1 /*
2 * DTLS implementation written by Nagendra Modadugu
3 * ([email protected]) for the OpenSSL project 2005.
4 */
5 /* ====================================================================
6 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * [email protected].
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * ([email protected]). This product includes software written by Tim
55 * Hudson ([email protected]).
56 *
57 */
58 /* Copyright (C) 1995-1998 Eric Young ([email protected])
59 * All rights reserved.
60 *
61 * This package is an SSL implementation written
62 * by Eric Young ([email protected]).
63 * The implementation was written so as to conform with Netscapes SSL.
64 *
65 * This library is free for commercial and non-commercial use as long as
66 * the following conditions are aheared to. The following conditions
67 * apply to all code found in this distribution, be it the RC4, RSA,
68 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
69 * included with this distribution is covered by the same copyright terms
70 * except that the holder is Tim Hudson ([email protected]).
71 *
72 * Copyright remains Eric Young's, and as such any Copyright notices in
73 * the code are not to be removed.
74 * If this package is used in a product, Eric Young should be given attribution
75 * as the author of the parts of the library used.
76 * This can be in the form of a textual message at program startup or
77 * in documentation (online or textual) provided with the package.
78 *
79 * Redistribution and use in source and binary forms, with or without
80 * modification, are permitted provided that the following conditions
81 * are met:
82 * 1. Redistributions of source code must retain the copyright
83 * notice, this list of conditions and the following disclaimer.
84 * 2. Redistributions in binary form must reproduce the above copyright
85 * notice, this list of conditions and the following disclaimer in the
86 * documentation and/or other materials provided with the distribution.
87 * 3. All advertising materials mentioning features or use of this software
88 * must display the following acknowledgement:
89 * "This product includes cryptographic software written by
90 * Eric Young ([email protected])"
91 * The word 'cryptographic' can be left out if the rouines from the library
92 * being used are not cryptographic related :-).
93 * 4. If you include any Windows specific code (or a derivative thereof) from
94 * the apps directory (application code) you must include an acknowledgement:
95 * "This product includes software written by Tim Hudson ([email protected])"
96 *
97 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107 * SUCH DAMAGE.
108 *
109 * The licence and distribution terms for any publically available version or
110 * derivative of this code cannot be changed. i.e. this code cannot simply be
111 * copied and put under another distribution licence
112 * [including the GNU Public Licence.] */
113
114 #include <openssl/ssl.h>
115
116 #include <assert.h>
117 #include <limits.h>
118 #include <string.h>
119
120 #include <openssl/err.h>
121 #include <openssl/evp.h>
122 #include <openssl/mem.h>
123 #include <openssl/rand.h>
124
125 #include "../crypto/internal.h"
126 #include "internal.h"
127
128
129 BSSL_NAMESPACE_BEGIN
130
131 // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
132 // for these values? Notably, why is kMinMTU a function of the transport
133 // protocol's overhead rather than, say, what's needed to hold a minimally-sized
134 // handshake fragment plus protocol overhead.
135
136 // kMinMTU is the minimum acceptable MTU value.
137 static const unsigned int kMinMTU = 256 - 28;
138
139 // kDefaultMTU is the default MTU value to use if neither the user nor
140 // the underlying BIO supplies one.
141 static const unsigned int kDefaultMTU = 1500 - 28;
142
143
144 // Receiving handshake messages.
145
~hm_fragment()146 hm_fragment::~hm_fragment() {
147 OPENSSL_free(data);
148 OPENSSL_free(reassembly);
149 }
150
dtls1_hm_fragment_new(const struct hm_header_st * msg_hdr)151 static UniquePtr<hm_fragment> dtls1_hm_fragment_new(
152 const struct hm_header_st *msg_hdr) {
153 ScopedCBB cbb;
154 UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>();
155 if (!frag) {
156 return nullptr;
157 }
158 frag->type = msg_hdr->type;
159 frag->seq = msg_hdr->seq;
160 frag->msg_len = msg_hdr->msg_len;
161
162 // Allocate space for the reassembled message and fill in the header.
