xref: /aosp_15_r20/external/boringssl/src/ssl/d1_both.cc (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /*
2  * DTLS implementation written by Nagendra Modadugu
3  * ([email protected]) for the OpenSSL project 2005.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    [email protected].
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * ([email protected]).  This product includes software written by Tim
55  * Hudson ([email protected]).
56  *
57  */
58 /* Copyright (C) 1995-1998 Eric Young ([email protected])
59  * All rights reserved.
60  *
61  * This package is an SSL implementation written
62  * by Eric Young ([email protected]).
63  * The implementation was written so as to conform with Netscapes SSL.
64  *
65  * This library is free for commercial and non-commercial use as long as
66  * the following conditions are aheared to.  The following conditions
67  * apply to all code found in this distribution, be it the RC4, RSA,
68  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
69  * included with this distribution is covered by the same copyright terms
70  * except that the holder is Tim Hudson ([email protected]).
71  *
72  * Copyright remains Eric Young's, and as such any Copyright notices in
73  * the code are not to be removed.
74  * If this package is used in a product, Eric Young should be given attribution
75  * as the author of the parts of the library used.
76  * This can be in the form of a textual message at program startup or
77  * in documentation (online or textual) provided with the package.
78  *
79  * Redistribution and use in source and binary forms, with or without
80  * modification, are permitted provided that the following conditions
81  * are met:
82  * 1. Redistributions of source code must retain the copyright
83  *    notice, this list of conditions and the following disclaimer.
84  * 2. Redistributions in binary form must reproduce the above copyright
85  *    notice, this list of conditions and the following disclaimer in the
86  *    documentation and/or other materials provided with the distribution.
87  * 3. All advertising materials mentioning features or use of this software
88  *    must display the following acknowledgement:
89  *    "This product includes cryptographic software written by
90  *     Eric Young ([email protected])"
91  *    The word 'cryptographic' can be left out if the rouines from the library
92  *    being used are not cryptographic related :-).
93  * 4. If you include any Windows specific code (or a derivative thereof) from
94  *    the apps directory (application code) you must include an acknowledgement:
95  *    "This product includes software written by Tim Hudson ([email protected])"
96  *
97  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107  * SUCH DAMAGE.
108  *
109  * The licence and distribution terms for any publically available version or
110  * derivative of this code cannot be changed.  i.e. this code cannot simply be
111  * copied and put under another distribution licence
112  * [including the GNU Public Licence.] */
113 
114 #include <openssl/ssl.h>
115 
116 #include <assert.h>
117 #include <limits.h>
118 #include <string.h>
119 
120 #include <openssl/err.h>
121 #include <openssl/evp.h>
122 #include <openssl/mem.h>
123 #include <openssl/rand.h>
124 
125 #include "../crypto/internal.h"
126 #include "internal.h"
127 
128 
129 BSSL_NAMESPACE_BEGIN
130 
131 // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
132 // for these values? Notably, why is kMinMTU a function of the transport
133 // protocol's overhead rather than, say, what's needed to hold a minimally-sized
134 // handshake fragment plus protocol overhead.
135 
136 // kMinMTU is the minimum acceptable MTU value.
137 static const unsigned int kMinMTU = 256 - 28;
138 
139 // kDefaultMTU is the default MTU value to use if neither the user nor
140 // the underlying BIO supplies one.
141 static const unsigned int kDefaultMTU = 1500 - 28;
142 
143 
144 // Receiving handshake messages.
145 
~hm_fragment()146 hm_fragment::~hm_fragment() {
147   OPENSSL_free(data);
148   OPENSSL_free(reassembly);
149 }
150 
dtls1_hm_fragment_new(const struct hm_header_st * msg_hdr)151 static UniquePtr<hm_fragment> dtls1_hm_fragment_new(
152     const struct hm_header_st *msg_hdr) {
153   ScopedCBB cbb;
154   UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>();
155   if (!frag) {
156     return nullptr;
157   }
158   frag->type = msg_hdr->type;
159   frag->seq = msg_hdr->seq;
160   frag->msg_len = msg_hdr->msg_len;
161 
162   // Allocate space for the reassembled message and fill in the header.
