xref: /aosp_15_r20/external/coreboot/util/kconfig/regex.c (revision b9411a12aaaa7e1e6a6fb7c5e057f44ee179a49c)
1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P10003.2/D11.2, except for
4    internationalization features.)
5 
6    Copyright (C) 1993 Free Software Foundation, Inc.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2, or (at your option)
11    any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24   #pragma alloca
25 #endif
26 
27 #ifndef _GNU_SOURCE
28 #define _GNU_SOURCE
29 #endif
30 
31 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
32 #include <sys/types.h>
33 
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37 
38 /* The `emacs' switch turns on certain matching commands
39    that make sense only in Emacs. */
40 #ifdef emacs
41 
42 #include "lisp.h"
43 #include "buffer.h"
44 #include "syntax.h"
45 
46 /* Emacs uses `NULL' as a predicate.  */
47 #undef NULL
48 
49 #else  /* not emacs */
50 
51 /* We used to test for `BSTRING' here, but only GCC and Emacs define
52    `BSTRING', as far as I know, and neither of them use this code.  */
53 #if HAVE_STRING_H || STDC_HEADERS
54 #include <string.h>
55 #ifndef bcmp
56 #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
57 #endif
58 #ifndef bcopy
59 #define bcopy(s, d, n)	memcpy ((d), (s), (n))
60 #endif
61 #ifndef bzero
62 #define bzero(s, n)	memset ((s), 0, (n))
63 #endif
64 #else
65 #include <strings.h>
66 #endif
67 
68 #ifdef STDC_HEADERS
69 #include <stdlib.h>
70 #else
71 char *malloc ();
72 char *realloc ();
73 #endif
74 
75 
76 /* Define the syntax stuff for \<, \>, etc.  */
77 
78 /* This must be nonzero for the wordchar and notwordchar pattern
79    commands in re_match_2.  */
80 #ifndef Sword
81 #define Sword 1
82 #endif
83 
84 #ifdef SYNTAX_TABLE
85 
86 extern char *re_syntax_table;
87 
88 #else /* not SYNTAX_TABLE */
89 
90 /* How many characters in the character set.  */
91 #define CHAR_SET_SIZE 256
92 
93 static char re_syntax_table[CHAR_SET_SIZE];
94 
95 static void
init_syntax_once()96 init_syntax_once ()
97 {
98    register int c;
99    static int done = 0;
100 
101    if (done)
102      return;
103 
104    bzero (re_syntax_table, sizeof re_syntax_table);
105 
106    for (c = 'a'; c <= 'z'; c++)
107      re_syntax_table[c] = Sword;
108 
109    for (c = 'A'; c <= 'Z'; c++)
110      re_syntax_table[c] = Sword;
111 
112    for (c = '0'; c <= '9'; c++)
113      re_syntax_table[c] = Sword;
114 
115    re_syntax_table['_'] = Sword;
116 
117    done = 1;
118 }
119 
120 #endif /* not SYNTAX_TABLE */
121 
122 #define SYNTAX(c) re_syntax_table[c]
123 
124 #endif /* not emacs */
125 
126 /* Get the interface, including the syntax bits.  */
127 #include "regex.h"
128 
129 /* isalpha etc. are used for the character classes.  */
130 #include <ctype.h>
131 
132 #ifndef isascii
133 #define isascii(c) 1
134 #endif
135 
136 #ifdef isblank
137 #define ISBLANK(c) (isascii (c) && isblank (c))
138 #else
139 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
140 #endif
141 #ifdef isgraph
142 #define ISGRAPH(c) (isascii (c) && isgraph (c))
143 #else
144 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
145 #endif
146 
147 #define ISPRINT(c) (isascii (c) && isprint (c))
148 #define ISDIGIT(c) (isascii (c) && isdigit (c))
149 #define ISALNUM(c) (isascii (c) && isalnum (c))
150 #define ISALPHA(c) (isascii (c) && isalpha (c))
151 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
152 #define ISLOWER(c) (isascii (c) && islower (c))
153 #define ISPUNCT(c) (isascii (c) && ispunct (c))
154 #define ISSPACE(c) (isascii (c) && isspace (c))
155 #define ISUPPER(c) (isascii (c) && isupper (c))
156 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
157 
158 #ifndef NULL
159 #define NULL 0
160 #endif
161 
162 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
163    since ours (we hope) works properly with all combinations of
164    machines, compilers, `char' and `unsigned char' argument types.
