1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/mem.h>
58
59 #include <assert.h>
60 #include <errno.h>
61 #include <limits.h>
62 #include <stdarg.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65
66 #include <openssl/err.h>
67
68 #if defined(OPENSSL_WINDOWS)
69 OPENSSL_MSVC_PRAGMA(warning(push, 3))
70 #include <windows.h>
71 OPENSSL_MSVC_PRAGMA(warning(pop))
72 #endif
73
74 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
75 #include <errno.h>
76 #include <signal.h>
77 #include <unistd.h>
78 #endif
79
80 #include "internal.h"
81
82
83 #define OPENSSL_MALLOC_PREFIX 8
84 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
85
86 #if defined(OPENSSL_ASAN)
87 void __asan_poison_memory_region(const volatile void *addr, size_t size);
88 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
89 #else
__asan_poison_memory_region(const void * addr,size_t size)90 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)91 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
92 #endif
93
94 // Windows doesn't really support weak symbols as of May 2019, and Clang on
95 // Windows will emit strong symbols instead. See
96 // https://bugs.llvm.org/show_bug.cgi?id=37598
97 #if defined(__ELF__) && defined(__GNUC__)
98 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
99 rettype name args __attribute__((weak));
100 #else
101 #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
102 #endif
103
104 // sdallocx is a sized |free| function. By passing the size (which we happen to
105 // always know in BoringSSL), the malloc implementation can save work. We cannot
106 // depend on |sdallocx| being available, however, so it's a weak symbol.
107 //
108 // This will always be safe, but will only be overridden if the malloc
109 // implementation is statically linked with BoringSSL. So, if |sdallocx| is
110 // provided in, say, libc.so, we still won't use it because that's dynamically
111 // linked. This isn't an ideal result, but its helps in some cases.
112 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
113
114 // The following three functions can be defined to override default heap
115 // allocation and freeing. If defined, it is the responsibility of
116 // |OPENSSL_memory_free| to zero out the memory before returning it to the
117 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
118 //
119 // WARNING: These functions are called on every allocation and free in
120 // BoringSSL across the entire process. They may be called by any code in the
121 // process which calls BoringSSL, including in process initializers and thread
122 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
123 // in the process which, directly or indirectly, calls BoringSSL may be on the
124 // call stack and may itself be using arbitrary synchronization primitives.
125 //
126 // As a result, these functions may not have the usual programming environment
127 // available to most C or C++ code. In particular, they may not call into
128 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
129 // primitives used must tolerate every other synchronization primitive linked
130 // into the process, including pthreads locks. Failing to meet these constraints
131 // may result in deadlocks, crashes, or memory corruption.
132 WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size));
133 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
134 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
135
136 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
137 static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
138 static uint64_t current_malloc_count = 0;
139 static uint64_t malloc_number_to_fail = 0;
140 static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
141 any_malloc_failed = 0, disable_malloc_failures = 0;
142
malloc_exit_handler(void)143 static void malloc_exit_handler(void) {
144 CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
145 if (any_malloc_failed) {
146 // Signal to the test driver that some allocation failed, so it knows to
147 // increment the counter and continue.
148 _exit(88);
149 }
150 CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
151 }
152
init_malloc_failure(void)153 static void init_malloc_failure(void) {
154 const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
155 if (env != NULL && env[0] != 0) {
156 char *endptr;
157 malloc_number_to_fail = strtoull(env, &endptr, 10);
158 if (*endptr == 0) {
159 malloc_failure_enabled = 1;
160 atexit(malloc_exit_handler);
161 }
162 }
163 break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
164 }
165
166 // should_fail_allocation returns one if the current allocation should fail and
167 // zero otherwise.
should_fail_allocation()168 static int should_fail_allocation() {
169 static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
170 CRYPTO_once(&once, init_malloc_failure);
171 if (!malloc_failure_enabled || disable_malloc_failures) {
172 return 0;
173 }
174
175 // We lock just so multi-threaded tests are still correct, but we won't test
176 // every malloc exhaustively.