163 frag->data =
164 (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
165 if (frag->data == NULL) {
166 return nullptr;
167 }
168
169 if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) ||
170 !CBB_add_u8(cbb.get(), msg_hdr->type) ||
171 !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
172 !CBB_add_u16(cbb.get(), msg_hdr->seq) ||
173 !CBB_add_u24(cbb.get(), 0 /* frag_off */) ||
174 !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
175 !CBB_finish(cbb.get(), NULL, NULL)) {
176 return nullptr;
177 }
178
179 // If the handshake message is empty, |frag->reassembly| is NULL.
180 if (msg_hdr->msg_len > 0) {
181 // Initialize reassembly bitmask.
182 if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
183 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
184 return nullptr;
185 }
186 size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
187 frag->reassembly = (uint8_t *)OPENSSL_zalloc(bitmask_len);
188 if (frag->reassembly == NULL) {
189 return nullptr;
190 }
191 }
192
193 return frag;
194 }
195
196 // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
197 // exclusive, set.
bit_range(size_t start,size_t end)198 static uint8_t bit_range(size_t start, size_t end) {
199 return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
200 }
201
202 // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
203 // as received in |frag|. If |frag| becomes complete, it clears
204 // |frag->reassembly|. The range must be within the bounds of |frag|'s message
205 // and |frag->reassembly| must not be NULL.
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)206 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
207 size_t end) {
208 size_t msg_len = frag->msg_len;
209
210 if (frag->reassembly == NULL || start > end || end > msg_len) {
211 assert(0);
212 return;
213 }
214 // A zero-length message will never have a pending reassembly.
215 assert(msg_len > 0);
216
217 if (start == end) {
218 return;
219 }
220
221 if ((start >> 3) == (end >> 3)) {
222 frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
223 } else {
224 frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
225 for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
226 frag->reassembly[i] = 0xff;
227 }
228 if ((end & 7) != 0) {
229 frag->reassembly[end >> 3] |= bit_range(0, end & 7);
230 }
231 }
232
233 // Check if the fragment is complete.
234 for (size_t i = 0; i < (msg_len >> 3); i++) {
235 if (frag->reassembly[i] != 0xff) {
236 return;
237 }
238 }
239 if ((msg_len & 7) != 0 &&
240 frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
241 return;
242 }
243
244 OPENSSL_free(frag->reassembly);
245 frag->reassembly = NULL;
246 }
247
248 // dtls1_is_current_message_complete returns whether the current handshake
249 // message is complete.
dtls1_is_current_message_complete(const SSL * ssl)250 static bool dtls1_is_current_message_complete(const SSL *ssl) {
251 size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
252 hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
253 return frag != NULL && frag->reassembly == NULL;
254 }
255
256 // dtls1_get_incoming_message returns the incoming message corresponding to
257 // |msg_hdr|. If none exists, it creates a new one and inserts it in the
258 // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
259 // returns NULL on failure. The caller does not take ownership of the result.
dtls1_get_incoming_message(SSL * ssl,uint8_t * out_alert,const struct hm_header_st * msg_hdr)260 static hm_fragment *dtls1_get_incoming_message(
261 SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) {
262 if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
263 msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
264 *out_alert = SSL_AD_INTERNAL_ERROR;
265 return NULL;
266 }
267
268 size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
269 hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
270 if (frag != NULL) {
271 assert(frag->seq == msg_hdr->seq);
272 // The new fragment must be compatible with the previous fragments from this
273 // message.
274 if (frag->type != msg_hdr->type ||
275 frag->msg_len != msg_hdr->msg_len) {
276 OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
277 *out_alert = SSL_AD_ILLEGAL_PARAMETER;
278 return NULL;
279 }
280 return frag;
281 }
282
283 // This is the first fragment from this message.
284 ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr);
285 if (!ssl->d1->incoming_messages[idx]) {
286 *out_alert = SSL_AD_INTERNAL_ERROR;
287 return NULL;
288 }
289 return ssl->d1->incoming_messages[idx].get();
290 }
291
dtls1_open_handshake(SSL * ssl,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)292 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
293 uint8_t *out_alert, Span<uint8_t> in) {
294 uint8_t type;
295 Span<uint8_t> record;
296 auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in);
297 if (ret != ssl_open_record_success) {
298 return ret;
299 }
300
301 switch (type) {
302 case SSL3_RT_APPLICATION_DATA:
303 // Unencrypted application data records are always illegal.