163   frag->data =
164       (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
165   if (frag->data == NULL) {
166     return nullptr;
167   }
168 
169   if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) ||
170       !CBB_add_u8(cbb.get(), msg_hdr->type) ||
171       !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
172       !CBB_add_u16(cbb.get(), msg_hdr->seq) ||
173       !CBB_add_u24(cbb.get(), 0 /* frag_off */) ||
174       !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
175       !CBB_finish(cbb.get(), NULL, NULL)) {
176     return nullptr;
177   }
178 
179   // If the handshake message is empty, |frag->reassembly| is NULL.
180   if (msg_hdr->msg_len > 0) {
181     // Initialize reassembly bitmask.
182     if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
183       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
184       return nullptr;
185     }
186     size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
187     frag->reassembly = (uint8_t *)OPENSSL_zalloc(bitmask_len);
188     if (frag->reassembly == NULL) {
189       return nullptr;
190     }
191   }
192 
193   return frag;
194 }
195 
196 // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
197 // exclusive, set.
bit_range(size_t start,size_t end)198 static uint8_t bit_range(size_t start, size_t end) {
199   return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
200 }
201 
202 // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
203 // as received in |frag|. If |frag| becomes complete, it clears
204 // |frag->reassembly|. The range must be within the bounds of |frag|'s message
205 // and |frag->reassembly| must not be NULL.
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)206 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
207                                    size_t end) {
208   size_t msg_len = frag->msg_len;
209 
210   if (frag->reassembly == NULL || start > end || end > msg_len) {
211     assert(0);
212     return;
213   }
214   // A zero-length message will never have a pending reassembly.
215   assert(msg_len > 0);
216 
217   if (start == end) {
218     return;
219   }
220 
221   if ((start >> 3) == (end >> 3)) {
222     frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
223   } else {
224     frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
225     for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
226       frag->reassembly[i] = 0xff;
227     }
228     if ((end & 7) != 0) {
229       frag->reassembly[end >> 3] |= bit_range(0, end & 7);
230     }
231   }
232 
233   // Check if the fragment is complete.
234   for (size_t i = 0; i < (msg_len >> 3); i++) {
235     if (frag->reassembly[i] != 0xff) {
236       return;
237     }
238   }
239   if ((msg_len & 7) != 0 &&
240       frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
241     return;
242   }
243 
244   OPENSSL_free(frag->reassembly);
245   frag->reassembly = NULL;
246 }
247 
248 // dtls1_is_current_message_complete returns whether the current handshake
249 // message is complete.
dtls1_is_current_message_complete(const SSL * ssl)250 static bool dtls1_is_current_message_complete(const SSL *ssl) {
251   size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
252   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
253   return frag != NULL && frag->reassembly == NULL;
254 }
255 
256 // dtls1_get_incoming_message returns the incoming message corresponding to
257 // |msg_hdr|. If none exists, it creates a new one and inserts it in the
258 // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
259 // returns NULL on failure. The caller does not take ownership of the result.
dtls1_get_incoming_message(SSL * ssl,uint8_t * out_alert,const struct hm_header_st * msg_hdr)260 static hm_fragment *dtls1_get_incoming_message(
261     SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) {
262   if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
263       msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
264     *out_alert = SSL_AD_INTERNAL_ERROR;
265     return NULL;
266   }
267 
268   size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
269   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
270   if (frag != NULL) {
271     assert(frag->seq == msg_hdr->seq);
272     // The new fragment must be compatible with the previous fragments from this
273     // message.
274     if (frag->type != msg_hdr->type ||
275         frag->msg_len != msg_hdr->msg_len) {
276       OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
277       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
278       return NULL;
279     }
280     return frag;
281   }
282 
283   // This is the first fragment from this message.
284   ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr);
285   if (!ssl->d1->incoming_messages[idx]) {
286     *out_alert = SSL_AD_INTERNAL_ERROR;
287     return NULL;
288   }
289   return ssl->d1->incoming_messages[idx].get();
290 }
291 
dtls1_open_handshake(SSL * ssl,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)292 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
293                                        uint8_t *out_alert, Span<uint8_t> in) {
294   uint8_t type;
295   Span<uint8_t> record;
296   auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in);
297   if (ret != ssl_open_record_success) {
298     return ret;
299   }
300 
301   switch (type) {
302     case SSL3_RT_APPLICATION_DATA:
303       // Unencrypted application data records are always illegal.
