
ec_GFp_simple_invert(const EC_GROUP * group,EC_JACOBIAN * point)158 void ec_GFp_simple_invert(const EC_GROUP *group, EC_JACOBIAN *point) {
159 ec_felem_neg(group, &point->Y, &point->Y);
160 }
161
ec_GFp_simple_is_at_infinity(const EC_GROUP * group,const EC_JACOBIAN * point)162 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
163 const EC_JACOBIAN *point) {
164 return ec_felem_non_zero_mask(group, &point->Z) == 0;
165 }
166
ec_GFp_simple_is_on_curve(const EC_GROUP * group,const EC_JACOBIAN * point)167 int ec_GFp_simple_is_on_curve(const EC_GROUP *group,
168 const EC_JACOBIAN *point) {
169 // We have a curve defined by a Weierstrass equation
170 // y^2 = x^3 + a*x + b.
171 // The point to consider is given in Jacobian projective coordinates
172 // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
173 // Substituting this and multiplying by Z^6 transforms the above equation
174 // into
175 // Y^2 = X^3 + a*X*Z^4 + b*Z^6.
176 // To test this, we add up the right-hand side in 'rh'.
177 //
178 // This function may be used when double-checking the secret result of a point
179 // multiplication, so we proceed in constant-time.
180
181 void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
182 const EC_FELEM *b) = group->meth->felem_mul;
183 void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
184 group->meth->felem_sqr;
185
186 // rh := X^2
187 EC_FELEM rh;
188 felem_sqr(group, &rh, &point->X);
189
190 EC_FELEM tmp, Z4, Z6;
191 felem_sqr(group, &tmp, &point->Z);
192 felem_sqr(group, &Z4, &tmp);
193 felem_mul(group, &Z6, &Z4, &tmp);
194
195 // rh := rh + a*Z^4
196 if (group->a_is_minus3) {
197 ec_felem_add(group, &tmp, &Z4, &Z4);
198 ec_felem_add(group, &tmp, &tmp, &Z4);
199 ec_felem_sub(group, &rh, &rh, &tmp);
200 } else {
201 felem_mul(group, &tmp, &Z4, &group->a);
202 ec_felem_add(group, &rh, &rh, &tmp);
203 }
204
205 // rh := (rh + a*Z^4)*X
206 felem_mul(group, &rh, &rh, &point->X);
207
208 // rh := rh + b*Z^6
209 felem_mul(group, &tmp, &group->b, &Z6);
210 ec_felem_add(group, &rh, &rh, &tmp);
211
212 // 'lh' := Y^2
213 felem_sqr(group, &tmp, &point->Y);
214
215 ec_felem_sub(group, &tmp, &tmp, &rh);
216 BN_ULONG not_equal = ec_felem_non_zero_mask(group, &tmp);
217
218 // If Z = 0, the point is infinity, which is always on the curve.
219 BN_ULONG not_infinity = ec_felem_non_zero_mask(group, &point->Z);
220
221 return 1 & ~(not_infinity & not_equal);
222 }
223
ec_GFp_simple_points_equal(const EC_GROUP * group,const EC_JACOBIAN * a,const EC_JACOBIAN * b)224 int ec_GFp_simple_points_equal(const EC_GROUP *group, const EC_JACOBIAN *a,
225 const EC_JACOBIAN *b) {
226 // This function is implemented in constant-time for two reasons. First,
227 // although EC points are usually public, their Jacobian Z coordinates may be
228 // secret, or at least are not obviously public. Second, more complex
229 // protocols will sometimes manipulate secret points.
230 //
231 // This does mean that we pay a 6M+2S Jacobian comparison when comparing two
232 // publicly affine points costs no field operations at all. If needed, we can
233 // restore this optimization by keeping better track of affine vs. Jacobian
234 // forms. See https://crbug.com/boringssl/326.