177 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
178 int should_fail = current_malloc_count == malloc_number_to_fail;
179 current_malloc_count++;
180 any_malloc_failed = any_malloc_failed || should_fail;
181 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
182
183 if (should_fail && break_on_malloc_fail) {
184 raise(SIGTRAP);
185 }
186 if (should_fail) {
187 errno = ENOMEM;
188 }
189 return should_fail;
190 }
191
OPENSSL_reset_malloc_counter_for_testing(void)192 void OPENSSL_reset_malloc_counter_for_testing(void) {
193 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
194 current_malloc_count = 0;
195 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
196 }
197
OPENSSL_disable_malloc_failures_for_testing(void)198 void OPENSSL_disable_malloc_failures_for_testing(void) {
199 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
200 BSSL_CHECK(!disable_malloc_failures);
201 disable_malloc_failures = 1;
202 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
203 }
204
OPENSSL_enable_malloc_failures_for_testing(void)205 void OPENSSL_enable_malloc_failures_for_testing(void) {
206 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
207 BSSL_CHECK(disable_malloc_failures);
208 disable_malloc_failures = 0;
209 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
210 }
211
212 #else
should_fail_allocation(void)213 static int should_fail_allocation(void) { return 0; }
214 #endif
215
OPENSSL_malloc(size_t size)216 void *OPENSSL_malloc(size_t size) {
217 if (should_fail_allocation()) {
218 goto err;
219 }
220
221 if (OPENSSL_memory_alloc != NULL) {
222 assert(OPENSSL_memory_free != NULL);
223 assert(OPENSSL_memory_get_size != NULL);
224 void *ptr = OPENSSL_memory_alloc(size);
225 if (ptr == NULL && size != 0) {
226 goto err;
227 }
228 return ptr;
229 }
230
231 if (size + OPENSSL_MALLOC_PREFIX < size) {
232 goto err;
233 }
234
235 void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
236 if (ptr == NULL) {
237 goto err;
238 }
239
240 *(size_t *)ptr = size;
241
242 __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
243 return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
244
245 err:
246 // This only works because ERR does not call OPENSSL_malloc.
247 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
248 return NULL;
249 }
250
OPENSSL_zalloc(size_t size)251 void *OPENSSL_zalloc(size_t size) {
252 void *ret = OPENSSL_malloc(size);
253 if (ret != NULL) {
254 OPENSSL_memset(ret, 0, size);
255 }
256 return ret;
257 }
258
OPENSSL_calloc(size_t num,size_t size)259 void *OPENSSL_calloc(size_t num, size_t size) {
260 if (size != 0 && num > SIZE_MAX / size) {
261 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
262 return NULL;
263 }
264
265 return OPENSSL_zalloc(num * size);
266 }
267
OPENSSL_free(void * orig_ptr)268 void OPENSSL_free(void *orig_ptr) {
269 if (orig_ptr == NULL) {
270 return;
271 }
272
273 if (OPENSSL_memory_free != NULL) {
274 OPENSSL_memory_free(orig_ptr);
275 return;
276 }
277
278 void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
279 __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
280
281 size_t size = *(size_t *)ptr;
282 OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
283
284 // ASan knows to intercept malloc and free, but not sdallocx.
285 #if defined(OPENSSL_ASAN)
286 (void)sdallocx;
287 free(ptr);
288 #else
289 if (sdallocx) {
290 sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
291 } else {
292 free(ptr);
293 }
294 #endif
295 }
296
OPENSSL_realloc(void * orig_ptr,size_t new_size)297 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
298 if (orig_ptr == NULL) {
299 return OPENSSL_malloc(new_size);
300 }
301
302 size_t old_size;
303 if (OPENSSL_memory_get_size != NULL) {
304 old_size = OPENSSL_memory_get_size(orig_ptr);
305 } else {
306 void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
307 __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
308 old_size = *(size_t *)ptr;
309 __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
310 }
311
312 void *ret = OPENSSL_malloc(new_size);
313 if (ret == NULL) {
314 return NULL;
315 }
316
317 size_t to_copy = new_size;
318 if (old_size < to_copy) {
319 to_copy = old_size;
320 }
321
322 memcpy(ret, orig_ptr, to_copy);
323 OPENSSL_free(orig_ptr);
324
325 return ret;
326 }
327
OPENSSL_cleanse(void * ptr,size_t len)328 void OPENSSL_cleanse(void *ptr, size_t len) {
329 #if defined(OPENSSL_WINDOWS)
330 SecureZeroMemory(ptr, len);
331 #else
332 OPENSSL_memset(ptr, 0, len);
333
334 #if !defined(OPENSSL_NO_ASM)
335 /* As best as we can tell, this is sufficient to break any optimisations that
336 might try to eliminate "superfluous" memsets. If there's an easy way to
337 detect memset_s, it would be better to use that. */