304       if (ssl->s3->aead_read_ctx->is_null_cipher()) {
305         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
306         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
307         return ssl_open_record_error;
308       }
309 
310       // Out-of-order application data may be received between ChangeCipherSpec
311       // and finished. Discard it.
312       return ssl_open_record_discard;
313 
314     case SSL3_RT_CHANGE_CIPHER_SPEC:
315       // We do not support renegotiation, so encrypted ChangeCipherSpec records
316       // are illegal.
317       if (!ssl->s3->aead_read_ctx->is_null_cipher()) {
318         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
319         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
320         return ssl_open_record_error;
321       }
322 
323       if (record.size() != 1u || record[0] != SSL3_MT_CCS) {
324         OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
325         *out_alert = SSL_AD_ILLEGAL_PARAMETER;
326         return ssl_open_record_error;
327       }
328 
329       // Flag the ChangeCipherSpec for later.
330       ssl->d1->has_change_cipher_spec = true;
331       ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC,
332                           record);
333       return ssl_open_record_success;
334 
335     case SSL3_RT_HANDSHAKE:
336       // Break out to main processing.
337       break;
338 
339     default:
340       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
341       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
342       return ssl_open_record_error;
343   }
344 
345   CBS cbs;
346   CBS_init(&cbs, record.data(), record.size());
347   while (CBS_len(&cbs) > 0) {
348     // Read a handshake fragment.
349     struct hm_header_st msg_hdr;
350     CBS body;
351     if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
352       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
353       *out_alert = SSL_AD_DECODE_ERROR;
354       return ssl_open_record_error;
355     }
356 
357     const size_t frag_off = msg_hdr.frag_off;
358     const size_t frag_len = msg_hdr.frag_len;
359     const size_t msg_len = msg_hdr.msg_len;
360     if (frag_off > msg_len || frag_off + frag_len < frag_off ||
361         frag_off + frag_len > msg_len ||
362         msg_len > ssl_max_handshake_message_len(ssl)) {
363       OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
364       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
365       return ssl_open_record_error;
366     }
367 
368     // The encrypted epoch in DTLS has only one handshake message.
369     if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
370       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
371       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
372       return ssl_open_record_error;
373     }
374 
375     if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
376         msg_hdr.seq >
377             (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
378       // Ignore fragments from the past, or ones too far in the future.
379       continue;
380     }
381 
382     hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr);
383     if (frag == NULL) {
384       return ssl_open_record_error;
385     }
386     assert(frag->msg_len == msg_len);
387 
388     if (frag->reassembly == NULL) {
389       // The message is already assembled.
390       continue;
391     }
392     assert(msg_len > 0);
393 
394     // Copy the body into the fragment.
395     OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
396                    CBS_data(&body), CBS_len(&body));
397     dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
398   }
399 
400   return ssl_open_record_success;
401 }
402 
dtls1_get_message(const SSL * ssl,SSLMessage * out)403 bool dtls1_get_message(const SSL *ssl, SSLMessage *out) {
404   if (!dtls1_is_current_message_complete(ssl)) {
405     return false;
406   }
407 
408   size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
409   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
410   out->type = frag->type;
411   CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len);
412   CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
413   out->is_v2_hello = false;
414   if (!ssl->s3->has_message) {
415     ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw);
416     ssl->s3->has_message = true;
417   }
418   return true;
419 }
420 
dtls1_next_message(SSL * ssl)421 void dtls1_next_message(SSL *ssl) {
422   assert(ssl->s3->has_message);
423   assert(dtls1_is_current_message_complete(ssl));
424   size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
425   ssl->d1->incoming_messages[index].reset();
426   ssl->d1->handshake_read_seq++;
427   ssl->s3->has_message = false;
428   // If we previously sent a flight, mark it as having a reply, so
429   // |on_handshake_complete| can manage post-handshake retransmission.
430   if (ssl->d1->outgoing_messages_complete) {
431     ssl->d1->flight_has_reply = true;
432   }
433 }
434 
dtls_has_unprocessed_handshake_data(const SSL * ssl)435 bool dtls_has_unprocessed_handshake_data(const SSL *ssl) {
436   size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
437   for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
438     // Skip the current message.