235
236 // If neither |a| or |b| is infinity, we have to decide whether
237 // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
238 // or equivalently, whether
239 // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
240
241 void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
242 const EC_FELEM *b) = group->meth->felem_mul;
243 void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
244 group->meth->felem_sqr;
245
246 EC_FELEM tmp1, tmp2, Za23, Zb23;
247 felem_sqr(group, &Zb23, &b->Z); // Zb23 = Z_b^2
248 felem_mul(group, &tmp1, &a->X, &Zb23); // tmp1 = X_a * Z_b^2
249 felem_sqr(group, &Za23, &a->Z); // Za23 = Z_a^2
250 felem_mul(group, &tmp2, &b->X, &Za23); // tmp2 = X_b * Z_a^2
251 ec_felem_sub(group, &tmp1, &tmp1, &tmp2);
252 const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp1);
253
254 felem_mul(group, &Zb23, &Zb23, &b->Z); // Zb23 = Z_b^3
255 felem_mul(group, &tmp1, &a->Y, &Zb23); // tmp1 = Y_a * Z_b^3
256 felem_mul(group, &Za23, &Za23, &a->Z); // Za23 = Z_a^3
257 felem_mul(group, &tmp2, &b->Y, &Za23); // tmp2 = Y_b * Z_a^3
258 ec_felem_sub(group, &tmp1, &tmp1, &tmp2);
259 const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp1);
260 const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal);
261
262 const BN_ULONG a_not_infinity = ec_felem_non_zero_mask(group, &a->Z);
263 const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z);
264 const BN_ULONG a_and_b_infinity = ~(a_not_infinity | b_not_infinity);
265
266 const BN_ULONG equal =
267 a_and_b_infinity | (a_not_infinity & b_not_infinity & x_and_y_equal);
268 return equal & 1;
269 }
270
ec_affine_jacobian_equal(const EC_GROUP * group,const EC_AFFINE * a,const EC_JACOBIAN * b)271 int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a,
272 const EC_JACOBIAN *b) {
273 // If |b| is not infinity, we have to decide whether
274 // (X_a, Y_a) = (X_b/Z_b^2, Y_b/Z_b^3),
275 // or equivalently, whether
276 // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b, Y_b).
277
278 void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
279 const EC_FELEM *b) = group->meth->felem_mul;
280 void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
281 group->meth->felem_sqr;
282
283 EC_FELEM tmp, Zb2;
284 felem_sqr(group, &Zb2, &b->Z); // Zb2 = Z_b^2
285 felem_mul(group, &tmp, &a->X, &Zb2); // tmp = X_a * Z_b^2
286 ec_felem_sub(group, &tmp, &tmp, &b->X);
287 const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp);
288
289 felem_mul(group, &tmp, &a->Y, &Zb2); // tmp = Y_a * Z_b^2
290 felem_mul(group, &tmp, &tmp, &b->Z); // tmp = Y_a * Z_b^3
291 ec_felem_sub(group, &tmp, &tmp, &b->Y);
292 const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp);
293 const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal);
294
295 const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z);
296
297 const BN_ULONG equal = b_not_infinity & x_and_y_equal;
298 return equal & 1;
299 }
300
ec_GFp_simple_cmp_x_coordinate(const EC_GROUP * group,const EC_JACOBIAN * p,const EC_SCALAR * r)301 int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_JACOBIAN *p,
302 const EC_SCALAR *r) {
303 if (ec_GFp_simple_is_at_infinity(group, p)) {
304 // |ec_get_x_coordinate_as_scalar| will check this internally, but this way
305 // we do not push to the error queue.
306 return 0;
307 }
308
309 EC_SCALAR x;
310 return ec_get_x_coordinate_as_scalar(group, &x, p) &&
311 ec_scalar_equal_vartime(group, &x, r);
312 }
313
ec_GFp_simple_felem_to_bytes(const EC_GROUP * group,uint8_t * out,size_t * out_len,const EC_FELEM * in)314 void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
315 size_t *out_len, const EC_FELEM *in) {
316 size_t len = BN_num_bytes(&group->field.N);
317 bn_words_to_big_endian(out, len, in->words, group->field.N.width);
318 *out_len = len;
319 }
320
ec_GFp_simple_felem_from_bytes(const EC_GROUP * group,EC_FELEM * out,const uint8_t * in,size_t len)321 int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
322 const uint8_t *in, size_t len) {
323 if (len != BN_num_bytes(&group->field.N)) {
324 OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR);
325 return 0;
326 }
327
328 bn_big_endian_to_words(out->words, group->field.N.width, in, len);
329
330 if (!bn_less_than_words(out->words, group->field.N.d, group->field.N.width)) {
331 OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR);
332 return 0;
333 }
334
335 return 1;
336 }
337