304 if (ssl->s3->aead_read_ctx->is_null_cipher()) {
305 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
306 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
307 return ssl_open_record_error;
308 }
309
310 // Out-of-order application data may be received between ChangeCipherSpec
311 // and finished. Discard it.
312 return ssl_open_record_discard;
313
314 case SSL3_RT_CHANGE_CIPHER_SPEC:
315 // We do not support renegotiation, so encrypted ChangeCipherSpec records
316 // are illegal.
317 if (!ssl->s3->aead_read_ctx->is_null_cipher()) {
318 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
319 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
320 return ssl_open_record_error;
321 }
322
323 if (record.size() != 1u || record[0] != SSL3_MT_CCS) {
324 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
325 *out_alert = SSL_AD_ILLEGAL_PARAMETER;
326 return ssl_open_record_error;
327 }
328
329 // Flag the ChangeCipherSpec for later.
330 ssl->d1->has_change_cipher_spec = true;
331 ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC,
332 record);
333 return ssl_open_record_success;
334
335 case SSL3_RT_HANDSHAKE:
336 // Break out to main processing.
337 break;
338
339 default:
340 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
341 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
342 return ssl_open_record_error;
343 }
344
345 CBS cbs;
346 CBS_init(&cbs, record.data(), record.size());
347 while (CBS_len(&cbs) > 0) {
348 // Read a handshake fragment.
349 struct hm_header_st msg_hdr;
350 CBS body;
351 if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
352 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
353 *out_alert = SSL_AD_DECODE_ERROR;
354 return ssl_open_record_error;
355 }
356
357 const size_t frag_off = msg_hdr.frag_off;
358 const size_t frag_len = msg_hdr.frag_len;
359 const size_t msg_len = msg_hdr.msg_len;
360 if (frag_off > msg_len || frag_off + frag_len < frag_off ||
361 frag_off + frag_len > msg_len ||
362 msg_len > ssl_max_handshake_message_len(ssl)) {
363 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
364 *out_alert = SSL_AD_ILLEGAL_PARAMETER;
365 return ssl_open_record_error;
366 }
367
368 // The encrypted epoch in DTLS has only one handshake message.
369 if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
370 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
371 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
372 return ssl_open_record_error;
373 }
374
375 if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
376 msg_hdr.seq >
377 (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
378 // Ignore fragments from the past, or ones too far in the future.
379 continue;
380 }
381
382 hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr);
383 if (frag == NULL) {
384 return ssl_open_record_error;
385 }
386 assert(frag->msg_len == msg_len);
387
388 if (frag->reassembly == NULL) {
389 // The message is already assembled.
390 continue;
391 }
392 assert(msg_len > 0);
393
394 // Copy the body into the fragment.
395 OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
396 CBS_data(&body), CBS_len(&body));
397 dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
398 }
399
400 return ssl_open_record_success;
401 }
402
dtls1_get_message(const SSL * ssl,SSLMessage * out)403 bool dtls1_get_message(const SSL *ssl, SSLMessage *out) {
404 if (!dtls1_is_current_message_complete(ssl)) {
405 return false;
406 }
407
408 size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
409 hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
410 out->type = frag->type;
411 CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len);
412 CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
413 out->is_v2_hello = false;
414 if (!ssl->s3->has_message) {
415 ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw);
416 ssl->s3->has_message = true;
417 }
418 return true;
419 }
420
dtls1_next_message(SSL * ssl)421 void dtls1_next_message(SSL *ssl) {
422 assert(ssl->s3->has_message);
423 assert(dtls1_is_current_message_complete(ssl));
424 size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
425 ssl->d1->incoming_messages[index].reset();
426 ssl->d1->handshake_read_seq++;
427 ssl->s3->has_message = false;
428 // If we previously sent a flight, mark it as having a reply, so
429 // |on_handshake_complete| can manage post-handshake retransmission.
430 if (ssl->d1->outgoing_messages_complete) {
431 ssl->d1->flight_has_reply = true;
432 }
433 }
434
dtls_has_unprocessed_handshake_data(const SSL * ssl)435 bool dtls_has_unprocessed_handshake_data(const SSL *ssl) {
436 size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
437 for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
438 // Skip the current message.