165    (Per Bothner suggested the basic approach.)  */
166 #undef SIGN_EXTEND_CHAR
167 #if __STDC__
168 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
169 #else  /* not __STDC__ */
170 /* As in Harbison and Steele.  */
171 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
172 #endif
173 
174 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
175    use `alloca' instead of `malloc'.  This is because using malloc in
176    re_search* or re_match* could cause memory leaks when C-g is used in
177    Emacs; also, malloc is slower and causes storage fragmentation.  On
178    the other hand, malloc is more portable, and easier to debug.
179 
180    Because we sometimes use alloca, some routines have to be macros,
181    not functions -- `alloca'-allocated space disappears at the end of the
182    function it is called in.  */
183 
184 #ifdef REGEX_MALLOC
185 
186 #define REGEX_ALLOCATE malloc
187 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
188 
189 #else /* not REGEX_MALLOC  */
190 
191 /* Emacs already defines alloca, sometimes.  */
192 #ifndef alloca
193 
194 /* Make alloca work the best possible way.  */
195 #ifdef __GNUC__
196 #define alloca __builtin_alloca
197 #else /* not __GNUC__ */
198 #if HAVE_ALLOCA_H
199 #include <alloca.h>
200 #else /* not __GNUC__ or HAVE_ALLOCA_H */
201 #ifndef _AIX /* Already did AIX, up at the top.  */
202 char *alloca ();
203 #endif /* not _AIX */
204 #endif /* not HAVE_ALLOCA_H */
205 #endif /* not __GNUC__ */
206 
207 #endif /* not alloca */
208 
209 #define REGEX_ALLOCATE alloca
210 
211 /* Assumes a `char *destination' variable.  */
212 #define REGEX_REALLOCATE(source, osize, nsize)				\
213   (destination = (char *) alloca (nsize),				\
214    bcopy (source, destination, osize),					\
215    destination)
216 
217 #endif /* not REGEX_MALLOC */
218 
219 
220 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
221    `string1' or just past its end.  This works if PTR is NULL, which is
222    a good thing.  */
223 #define FIRST_STRING_P(ptr) 					\
224   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
225 
226 /* (Re)Allocate N items of type T using malloc, or fail.  */
227 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
228 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
229 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
230 
231 #define BYTEWIDTH 8 /* In bits.  */
232 
233 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
234 
235 #define MAX(a, b) ((a) > (b) ? (a) : (b))
236 #define MIN(a, b) ((a) < (b) ? (a) : (b))
237 
238 typedef char boolean;
239 #define false 0
240 #define true 1
241 
242 /* These are the command codes that appear in compiled regular
243    expressions.  Some opcodes are followed by argument bytes.  A
244    command code can specify any interpretation whatsoever for its
245    arguments.  Zero bytes may appear in the compiled regular expression.