439     if (ssl->s3->has_message && i == current) {
440       assert(dtls1_is_current_message_complete(ssl));
441       continue;
442     }
443     if (ssl->d1->incoming_messages[i] != nullptr) {
444       return true;
445     }
446   }
447   return false;
448 }
449 
dtls1_parse_fragment(CBS * cbs,struct hm_header_st * out_hdr,CBS * out_body)450 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
451                           CBS *out_body) {
452   OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
453 
454   if (!CBS_get_u8(cbs, &out_hdr->type) ||
455       !CBS_get_u24(cbs, &out_hdr->msg_len) ||
456       !CBS_get_u16(cbs, &out_hdr->seq) ||
457       !CBS_get_u24(cbs, &out_hdr->frag_off) ||
458       !CBS_get_u24(cbs, &out_hdr->frag_len) ||
459       !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
460     return false;
461   }
462 
463   return true;
464 }
465 
dtls1_open_change_cipher_spec(SSL * ssl,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)466 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
467                                                 uint8_t *out_alert,
468                                                 Span<uint8_t> in) {
469   if (!ssl->d1->has_change_cipher_spec) {
470     // dtls1_open_handshake processes both handshake and ChangeCipherSpec.
471     auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in);
472     if (ret != ssl_open_record_success) {
473       return ret;
474     }
475   }
476   if (ssl->d1->has_change_cipher_spec) {
477     ssl->d1->has_change_cipher_spec = false;
478     return ssl_open_record_success;
479   }
480   return ssl_open_record_discard;
481 }
482 
483 
484 // Sending handshake messages.
485 
Clear()486 void DTLS_OUTGOING_MESSAGE::Clear() { data.Reset(); }
487 
dtls_clear_outgoing_messages(SSL * ssl)488 void dtls_clear_outgoing_messages(SSL *ssl) {
489   for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
490     ssl->d1->outgoing_messages[i].Clear();
491   }
492   ssl->d1->outgoing_messages_len = 0;
493   ssl->d1->outgoing_written = 0;
494   ssl->d1->outgoing_offset = 0;
495   ssl->d1->outgoing_messages_complete = false;
496   ssl->d1->flight_has_reply = false;
497 }
498 
dtls1_init_message(const SSL * ssl,CBB * cbb,CBB * body,uint8_t type)499 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
500   // Pick a modest size hint to save most of the |realloc| calls.
501   if (!CBB_init(cbb, 64) ||
502       !CBB_add_u8(cbb, type) ||
503       !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
504       !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
505       !CBB_add_u24(cbb, 0 /* offset */) ||
506       !CBB_add_u24_length_prefixed(cbb, body)) {
507     return false;
508   }
509 
510   return true;
511 }
512 
dtls1_finish_message(const SSL * ssl,CBB * cbb,Array<uint8_t> * out_msg)513 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) {
514   if (!CBBFinishArray(cbb, out_msg) ||
515       out_msg->size() < DTLS1_HM_HEADER_LENGTH) {
516     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
517     return false;
518   }
519 
520   // Fix up the header. Copy the fragment length into the total message
521   // length.
522   OPENSSL_memcpy(out_msg->data() + 1,
523                  out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3);
524   return true;
525 }
526 
527 // ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a
528 // 32-bit value. The obvious thing doesn't work because, in some 32-bit build
529 // configurations, the compiler warns that the test is always false and breaks
530 // the build.
ssl_size_t_greater_than_32_bits(size_t v)531 static bool ssl_size_t_greater_than_32_bits(size_t v) {
532 #if defined(OPENSSL_64_BIT)
533   return v > 0xffffffff;
534 #elif defined(OPENSSL_32_BIT)
535   return false;
536 #else
537 #error "Building for neither 32- nor 64-bits."
538 #endif
539 }
540 
541 // add_outgoing adds a new handshake message or ChangeCipherSpec to the current
542 // outgoing flight. It returns true on success and false on error.
add_outgoing(SSL * ssl,bool is_ccs,Array<uint8_t> data)543 static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) {
544   if (ssl->d1->outgoing_messages_complete) {
545     // If we've begun writing a new flight, we received the peer flight. Discard
546     // the timer and the our flight.
