1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/sha.h>
58
59 #include <string.h>
60
61 #include <openssl/mem.h>
62
63 #include "../../internal.h"
64 #include "../service_indicator/internal.h"
65 #include "internal.h"
66
67
68 // The 32-bit hash algorithms share a common byte-order neutral collector and
69 // padding function implementations that operate on unaligned data,
70 // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
71 // this writing, so there is no need for a common collector/padding
72 // implementation yet.
73
74 static int sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha);
75
SHA384_Init(SHA512_CTX * sha)76 int SHA384_Init(SHA512_CTX *sha) {
77 sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
78 sha->h[1] = UINT64_C(0x629a292a367cd507);
79 sha->h[2] = UINT64_C(0x9159015a3070dd17);
80 sha->h[3] = UINT64_C(0x152fecd8f70e5939);
81 sha->h[4] = UINT64_C(0x67332667ffc00b31);
82 sha->h[5] = UINT64_C(0x8eb44a8768581511);
83 sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
84 sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
85
86 sha->Nl = 0;
87 sha->Nh = 0;
88 sha->num = 0;
89 sha->md_len = SHA384_DIGEST_LENGTH;
90 return 1;
91 }
92
93
SHA512_Init(SHA512_CTX * sha)94 int SHA512_Init(SHA512_CTX *sha) {
95 sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
96 sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
97 sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
98 sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
99 sha->h[4] = UINT64_C(0x510e527fade682d1);
100 sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
101 sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
102 sha->h[7] = UINT64_C(0x5be0cd19137e2179);
103
104 sha->Nl = 0;
105 sha->Nh = 0;
106 sha->num = 0;
107 sha->md_len = SHA512_DIGEST_LENGTH;
108 return 1;
109 }
110
SHA512_256_Init(SHA512_CTX * sha)111 int SHA512_256_Init(SHA512_CTX *sha) {
112 sha->h[0] = UINT64_C(0x22312194fc2bf72c);
113 sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
114 sha->h[2] = UINT64_C(0x2393b86b6f53b151);
115 sha->h[3] = UINT64_C(0x963877195940eabd);
116 sha->h[4] = UINT64_C(0x96283ee2a88effe3);
117 sha->h[5] = UINT64_C(0xbe5e1e2553863992);
118 sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
119 sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
120
121 sha->Nl = 0;
122 sha->Nh = 0;
123 sha->num = 0;
124 sha->md_len = SHA512_256_DIGEST_LENGTH;
125 return 1;
126 }
127
SHA384(const uint8_t * data,size_t len,uint8_t out[SHA384_DIGEST_LENGTH])128 uint8_t *SHA384(const uint8_t *data, size_t len,
129 uint8_t out[SHA384_DIGEST_LENGTH]) {
130 SHA512_CTX ctx;
131 SHA384_Init(&ctx);
132 SHA384_Update(&ctx, data, len);
133 SHA384_Final(out, &ctx);
134 OPENSSL_cleanse(&ctx, sizeof(ctx));
135 return out;
136 }
137
SHA512(const uint8_t * data,size_t len,uint8_t out[SHA512_DIGEST_LENGTH])138 uint8_t *SHA512(const uint8_t *data, size_t len,
139 uint8_t out[SHA512_DIGEST_LENGTH]) {
140 SHA512_CTX ctx;
141 SHA512_Init(&ctx);
142 SHA512_Update(&ctx, data, len);
143 SHA512_Final(out, &ctx);
144 OPENSSL_cleanse(&ctx, sizeof(ctx));
145 return out;
146 }
147
SHA512_256(const uint8_t * data,size_t len,uint8_t out[SHA512_256_DIGEST_LENGTH])148 uint8_t *SHA512_256(const uint8_t *data, size_t len,
149 uint8_t out[SHA512_256_DIGEST_LENGTH]) {
150 SHA512_CTX ctx;
151 SHA512_256_Init(&ctx);
152 SHA512_256_Update(&ctx, data, len);
153 SHA512_256_Final(out, &ctx);
154 OPENSSL_cleanse(&ctx, sizeof(ctx));
155 return out;
156 }
157
158 #if !defined(SHA512_ASM)
159 static void sha512_block_data_order(uint64_t state[8], const uint8_t *in,
160 size_t num_blocks);
161 #endif
162
163
SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH],SHA512_CTX * sha)164 int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha) {
165 // This function must be paired with |SHA384_Init|, which sets |sha->md_len|
166 // to |SHA384_DIGEST_LENGTH|.
167 assert(sha->md_len == SHA384_DIGEST_LENGTH);
168 return sha512_final_impl(out, SHA384_DIGEST_LENGTH, sha);
169 }
170
SHA384_Update(SHA512_CTX * sha,const void * data,size_t len)171 int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
172 return SHA512_Update(sha, data, len);
173 }
174
SHA512_256_Update(SHA512_CTX * sha,const void * data,size_t len)175 int SHA512_256_Update(SHA512_CTX *sha, const void *data, size_t len) {
176 return SHA512_Update(sha, data, len);
177 }
178
SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH],SHA512_CTX * sha)179 int SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH], SHA512_CTX *sha) {
180 // This function must be paired with |SHA512_256_Init|, which sets
181 // |sha->md_len| to |SHA512_256_DIGEST_LENGTH|.