439 if (ssl->s3->has_message && i == current) {
440 assert(dtls1_is_current_message_complete(ssl));
441 continue;
442 }
443 if (ssl->d1->incoming_messages[i] != nullptr) {
444 return true;
445 }
446 }
447 return false;
448 }
449
dtls1_parse_fragment(CBS * cbs,struct hm_header_st * out_hdr,CBS * out_body)450 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
451 CBS *out_body) {
452 OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
453
454 if (!CBS_get_u8(cbs, &out_hdr->type) ||
455 !CBS_get_u24(cbs, &out_hdr->msg_len) ||
456 !CBS_get_u16(cbs, &out_hdr->seq) ||
457 !CBS_get_u24(cbs, &out_hdr->frag_off) ||
458 !CBS_get_u24(cbs, &out_hdr->frag_len) ||
459 !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
460 return false;
461 }
462
463 return true;
464 }
465
dtls1_open_change_cipher_spec(SSL * ssl,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)466 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
467 uint8_t *out_alert,
468 Span<uint8_t> in) {
469 if (!ssl->d1->has_change_cipher_spec) {
470 // dtls1_open_handshake processes both handshake and ChangeCipherSpec.
471 auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in);
472 if (ret != ssl_open_record_success) {
473 return ret;
474 }
475 }
476 if (ssl->d1->has_change_cipher_spec) {
477 ssl->d1->has_change_cipher_spec = false;
478 return ssl_open_record_success;
479 }
480 return ssl_open_record_discard;
481 }
482
483
484 // Sending handshake messages.
485
Clear()486 void DTLS_OUTGOING_MESSAGE::Clear() { data.Reset(); }
487
dtls_clear_outgoing_messages(SSL * ssl)488 void dtls_clear_outgoing_messages(SSL *ssl) {
489 for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
490 ssl->d1->outgoing_messages[i].Clear();
491 }
492 ssl->d1->outgoing_messages_len = 0;
493 ssl->d1->outgoing_written = 0;
494 ssl->d1->outgoing_offset = 0;
495 ssl->d1->outgoing_messages_complete = false;
496 ssl->d1->flight_has_reply = false;
497 }
498
dtls1_init_message(const SSL * ssl,CBB * cbb,CBB * body,uint8_t type)499 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
500 // Pick a modest size hint to save most of the |realloc| calls.
501 if (!CBB_init(cbb, 64) ||
502 !CBB_add_u8(cbb, type) ||
503 !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
504 !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
505 !CBB_add_u24(cbb, 0 /* offset */) ||
506 !CBB_add_u24_length_prefixed(cbb, body)) {
507 return false;
508 }
509
510 return true;
511 }
512
dtls1_finish_message(const SSL * ssl,CBB * cbb,Array<uint8_t> * out_msg)513 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) {
514 if (!CBBFinishArray(cbb, out_msg) ||
515 out_msg->size() < DTLS1_HM_HEADER_LENGTH) {
516 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
517 return false;
518 }
519
520 // Fix up the header. Copy the fragment length into the total message
521 // length.
522 OPENSSL_memcpy(out_msg->data() + 1,
523 out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3);
524 return true;
525 }
526
527 // ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a
528 // 32-bit value. The obvious thing doesn't work because, in some 32-bit build
529 // configurations, the compiler warns that the test is always false and breaks
530 // the build.
ssl_size_t_greater_than_32_bits(size_t v)531 static bool ssl_size_t_greater_than_32_bits(size_t v) {
532 #if defined(OPENSSL_64_BIT)
533 return v > 0xffffffff;
534 #elif defined(OPENSSL_32_BIT)
535 return false;
536 #else
537 #error "Building for neither 32- nor 64-bits."
538 #endif
539 }
540
541 // add_outgoing adds a new handshake message or ChangeCipherSpec to the current
542 // outgoing flight. It returns true on success and false on error.
add_outgoing(SSL * ssl,bool is_ccs,Array<uint8_t> data)543 static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) {
544 if (ssl->d1->outgoing_messages_complete) {
545 // If we've begun writing a new flight, we received the peer flight. Discard
546 // the timer and the our flight.