246 
247    The value of `exactn' is needed in search.c (search_buffer) in Emacs.
248    So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
249    `exactn' we use here must also be 1.  */
250 
251 typedef enum
252 {
253   no_op = 0,
254 
255         /* Followed by one byte giving n, then by n literal bytes.  */
256   exactn = 1,
257 
258         /* Matches any (more or less) character.  */
259   anychar,
260 
261         /* Matches any one char belonging to specified set.  First
262            following byte is number of bitmap bytes.  Then come bytes
263            for a bitmap saying which chars are in.  Bits in each byte
264            are ordered low-bit-first.  A character is in the set if its
265            bit is 1.  A character too large to have a bit in the map is
266            automatically not in the set.  */
267   charset,
268 
269         /* Same parameters as charset, but match any character that is
270            not one of those specified.  */
271   charset_not,
272 
273         /* Start remembering the text that is matched, for storing in a
274            register.  Followed by one byte with the register number, in
275            the range 0 to one less than the pattern buffer's re_nsub
276            field.  Then followed by one byte with the number of groups
277            inner to this one.  (This last has to be part of the
278            start_memory only because we need it in the on_failure_jump
279            of re_match_2.)  */
280   start_memory,
281 
282         /* Stop remembering the text that is matched and store it in a
283            memory register.  Followed by one byte with the register
284            number, in the range 0 to one less than `re_nsub' in the
285            pattern buffer, and one byte with the number of inner groups,
286            just like `start_memory'.  (We need the number of inner
287            groups here because we don't have any easy way of finding the
288            corresponding start_memory when we're at a stop_memory.)  */
289   stop_memory,
290 
291         /* Match a duplicate of something remembered. Followed by one
292            byte containing the register number.  */
293   duplicate,
294 
295         /* Fail unless at beginning of line.  */
296   begline,
297 
298         /* Fail unless at end of line.  */
299   endline,
300 
301         /* Succeeds if at beginning of buffer (if emacs) or at beginning
302            of string to be matched (if not).  */
303   begbuf,
304 
305         /* Analogously, for end of buffer/string.  */
306   endbuf,
307 
308         /* Followed by two byte relative address to which to jump.  */
309   jump,
310 
311 	/* Same as jump, but marks the end of an alternative.  */
312   jump_past_alt,
313 
314         /* Followed by two-byte relative address of place to resume at
315            in case of failure.  */
316   on_failure_jump,
317 
318         /* Like on_failure_jump, but pushes a placeholder instead of the
319            current string position when executed.  */
320   on_failure_keep_string_jump,
321 
322         /* Throw away latest failure point and then jump to following
323            two-byte relative address.  */
324   pop_failure_jump,
325 
326         /* Change to pop_failure_jump if know won't have to backtrack to
327            match; otherwise change to jump.  This is used to jump
328            back to the beginning of a repeat.  If what follows this jump
329            clearly won't match what the repeat does, such that we can be
330            sure that there is no use backtracking out of repetitions
331            already matched, then we change it to a pop_failure_jump.
332            Followed by two-byte address.  */
333   maybe_pop_jump,
334 
335         /* Jump to following two-byte address, and push a dummy failure
336            point. This failure point will be thrown away if an attempt
337            is made to use it for a failure.  A `+' construct makes this
338            before the first repeat.  Also used as an intermediary kind
339            of jump when compiling an alternative.  */
340   dummy_failure_jump,
341 
342 	/* Push a dummy failure point and continue.  Used at the end of
343 	   alternatives.  */
344   push_dummy_failure,
345 
346         /* Followed by two-byte relative address and two-byte number n.
347            After matching N times, jump to the address upon failure.  */
348   succeed_n,
349 
350         /* Followed by two-byte relative address, and two-byte number n.
351            Jump to the address N times, then fail.  */
352   jump_n,
353 
354         /* Set the following two-byte relative address to the
355            subsequent two-byte number.  The address *includes* the two
356            bytes of number.  */
357   set_number_at,
358 
359   wordchar,	/* Matches any word-constituent character.  */
360   notwordchar,	/* Matches any char that is not a word-constituent.  */
361 