547     dtls1_stop_timer(ssl);
548     dtls_clear_outgoing_messages(ssl);
549   }
550 
551   static_assert(SSL_MAX_HANDSHAKE_FLIGHT <
552                     (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
553                 "outgoing_messages_len is too small");
554   if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT ||
555       ssl_size_t_greater_than_32_bits(data.size())) {
556     assert(false);
557     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
558     return false;
559   }
560 
561   if (!is_ccs) {
562     // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript
563     // on hs.
564     if (ssl->s3->hs != NULL &&
565         !ssl->s3->hs->transcript.Update(data)) {
566       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
567       return false;
568     }
569     ssl->d1->handshake_write_seq++;
570   }
571 
572   DTLS_OUTGOING_MESSAGE *msg =
573       &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
574   msg->data = std::move(data);
575   msg->epoch = ssl->d1->w_epoch;
576   msg->is_ccs = is_ccs;
577 
578   ssl->d1->outgoing_messages_len++;
579   return true;
580 }
581 
dtls1_add_message(SSL * ssl,Array<uint8_t> data)582 bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) {
583   return add_outgoing(ssl, false /* handshake */, std::move(data));
584 }
585 
dtls1_add_change_cipher_spec(SSL * ssl)586 bool dtls1_add_change_cipher_spec(SSL *ssl) {
587   return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>());
588 }
589 
590 // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
591 // the minimum.
dtls1_update_mtu(SSL * ssl)592 static void dtls1_update_mtu(SSL *ssl) {
593   // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
594   // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
595   // |SSL_set_mtu|. Does this need to be so complex?
596   if (ssl->d1->mtu < dtls1_min_mtu() &&
597       !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
598     long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
599     if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
600       ssl->d1->mtu = (unsigned)mtu;
601     } else {
602       ssl->d1->mtu = kDefaultMTU;
603       BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
604     }
605   }
606 
607   // The MTU should be above the minimum now.
608   assert(ssl->d1->mtu >= dtls1_min_mtu());
609 }
610 
611 enum seal_result_t {
612   seal_error,
613   seal_no_progress,
614   seal_partial,
615   seal_success,
616 };
617 
618 // seal_next_message seals |msg|, which must be the next message, to |out|. If
619 // progress was made, it returns |seal_partial| or |seal_success| and sets
620 // |*out_len| to the number of bytes written.
seal_next_message(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,const DTLS_OUTGOING_MESSAGE * msg)621 static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
622                                             size_t *out_len, size_t max_out,
623                                             const DTLS_OUTGOING_MESSAGE *msg) {
624   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
625   assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
626 
627   if (msg->epoch != ssl->d1->w_epoch &&
628       (ssl->d1->w_epoch == 0 || msg->epoch != ssl->d1->w_epoch - 1)) {
629     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
630     return seal_error;
631   }
632 
633   size_t overhead = dtls_max_seal_overhead(ssl, msg->epoch);
634   size_t prefix = dtls_seal_prefix_len(ssl, msg->epoch);
635 
636   if (msg->is_ccs) {
637     // Check there is room for the ChangeCipherSpec.
638     static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
639     if (max_out < sizeof(kChangeCipherSpec) + overhead) {
640       return seal_no_progress;
641     }
642 
643     if (!dtls_seal_record(ssl, out, out_len, max_out,
644                           SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
645                           sizeof(kChangeCipherSpec), msg->epoch)) {
646       return seal_error;
647     }
648 
649     ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
650                         kChangeCipherSpec);
651     return seal_success;
652   }
653 
654   // DTLS messages are serialized as a single fragment in |msg|.
655   CBS cbs, body;
656   struct hm_header_st hdr;
657   CBS_init(&cbs, msg->data.data(), msg->data.size());
658   if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
659       hdr.frag_off != 0 ||
660       hdr.frag_len != CBS_len(&body) ||
661       hdr.msg_len != CBS_len(&body) ||
662       !CBS_skip(&body, ssl->d1->outgoing_offset) ||
663       CBS_len(&cbs) != 0) {
664     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
665     return seal_error;
666   }
667 
668   // Determine how much progress can be made.
669   if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
670     return seal_no_progress;
671   }
672   size_t todo = CBS_len(&body);
673   if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
674     todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
675   }
676 
677   // Assemble a fragment, to be sealed in-place.