547 dtls1_stop_timer(ssl);
548 dtls_clear_outgoing_messages(ssl);
549 }
550
551 static_assert(SSL_MAX_HANDSHAKE_FLIGHT <
552 (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
553 "outgoing_messages_len is too small");
554 if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT ||
555 ssl_size_t_greater_than_32_bits(data.size())) {
556 assert(false);
557 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
558 return false;
559 }
560
561 if (!is_ccs) {
562 // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript
563 // on hs.
564 if (ssl->s3->hs != NULL &&
565 !ssl->s3->hs->transcript.Update(data)) {
566 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
567 return false;
568 }
569 ssl->d1->handshake_write_seq++;
570 }
571
572 DTLS_OUTGOING_MESSAGE *msg =
573 &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
574 msg->data = std::move(data);
575 msg->epoch = ssl->d1->w_epoch;
576 msg->is_ccs = is_ccs;
577
578 ssl->d1->outgoing_messages_len++;
579 return true;
580 }
581
dtls1_add_message(SSL * ssl,Array<uint8_t> data)582 bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) {
583 return add_outgoing(ssl, false /* handshake */, std::move(data));
584 }
585
dtls1_add_change_cipher_spec(SSL * ssl)586 bool dtls1_add_change_cipher_spec(SSL *ssl) {
587 return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>());
588 }
589
590 // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
591 // the minimum.
dtls1_update_mtu(SSL * ssl)592 static void dtls1_update_mtu(SSL *ssl) {
593 // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
594 // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
595 // |SSL_set_mtu|. Does this need to be so complex?
596 if (ssl->d1->mtu < dtls1_min_mtu() &&
597 !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
598 long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
599 if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
600 ssl->d1->mtu = (unsigned)mtu;
601 } else {
602 ssl->d1->mtu = kDefaultMTU;
603 BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
604 }
605 }
606
607 // The MTU should be above the minimum now.
608 assert(ssl->d1->mtu >= dtls1_min_mtu());
609 }
610
611 enum seal_result_t {
612 seal_error,
613 seal_no_progress,
614 seal_partial,
615 seal_success,
616 };
617
618 // seal_next_message seals |msg|, which must be the next message, to |out|. If
619 // progress was made, it returns |seal_partial| or |seal_success| and sets
620 // |*out_len| to the number of bytes written.
seal_next_message(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,const DTLS_OUTGOING_MESSAGE * msg)621 static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
622 size_t *out_len, size_t max_out,
623 const DTLS_OUTGOING_MESSAGE *msg) {
624 assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
625 assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
626
627 if (msg->epoch != ssl->d1->w_epoch &&
628 (ssl->d1->w_epoch == 0 || msg->epoch != ssl->d1->w_epoch - 1)) {
629 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
630 return seal_error;
631 }
632
633 size_t overhead = dtls_max_seal_overhead(ssl, msg->epoch);
634 size_t prefix = dtls_seal_prefix_len(ssl, msg->epoch);
635
636 if (msg->is_ccs) {
637 // Check there is room for the ChangeCipherSpec.
638 static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
639 if (max_out < sizeof(kChangeCipherSpec) + overhead) {
640 return seal_no_progress;
641 }
642
643 if (!dtls_seal_record(ssl, out, out_len, max_out,
644 SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
645 sizeof(kChangeCipherSpec), msg->epoch)) {
646 return seal_error;
647 }
648
649 ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
650 kChangeCipherSpec);
651 return seal_success;
652 }
653
654 // DTLS messages are serialized as a single fragment in |msg|.
655 CBS cbs, body;
656 struct hm_header_st hdr;
657 CBS_init(&cbs, msg->data.data(), msg->data.size());
658 if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
659 hdr.frag_off != 0 ||
660 hdr.frag_len != CBS_len(&body) ||
661 hdr.msg_len != CBS_len(&body) ||
662 !CBS_skip(&body, ssl->d1->outgoing_offset) ||
663 CBS_len(&cbs) != 0) {
664 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
665 return seal_error;
666 }
667
668 // Determine how much progress can be made.
669 if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
670 return seal_no_progress;
671 }
672 size_t todo = CBS_len(&body);
673 if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
674 todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
675 }
676
677 // Assemble a fragment, to be sealed in-place.