362   wordbeg,	/* Succeeds if at word beginning.  */
363   wordend,	/* Succeeds if at word end.  */
364 
365   wordbound,	/* Succeeds if at a word boundary.  */
366   notwordbound	/* Succeeds if not at a word boundary.  */
367 
368 #ifdef emacs
369   ,before_dot,	/* Succeeds if before point.  */
370   at_dot,	/* Succeeds if at point.  */
371   after_dot,	/* Succeeds if after point.  */
372 
373 	/* Matches any character whose syntax is specified.  Followed by
374            a byte which contains a syntax code, e.g., Sword.  */
375   syntaxspec,
376 
377 	/* Matches any character whose syntax is not that specified.  */
378   notsyntaxspec
379 #endif /* emacs */
380 } re_opcode_t;
381 
382 /* Common operations on the compiled pattern.  */
383 
384 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
385 
386 #define STORE_NUMBER(destination, number)				\
387   do {									\
388     (destination)[0] = (number) & 0377;					\
389     (destination)[1] = (number) >> 8;					\
390   } while (0)
391 
392 /* Same as STORE_NUMBER, except increment DESTINATION to
393    the byte after where the number is stored.  Therefore, DESTINATION
394    must be an lvalue.  */
395 
396 #define STORE_NUMBER_AND_INCR(destination, number)			\
397   do {									\
398     STORE_NUMBER (destination, number);					\
399     (destination) += 2;							\
400   } while (0)
401 
402 /* Put into DESTINATION a number stored in two contiguous bytes starting
403    at SOURCE.  */
404 
405 #define EXTRACT_NUMBER(destination, source)				\
406   do {									\
407     (destination) = *(source) & 0377;					\
408     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
409   } while (0)
410 
411 #ifdef DEBUG
412 static void
extract_number(dest,source)413 extract_number (dest, source)
414     int *dest;
415     unsigned char *source;
416 {
417   int temp = SIGN_EXTEND_CHAR (*(source + 1));
418   *dest = *source & 0377;
419   *dest += temp << 8;
420 }
421 
422 #ifndef EXTRACT_MACROS /* To debug the macros.  */
423 #undef EXTRACT_NUMBER
424 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
425 #endif /* not EXTRACT_MACROS */
426 
427 #endif /* DEBUG */
428 
429 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
430    SOURCE must be an lvalue.  */
431 
432 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
433   do {									\
434     EXTRACT_NUMBER (destination, source);				\
435     (source) += 2; 							\
436   } while (0)
437 
438 #ifdef DEBUG
439 static void
extract_number_and_incr(destination,source)440 extract_number_and_incr (destination, source)
441     int *destination;
442     unsigned char **source;
443 {
444   extract_number (destination, *source);
445   *source += 2;
446 }
447 
448 #ifndef EXTRACT_MACROS
449 #undef EXTRACT_NUMBER_AND_INCR
450 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
451   extract_number_and_incr (&dest, &src)
452 #endif /* not EXTRACT_MACROS */
453 
454 #endif /* DEBUG */
455 
456 /* If DEBUG is defined, Regex prints many voluminous messages about what
457    it is doing (if the variable `debug' is nonzero).  If linked with the
458    main program in `iregex.c', you can enter patterns and strings
459    interactively.  And if linked with the main program in `main.c' and
460    the other test files, you can run the already-written tests.  */
461 
462 #ifdef DEBUG
463 
464 /* We use standard I/O for debugging.  */
465 #include <stdio.h>
466 
467 /* It is useful to test things that ``must'' be true when debugging.  */
468 #include <assert.h>
469 
470 static int debug = 0;
471 
472 #define DEBUG_STATEMENT(e) e
473 #define DEBUG_PRINT1(x) if (debug) printf (x)
474 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
475 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
476 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
477 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
478   if (debug) print_partial_compiled_pattern (s, e)
479 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
480   if (debug) print_double_string (w, s1, sz1, s2, sz2)
481 
482 
483 extern void printchar ();
484 
485 /* Print the fastmap in human-readable form.  */
486 
487 void
print_fastmap(fastmap)488 print_fastmap (fastmap)
489     char *fastmap;
490 {
491   unsigned was_a_range = 0;
492   unsigned i = 0;
493 
494   while (i < (1 << BYTEWIDTH))
495     {
496       if (fastmap[i++])
497 	{
498 	  was_a_range = 0;
499           printchar (i - 1);
500           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
501             {
502               was_a_range = 1;
503               i++;
504             }
505 	  if (was_a_range)
506             {
507               printf ("-");
508               printchar (i - 1);
509             }
510         }
511     }
512   putchar ('\n');
513 }
514 
515 
516 /* Print a compiled pattern string in human-readable form, starting at
517    the START pointer into it and ending just before the pointer END.  */
518 
519 void