182 assert(sha->md_len == SHA512_256_DIGEST_LENGTH);
183 return sha512_final_impl(out, SHA512_256_DIGEST_LENGTH, sha);
184 }
185
SHA512_Transform(SHA512_CTX * c,const uint8_t block[SHA512_CBLOCK])186 void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK]) {
187 sha512_block_data_order(c->h, block, 1);
188 }
189
SHA512_Update(SHA512_CTX * c,const void * in_data,size_t len)190 int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
191 uint64_t l;
192 uint8_t *p = c->p;
193 const uint8_t *data = in_data;
194
195 if (len == 0) {
196 return 1;
197 }
198
199 l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
200 if (l < c->Nl) {
201 c->Nh++;
202 }
203 if (sizeof(len) >= 8) {
204 c->Nh += (((uint64_t)len) >> 61);
205 }
206 c->Nl = l;
207
208 if (c->num != 0) {
209 size_t n = sizeof(c->p) - c->num;
210
211 if (len < n) {
212 OPENSSL_memcpy(p + c->num, data, len);
213 c->num += (unsigned int)len;
214 return 1;
215 } else {
216 OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
217 len -= n;
218 data += n;
219 sha512_block_data_order(c->h, p, 1);
220 }
221 }
222
223 if (len >= sizeof(c->p)) {
224 sha512_block_data_order(c->h, data, len / sizeof(c->p));
225 data += len;
226 len %= sizeof(c->p);
227 data -= len;
228 }
229
230 if (len != 0) {
231 OPENSSL_memcpy(p, data, len);
232 c->num = (int)len;
233 }
234
235 return 1;
236 }
237
SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH],SHA512_CTX * sha)238 int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha) {
239 // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match
240 // the size hint, but calling code often pairs |SHA384_Init| with
241 // |SHA512_Final| and expects |sha->md_len| to carry the size over.
242 //
243 // TODO(davidben): Add an assert and fix code to match them up.
244 return sha512_final_impl(out, sha->md_len, sha);
245 }
246
sha512_final_impl(uint8_t * out,size_t md_len,SHA512_CTX * sha)247 static int sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) {
248 uint8_t *p = sha->p;
249 size_t n = sha->num;
250
251 p[n] = 0x80; // There always is a room for one
252 n++;
253 if (n > (sizeof(sha->p) - 16)) {
254 OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
255 n = 0;
256 sha512_block_data_order(sha->h, p, 1);
257 }
258
259 OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
260 CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh);
261 CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl);
262
263 sha512_block_data_order(sha->h, p, 1);
264
265 if (out == NULL) {
266 // TODO(davidben): This NULL check is absent in other low-level hash 'final'
267 // functions and is one of the few places one can fail.
268 return 0;
269 }
270
271 assert(md_len % 8 == 0);
272 const size_t out_words = md_len / 8;
273 for (size_t i = 0; i < out_words; i++) {
274 CRYPTO_store_u64_be(out, sha->h[i]);
275 out += 8;
276 }
277
278 FIPS_service_indicator_update_state();
279 return 1;
280 }
281
282 #if !defined(SHA512_ASM)
283
284 #if !defined(SHA512_ASM_NOHW)
285 static const uint64_t K512[80] = {
286 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
287 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
288 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
289 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
290 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
291 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
292 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
293 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
294 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
295 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
296 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
297 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
298 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
299 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
300 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
301 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
302 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
303 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
304 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
305 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
306 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
307 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
308 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
309 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
310 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
311 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
312 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
313 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
314 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
315 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
316 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
317 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
318 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
319 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
320 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
321 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
322 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
323 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
324 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
325 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
326 };
327
328 #define Sigma0(x) \
329 (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
330 CRYPTO_rotr_u64((x), 39))
331 #define Sigma1(x) \
332 (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
333 CRYPTO_rotr_u64((x), 41))
334 #define sigma0(x) \
335 (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
336 #define sigma1(x) \
337 (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
338
339 #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
340 #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
341
342
343 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
344 // This code should give better results on 32-bit CPU with less than
345 // ~24 registers, both size and performance wise...