678 ScopedCBB cbb;
679 CBB child;
680 uint8_t *frag = out + prefix;
681 size_t max_frag = max_out - prefix, frag_len;
682 if (!CBB_init_fixed(cbb.get(), frag, max_frag) ||
683 !CBB_add_u8(cbb.get(), hdr.type) ||
684 !CBB_add_u24(cbb.get(), hdr.msg_len) ||
685 !CBB_add_u16(cbb.get(), hdr.seq) ||
686 !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) ||
687 !CBB_add_u24_length_prefixed(cbb.get(), &child) ||
688 !CBB_add_bytes(&child, CBS_data(&body), todo) ||
689 !CBB_finish(cbb.get(), NULL, &frag_len)) {
690 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
691 return seal_error;
692 }
693
694 ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE,
695 MakeSpan(frag, frag_len));
696
697 if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
698 out + prefix, frag_len, msg->epoch)) {
699 return seal_error;
700 }
701
702 if (todo == CBS_len(&body)) {
703 // The next message is complete.
704 ssl->d1->outgoing_offset = 0;
705 return seal_success;
706 }
707
708 ssl->d1->outgoing_offset += todo;
709 return seal_partial;
710 }
711
712 // seal_next_packet writes as much of the next flight as possible to |out| and
713 // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
714 // appropriate.
seal_next_packet(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out)715 static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
716 size_t max_out) {
717 bool made_progress = false;
718 size_t total = 0;
719 assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
720 for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
721 ssl->d1->outgoing_written++) {
722 const DTLS_OUTGOING_MESSAGE *msg =
723 &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
724 size_t len;
725 enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
726 switch (ret) {
727 case seal_error:
728 return false;
729
730 case seal_no_progress:
731 goto packet_full;
732
733 case seal_partial:
734 case seal_success:
735 out += len;
736 max_out -= len;
737 total += len;
738 made_progress = true;
739
740 if (ret == seal_partial) {
741 goto packet_full;
742 }
743 break;
744 }
745 }
746
747 packet_full:
748 // The MTU was too small to make any progress.
749 if (!made_progress) {
750 OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
751 return false;
752 }
753
754 *out_len = total;
755 return true;
756 }
757
send_flight(SSL * ssl)758 static int send_flight(SSL *ssl) {
759 if (ssl->s3->write_shutdown != ssl_shutdown_none) {
760 OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
761 return -1;
762 }
763
764 if (ssl->wbio == nullptr) {
765 OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET);
766 return -1;
767 }
768
769 dtls1_update_mtu(ssl);
770
771 Array<uint8_t> packet;
772 if (!packet.Init(ssl->d1->mtu)) {
773 return -1;
774 }
775
776 while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
777 uint8_t old_written = ssl->d1->outgoing_written;
778 uint32_t old_offset = ssl->d1->outgoing_offset;
779
780 size_t packet_len;
781 if (!seal_next_packet(ssl, packet.data(), &packet_len, packet.size())) {
782 return -1;
783 }
784
785 int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len);
786 if (bio_ret <= 0) {
787 // Retry this packet the next time around.
788 ssl->d1->outgoing_written = old_written;
789 ssl->d1->outgoing_offset = old_offset;
790 ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
791 return bio_ret;
792 }
793 }
794
795 if (BIO_flush(ssl->wbio.get()) <= 0) {
796 ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
797 return -1;
798 }
799
800 return 1;
801 }
802
dtls1_flush_flight(SSL * ssl)803 int dtls1_flush_flight(SSL *ssl) {
804 ssl->d1->outgoing_messages_complete = true;
805 // Start the retransmission timer for the next flight (if any).
806 dtls1_start_timer(ssl);
807 return send_flight(ssl);
808 }
809
dtls1_retransmit_outgoing_messages(SSL * ssl)810 int dtls1_retransmit_outgoing_messages(SSL *ssl) {
811 // Rewind to the start of the flight and write it again.
812 //
813 // TODO(davidben): This does not allow retransmits to be resumed on
814 // non-blocking write.
815 ssl->d1->outgoing_written = 0;
816 ssl->d1->outgoing_offset = 0;
817
818 return send_flight(ssl);
819 }
820
dtls1_min_mtu(void)821 unsigned int dtls1_min_mtu(void) {
822 return kMinMTU;
823 }
824
825 BSSL_NAMESPACE_END
826