338 __asm__ __volatile__("" : : "r"(ptr) : "memory");
339 #endif
340 #endif // !OPENSSL_NO_ASM
341 }
342
OPENSSL_clear_free(void * ptr,size_t unused)343 void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
344
CRYPTO_secure_malloc_init(size_t size,size_t min_size)345 int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
346
CRYPTO_secure_malloc_initialized(void)347 int CRYPTO_secure_malloc_initialized(void) { return 0; }
348
CRYPTO_secure_used(void)349 size_t CRYPTO_secure_used(void) { return 0; }
350
OPENSSL_secure_malloc(size_t size)351 void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
352
OPENSSL_secure_clear_free(void * ptr,size_t len)353 void OPENSSL_secure_clear_free(void *ptr, size_t len) {
354 OPENSSL_clear_free(ptr, len);
355 }
356
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)357 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
358 const uint8_t *a = in_a;
359 const uint8_t *b = in_b;
360 uint8_t x = 0;
361
362 for (size_t i = 0; i < len; i++) {
363 x |= a[i] ^ b[i];
364 }
365
366 return x;
367 }
368
OPENSSL_hash32(const void * ptr,size_t len)369 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
370 // These are the FNV-1a parameters for 32 bits.
371 static const uint32_t kPrime = 16777619u;
372 static const uint32_t kOffsetBasis = 2166136261u;
373
374 const uint8_t *in = ptr;
375 uint32_t h = kOffsetBasis;
376
377 for (size_t i = 0; i < len; i++) {
378 h ^= in[i];
379 h *= kPrime;
380 }
381
382 return h;
383 }
384
OPENSSL_strhash(const char * s)385 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
386
OPENSSL_strnlen(const char * s,size_t len)387 size_t OPENSSL_strnlen(const char *s, size_t len) {
388 for (size_t i = 0; i < len; i++) {
389 if (s[i] == 0) {
390 return i;
391 }
392 }
393
394 return len;
395 }
396
OPENSSL_strdup(const char * s)397 char *OPENSSL_strdup(const char *s) {
398 if (s == NULL) {
399 return NULL;
400 }
401 // Copy the NUL terminator.
402 return OPENSSL_memdup(s, strlen(s) + 1);
403 }
404
OPENSSL_isalpha(int c)405 int OPENSSL_isalpha(int c) {
406 return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
407 }
408
OPENSSL_isdigit(int c)409 int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
410
OPENSSL_isxdigit(int c)411 int OPENSSL_isxdigit(int c) {
412 return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
413 }
414
OPENSSL_fromxdigit(uint8_t * out,int c)415 int OPENSSL_fromxdigit(uint8_t *out, int c) {
416 if (OPENSSL_isdigit(c)) {
417 *out = c - '0';
418 return 1;
419 }
420 if ('a' <= c && c <= 'f') {
421 *out = c - 'a' + 10;
422 return 1;
423 }
424 if ('A' <= c && c <= 'F') {
425 *out = c - 'A' + 10;
426 return 1;
427 }
428 return 0;
429 }
430
OPENSSL_isalnum(int c)431 int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
432
OPENSSL_tolower(int c)433 int OPENSSL_tolower(int c) {
434 if (c >= 'A' && c <= 'Z') {
435 return c + ('a' - 'A');
436 }
437 return c;
438 }
439
OPENSSL_isspace(int c)440 int OPENSSL_isspace(int c) {
441 return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
442 c == ' ';
443 }
444
OPENSSL_strcasecmp(const char * a,const char * b)445 int OPENSSL_strcasecmp(const char *a, const char *b) {
446 for (size_t i = 0;; i++) {
447 const int aa = OPENSSL_tolower(a[i]);
448 const int bb = OPENSSL_tolower(b[i]);
449
450 if (aa < bb) {
451 return -1;
452 } else if (aa > bb) {
453 return 1;
454 } else if (aa == 0) {
455 return 0;
456 }
457 }
458 }
459
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)460 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
461 for (size_t i = 0; i < n; i++) {
462 const int aa = OPENSSL_tolower(a[i]);
463 const int bb = OPENSSL_tolower(b[i]);
464
465 if (aa < bb) {
466 return -1;
467 } else if (aa > bb) {
468 return 1;
469 } else if (aa == 0) {
470 return 0;
471 }
472 }
473
474 return 0;
475 }
476
BIO_snprintf(char * buf,size_t n,const char * format,...)477 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
478 va_list args;
479 va_start(args, format);
480 int ret = BIO_vsnprintf(buf, n, format, args);
481 va_end(args);
482 return ret;
483 }
484
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)485 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
486 return vsnprintf(buf, n, format, args);
487 }
488
OPENSSL_vasprintf_internal(char ** str,const char * format,va_list args,int system_malloc)489 int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
490 int system_malloc) {
491 void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
492 void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
493 void *(*reallocate)(void *, size_t) =
494 system_malloc ? realloc : OPENSSL_realloc;
495 char *candidate = NULL;
496 size_t candidate_len = 64; // TODO(bbe) what's the best initial size?