sha512_block_data_order_nohw(uint64_t state[8],const uint8_t * in,size_t num)346 static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
347 size_t num) {
348 uint64_t A, E, T;
349 uint64_t X[9 + 80], *F;
350 int i;
351
352 while (num--) {
353 F = X + 80;
354 A = state[0];
355 F[1] = state[1];
356 F[2] = state[2];
357 F[3] = state[3];
358 E = state[4];
359 F[5] = state[5];
360 F[6] = state[6];
361 F[7] = state[7];
362
363 for (i = 0; i < 16; i++, F--) {
364 T = CRYPTO_load_u64_be(in + i * 8);
365 F[0] = A;
366 F[4] = E;
367 F[8] = T;
368 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
369 E = F[3] + T;
370 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
371 }
372
373 for (; i < 80; i++, F--) {
374 T = sigma0(F[8 + 16 - 1]);
375 T += sigma1(F[8 + 16 - 14]);
376 T += F[8 + 16] + F[8 + 16 - 9];
377
378 F[0] = A;
379 F[4] = E;
380 F[8] = T;
381 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
382 E = F[3] + T;
383 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
384 }
385
386 state[0] += A;
387 state[1] += F[1];
388 state[2] += F[2];
389 state[3] += F[3];
390 state[4] += E;
391 state[5] += F[5];
392 state[6] += F[6];
393 state[7] += F[7];
394
395 in += 16 * 8;
396 }
397 }
398
399 #else
400
401 #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
402 do { \
403 T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
404 h = Sigma0(a) + Maj(a, b, c); \
405 d += T1; \
406 h += T1; \
407 } while (0)
408
409 #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
410 do { \
411 s0 = X[(j + 1) & 0x0f]; \
412 s0 = sigma0(s0); \
413 s1 = X[(j + 14) & 0x0f]; \
414 s1 = sigma1(s1); \
415 T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
416 ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
417 } while (0)
418
sha512_block_data_order_nohw(uint64_t state[8],const uint8_t * in,size_t num)419 static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
420 size_t num) {
421 uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
422 uint64_t X[16];
423 int i;
424
425 while (num--) {
426
427 a = state[0];
428 b = state[1];
429 c = state[2];
430 d = state[3];
431 e = state[4];
432 f = state[5];
433 g = state[6];
434 h = state[7];
435
436 T1 = X[0] = CRYPTO_load_u64_be(in);
437 ROUND_00_15(0, a, b, c, d, e, f, g, h);
438 T1 = X[1] = CRYPTO_load_u64_be(in + 8);
439 ROUND_00_15(1, h, a, b, c, d, e, f, g);
440 T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
441 ROUND_00_15(2, g, h, a, b, c, d, e, f);
442 T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
443 ROUND_00_15(3, f, g, h, a, b, c, d, e);
444 T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
445 ROUND_00_15(4, e, f, g, h, a, b, c, d);
446 T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
447 ROUND_00_15(5, d, e, f, g, h, a, b, c);
448 T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
449 ROUND_00_15(6, c, d, e, f, g, h, a, b);
450 T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
451 ROUND_00_15(7, b, c, d, e, f, g, h, a);
452 T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
453 ROUND_00_15(8, a, b, c, d, e, f, g, h);
454 T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
455 ROUND_00_15(9, h, a, b, c, d, e, f, g);
456 T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
457 ROUND_00_15(10, g, h, a, b, c, d, e, f);
458 T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
459 ROUND_00_15(11, f, g, h, a, b, c, d, e);
460 T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
461 ROUND_00_15(12, e, f, g, h, a, b, c, d);
462 T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
463 ROUND_00_15(13, d, e, f, g, h, a, b, c);
464 T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
465 ROUND_00_15(14, c, d, e, f, g, h, a, b);
466 T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
467 ROUND_00_15(15, b, c, d, e, f, g, h, a);
468
469 for (i = 16; i < 80; i += 16) {
470 ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
471 ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
472 ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
473 ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
474 ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
475 ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
476 ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
477 ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
478 ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
479 ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
480 ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
481 ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
482 ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
483 ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
484 ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
485 ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
486 }
487
488 state[0] += a;
489 state[1] += b;
490 state[2] += c;
491 state[3] += d;
492 state[4] += e;
493 state[5] += f;
494 state[6] += g;
495 state[7] += h;
496
497 in += 16 * 8;
498 }
499 }
500
501 #endif
502
503 #endif // !SHA512_ASM_NOHW
504
sha512_block_data_order(uint64_t state[8],const uint8_t * data,size_t num)505 static void sha512_block_data_order(uint64_t state[8], const uint8_t *data,
506 size_t num) {
507 #if defined(SHA512_ASM_HW)
508 if (sha512_hw_capable()) {
509 sha512_block_data_order_hw(state, data, num);
510 return;
511 }
512 #endif
513 #if defined(SHA512_ASM_AVX)
514 if (sha512_avx_capable()) {
515 sha512_block_data_order_avx(state, data, num);
516 return;
517 }
518 #endif
519 #if defined(SHA512_ASM_SSSE3)
520 if (sha512_ssse3_capable()) {
521 sha512_block_data_order_ssse3(state, data, num);
522 return;
523 }
524 #endif
525 #if defined(SHA512_ASM_NEON)
526 if (CRYPTO_is_NEON_capable()) {
527 sha512_block_data_order_neon(state, data, num);
528 return;
529 }
530 #endif
531 sha512_block_data_order_nohw(state, data, num);
532 }
533
534 #endif // !SHA512_ASM
535
536 #undef Sigma0
537 #undef Sigma1
538 #undef sigma0
539 #undef sigma1
540 #undef Ch
541 #undef Maj
542 #undef ROUND_00_15
543 #undef ROUND_16_80
544