xref: /aosp_15_r20/external/coreboot/payloads/libpayload/crypto/sha1.c (revision b9411a12aaaa7e1e6a6fb7c5e057f44ee179a49c)
1 /*
2  *
3  * It has originally been taken from the OpenBSD project.
4  */
5 
6 /*	$OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $	*/
7 
8 /*
9  * SHA-1 in C
10  * By Steve Reid <[email protected]>
11  * 100% Public Domain
12  *
13  * Test Vectors (from FIPS PUB 180-1)
14  * "abc"
15  *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
16  * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
17  *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
18  * A million repetitions of "a"
19  *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
20  */
21 
22 #include <libpayload-config.h>
23 #include <libpayload.h>
24 
25 typedef u8 u_int8_t;
26 typedef u32 u_int32_t;
27 typedef u64 u_int64_t;
28 typedef unsigned int u_int;
29 
30 /* Moved from libpayload.h */
31 
32 #if CONFIG(LP_LITTLE_ENDIAN)
33 #define BYTE_ORDER      LITTLE_ENDIAN
34 #else
35 #define BYTE_ORDER      BIG_ENDIAN
36 #endif
37 
38 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
39 
40 /*
41  * blk0() and blk() perform the initial expand.
42  * I got the idea of expanding during the round function from SSLeay
43  */
44 #if BYTE_ORDER == LITTLE_ENDIAN
45 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
46     |(rol(block->l[i],8)&0x00FF00FF))
47 #else
48 # define blk0(i) block->l[i]
49 #endif
50 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
51     ^block->l[(i+2)&15]^block->l[i&15],1))
52 
53 /*
54  * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
55  */
56 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
57 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
58 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
59 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
60 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
61 
62 /*
63  * Hash a single 512-bit block. This is the core of the algorithm.
64  */
65 void
SHA1Transform(u_int32_t state[5],const u_int8_t buffer[SHA1_BLOCK_LENGTH])66 SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
67 {
68 	u_int32_t a, b, c, d, e;
69 	u_int8_t workspace[SHA1_BLOCK_LENGTH];
70 	typedef union {
71 		u_int8_t c[64];
72 		u_int32_t l[16];
73 	} CHAR64LONG16;
74 	CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
75 
76 	(void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
77 
78 	/* Copy context->state[] to working vars */
79 	a = state[0];
80 	b = state[1];
81 	c = state[2];
82 	d = state[3];
83 	e = state[4];
84 
85 	/* 4 rounds of 20 operations each. Loop unrolled. */
86 	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
87 	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
88 	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
89 	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
90 	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
91 	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
92 	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
93 	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
94 	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
95 	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
96 	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
97 	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
98 	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
99 	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
100 	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
101 	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
102 	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
103 	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
104 	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
105 	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
106 
107 	/* Add the working vars back into context.state[] */
108 	state[0] += a;
109 	state[1] += b;
110 	state[2] += c;
111 	state[3] += d;
112 	state[4] += e;
113 
114 	/* Wipe variables */
115 	a = b = c = d = e = 0;
116 }
117 
118 /*
119  * SHA1Init - Initialize new context
120  */
121 void
SHA1Init(SHA1_CTX * context)122 SHA1Init(SHA1_CTX *context)
123 {
124 
125 	/* SHA1 initialization constants */
126 	context->count = 0;
127 	context->state[0] = 0x67452301;
128 	context->state[1] = 0xEFCDAB89;
129 	context->state[2] = 0x98BADCFE;
130 	context->state[3] = 0x10325476;
131 	context->state[4] = 0xC3D2E1F0;
132 }
133 
134 /*
135  * Run your data through this.
136  */
137 void
SHA1Update(SHA1_CTX * context,const u_int8_t * data,size_t len)138 SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
139 {
140 	size_t i, j;
141 
142 	j = (size_t)((context->count >> 3) & 63);
143 	context->count += (len << 3);
144 	if ((j + len) > 63) {
145 		(void)memcpy(&context->buffer[j], data, (i = 64-j));
146 		SHA1Transform(context->state, context->buffer);
147 		for ( ; i + 63 < len; i += 64)
148 			SHA1Transform(context->state, (u_int8_t *)&data[i]);
149 		j = 0;
150 	} else {
151 		i = 0;
152 	}
153 	(void)memcpy(&context->buffer[j], &data[i], len - i);
154 }
155 
156 /*
157  * Add padding and return the message digest.
158  */
159 void
SHA1Pad(SHA1_CTX * context)160 SHA1Pad(SHA1_CTX *context)
161 {
162 	u_int8_t finalcount[8];
163 	u_int i;
164 
165 	for (i = 0; i < 8; i++) {
166 		finalcount[i] = (u_int8_t)((context->count >>
167 		    ((7 - (i & 7)) * 8)) & 255);	/* Endian independent */
168 	}
169 	SHA1Update(context, (u_int8_t *)"\200", 1);
170 	while ((context->count & 504) != 448)
171 		SHA1Update(context, (u_int8_t *)"\0", 1);
172 	SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
173 }
174 
175 void
SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH],SHA1_CTX * context)176 SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
177 {
178 	u_int i;
179 
180 	SHA1Pad(context);
181 	if (digest) {
182 		for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
183 			digest[i] = (u_int8_t)
184 			   ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
185 		}
186 		memset(context, 0, sizeof(*context));
187 	}
188 }
189 
190 /**
191  * Compute the SHA-1 hash of the given data as specified by the 'data' and
192  * 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the
193  * specified output buffer 'buf'.
194  *
195  * @param data Pointer to the input data that shall be hashed.
196  * @param len Length of the input data (in bytes).
197  * @param buf Buffer which will hold the resulting hash (must be at
198  * 	      least 20 bytes in size).
199  * @return Pointer to the output buffer where the hash is stored.
200  */
sha1(const u8 * data,size_t len,u8 * buf)201 u8 *sha1(const u8 *data, size_t len, u8 *buf)
202 {
203 	SHA1_CTX ctx;
204 
205 	SHA1Init(&ctx);
206 	SHA1Update(&ctx, data, len);
207 	SHA1Final(buf, &ctx);
208 
209 	return buf;
210 }
211