497
498 if ((candidate = allocate(candidate_len)) == NULL) {
499 goto err;
500 }
501 va_list args_copy;
502 va_copy(args_copy, args);
503 int ret = vsnprintf(candidate, candidate_len, format, args_copy);
504 va_end(args_copy);
505 if (ret < 0) {
506 goto err;
507 }
508 if ((size_t)ret >= candidate_len) {
509 // Too big to fit in allocation.
510 char *tmp;
511
512 candidate_len = (size_t)ret + 1;
513 if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
514 goto err;
515 }
516 candidate = tmp;
517 ret = vsnprintf(candidate, candidate_len, format, args);
518 }
519 // At this point this should not happen unless vsnprintf is insane.
520 if (ret < 0 || (size_t)ret >= candidate_len) {
521 goto err;
522 }
523 *str = candidate;
524 return ret;
525
526 err:
527 deallocate(candidate);
528 *str = NULL;
529 errno = ENOMEM;
530 return -1;
531 }
532
OPENSSL_vasprintf(char ** str,const char * format,va_list args)533 int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
534 return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
535 }
536
OPENSSL_asprintf(char ** str,const char * format,...)537 int OPENSSL_asprintf(char **str, const char *format, ...) {
538 va_list args;
539 va_start(args, format);
540 int ret = OPENSSL_vasprintf(str, format, args);
541 va_end(args);
542 return ret;
543 }
544
OPENSSL_strndup(const char * str,size_t size)545 char *OPENSSL_strndup(const char *str, size_t size) {
546 size = OPENSSL_strnlen(str, size);
547
548 size_t alloc_size = size + 1;
549 if (alloc_size < size) {
550 // overflow
551 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
552 return NULL;
553 }
554 char *ret = OPENSSL_malloc(alloc_size);
555 if (ret == NULL) {
556 return NULL;
557 }
558
559 OPENSSL_memcpy(ret, str, size);
560 ret[size] = '\0';
561 return ret;
562 }
563
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)564 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
565 size_t l = 0;
566
567 for (; dst_size > 1 && *src; dst_size--) {
568 *dst++ = *src++;
569 l++;
570 }
571
572 if (dst_size) {
573 *dst = 0;
574 }
575
576 return l + strlen(src);
577 }
578
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)579 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
580 size_t l = 0;
581 for (; dst_size > 0 && *dst; dst_size--, dst++) {
582 l++;
583 }
584 return l + OPENSSL_strlcpy(dst, src, dst_size);
585 }
586
OPENSSL_memdup(const void * data,size_t size)587 void *OPENSSL_memdup(const void *data, size_t size) {
588 if (size == 0) {
589 return NULL;
590 }
591
592 void *ret = OPENSSL_malloc(size);
593 if (ret == NULL) {
594 return NULL;
595 }
596
597 OPENSSL_memcpy(ret, data, size);
598 return ret;
599 }
600
CRYPTO_malloc(size_t size,const char * file,int line)601 void *CRYPTO_malloc(size_t size, const char *file, int line) {
602 return OPENSSL_malloc(size);
603 }
604
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)605 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
606 return OPENSSL_realloc(ptr, new_size);
607 }
608
CRYPTO_free(void * ptr,const char * file,int line)609 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
610