678   ScopedCBB cbb;
679   CBB child;
680   uint8_t *frag = out + prefix;
681   size_t max_frag = max_out - prefix, frag_len;
682   if (!CBB_init_fixed(cbb.get(), frag, max_frag) ||
683       !CBB_add_u8(cbb.get(), hdr.type) ||
684       !CBB_add_u24(cbb.get(), hdr.msg_len) ||
685       !CBB_add_u16(cbb.get(), hdr.seq) ||
686       !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) ||
687       !CBB_add_u24_length_prefixed(cbb.get(), &child) ||
688       !CBB_add_bytes(&child, CBS_data(&body), todo) ||
689       !CBB_finish(cbb.get(), NULL, &frag_len)) {
690     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
691     return seal_error;
692   }
693 
694   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE,
695                       MakeSpan(frag, frag_len));
696 
697   if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
698                         out + prefix, frag_len, msg->epoch)) {
699     return seal_error;
700   }
701 
702   if (todo == CBS_len(&body)) {
703     // The next message is complete.
704     ssl->d1->outgoing_offset = 0;
705     return seal_success;
706   }
707 
708   ssl->d1->outgoing_offset += todo;
709   return seal_partial;
710 }
711 
712 // seal_next_packet writes as much of the next flight as possible to |out| and
713 // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
714 // appropriate.
seal_next_packet(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out)715 static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
716                              size_t max_out) {
717   bool made_progress = false;
718   size_t total = 0;
719   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
720   for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
721        ssl->d1->outgoing_written++) {
722     const DTLS_OUTGOING_MESSAGE *msg =
723         &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
724     size_t len;
725     enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
726     switch (ret) {
727       case seal_error:
728         return false;
729 
730       case seal_no_progress:
731         goto packet_full;
732 
733       case seal_partial:
734       case seal_success:
735         out += len;
736         max_out -= len;
737         total += len;
738         made_progress = true;
739 
740         if (ret == seal_partial) {
741           goto packet_full;
742         }
743         break;
744     }
745   }
746 
747 packet_full:
748   // The MTU was too small to make any progress.
749   if (!made_progress) {
750     OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
751     return false;
752   }
753 
754   *out_len = total;
755   return true;
756 }
757 
send_flight(SSL * ssl)758 static int send_flight(SSL *ssl) {
759   if (ssl->s3->write_shutdown != ssl_shutdown_none) {
760     OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
761     return -1;
762   }
763 
764   if (ssl->wbio == nullptr) {
765     OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET);
766     return -1;
767   }
768 
769   dtls1_update_mtu(ssl);
770 
771   Array<uint8_t> packet;
772   if (!packet.Init(ssl->d1->mtu)) {
773     return -1;
774   }
775 
776   while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
777     uint8_t old_written = ssl->d1->outgoing_written;
778     uint32_t old_offset = ssl->d1->outgoing_offset;
779 
780     size_t packet_len;
781     if (!seal_next_packet(ssl, packet.data(), &packet_len, packet.size())) {
782       return -1;
783     }
784 
785     int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len);
786     if (bio_ret <= 0) {
787       // Retry this packet the next time around.
788       ssl->d1->outgoing_written = old_written;
789       ssl->d1->outgoing_offset = old_offset;
790       ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
791       return bio_ret;
792     }
793   }
794 
795   if (BIO_flush(ssl->wbio.get()) <= 0) {
796     ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
797     return -1;
798   }
799 
800   return 1;
801 }
802 
dtls1_flush_flight(SSL * ssl)803 int dtls1_flush_flight(SSL *ssl) {
804   ssl->d1->outgoing_messages_complete = true;
805   // Start the retransmission timer for the next flight (if any).
806   dtls1_start_timer(ssl);
807   return send_flight(ssl);
808 }
809 
dtls1_retransmit_outgoing_messages(SSL * ssl)810 int dtls1_retransmit_outgoing_messages(SSL *ssl) {
811   // Rewind to the start of the flight and write it again.
812   //
813   // TODO(davidben): This does not allow retransmits to be resumed on
814   // non-blocking write.
815   ssl->d1->outgoing_written = 0;
816   ssl->d1->outgoing_offset = 0;
817 
818   return send_flight(ssl);
819 }
820 
dtls1_min_mtu(void)821 unsigned int dtls1_min_mtu(void) {
822   return kMinMTU;
823 }
824 
825 BSSL_NAMESPACE_END
826