print_partial_compiled_pattern(start,end)520 print_partial_compiled_pattern (start, end)
521     unsigned char *start;
522     unsigned char *end;
523 {
524   int mcnt, mcnt2;
525   unsigned char *p = start;
526   unsigned char *pend = end;
527 
528   if (start == NULL)
529     {
530       printf ("(null)\n");
531       return;
532     }
533 
534   /* Loop over pattern commands.  */
535   while (p < pend)
536     {
537       switch ((re_opcode_t) *p++)
538 	{
539         case no_op:
540           printf ("/no_op");
541           break;
542 
543 	case exactn:
544 	  mcnt = *p++;
545           printf ("/exactn/%d", mcnt);
546           do
547 	    {
548               putchar ('/');
549 	      printchar (*p++);
550             }
551           while (--mcnt);
552           break;
553 
554 	case start_memory:
555           mcnt = *p++;
556           printf ("/start_memory/%d/%d", mcnt, *p++);
557           break;
558 
559 	case stop_memory:
560           mcnt = *p++;
561 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
562           break;
563 
564 	case duplicate:
565 	  printf ("/duplicate/%d", *p++);
566 	  break;
567 
568 	case anychar:
569 	  printf ("/anychar");
570 	  break;
571 
572 	case charset:
573         case charset_not:
574           {
575             register int c;
576 
577             printf ("/charset%s",
578 	            (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
579 
580             assert (p + *p < pend);
581 
582             for (c = 0; c < *p; c++)
583               {
584                 unsigned bit;
585                 unsigned char map_byte = p[1 + c];
586 
587                 putchar ('/');
588 
589 		for (bit = 0; bit < BYTEWIDTH; bit++)
590                   if (map_byte & (1 << bit))
591                     printchar (c * BYTEWIDTH + bit);
592               }
593 	    p += 1 + *p;
594 	    break;
595 	  }
596 
597 	case begline:
598 	  printf ("/begline");
599           break;
600 
601 	case endline:
602           printf ("/endline");
603           break;
604 
605 	case on_failure_jump:
606           extract_number_and_incr (&mcnt, &p);
607   	  printf ("/on_failure_jump/0/%d", mcnt);
608           break;
609 
610 	case on_failure_keep_string_jump:
611           extract_number_and_incr (&mcnt, &p);
612   	  printf ("/on_failure_keep_string_jump/0/%d", mcnt);
613           break;
614 
615 	case dummy_failure_jump:
616           extract_number_and_incr (&mcnt, &p);
617   	  printf ("/dummy_failure_jump/0/%d", mcnt);
618           break;
619 
620 	case push_dummy_failure:
621           printf ("/push_dummy_failure");
622           break;
623 
624         case maybe_pop_jump:
625           extract_number_and_incr (&mcnt, &p);
626   	  printf ("/maybe_pop_jump/0/%d", mcnt);
627 	  break;
628 
629         case pop_failure_jump:
630 	  extract_number_and_incr (&mcnt, &p);
631   	  printf ("/pop_failure_jump/0/%d", mcnt);
632 	  break;
633 
634         case jump_past_alt:
635 	  extract_number_and_incr (&mcnt, &p);
636   	  printf ("/jump_past_alt/0/%d", mcnt);
637 	  break;
638 
639         case jump:
640 	  extract_number_and_incr (&mcnt, &p);
641   	  printf ("/jump/0/%d", mcnt);
642 	  break;
643 
644         case succeed_n:
645           extract_number_and_incr (&mcnt, &p);
646           extract_number_and_incr (&mcnt2, &p);
647  	  printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
648           break;
649 
650         case jump_n:
651           extract_number_and_incr (&mcnt, &p);
652           extract_number_and_incr (&mcnt2, &p);
653  	  printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
654           break;
655 
656         case set_number_at:
657           extract_number_and_incr (&mcnt, &p);
658           extract_number_and_incr (&mcnt2, &p);
659  	  printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
660           break;
661 
662         case wordbound:
663 	  printf ("/wordbound");
664 	  break;
665 
666 	case notwordbound:
667 	  printf ("/notwordbound");
668           break;
669 
670 	case wordbeg:
671 	  printf ("/wordbeg");
672 	  break;
673 
674 	case wordend:
675 	  printf ("/wordend");
676 
677 #ifdef emacs
678 	case before_dot:
679 	  printf ("/before_dot");
680           break;
681 
682 	case at_dot:
683 	  printf ("/at_dot");
684           break;
685 
686 	case after_dot:
687 	  printf ("/after_dot");
688           break;
689 
690 	case syntaxspec:
691           printf ("/syntaxspec");
692 	  mcnt = *p++;
693 	  printf ("/%d", mcnt);
694           break;
695 
696 	case notsyntaxspec:
697           printf ("/notsyntaxspec");
698 	  mcnt = *p++;
699 	  printf ("/%d", mcnt);
700 	  break;
701 #endif /* emacs */
702 
703 	case wordchar:
704 	  printf ("/wordchar");
705           break;
706 
707 	case notwordchar:
708 	  printf ("/notwordchar");
709           break;
710 
711 	case begbuf:
712 	  printf ("/begbuf");
713           break;
714 
715 	case endbuf:
716 	  printf ("/endbuf");
717           break;
718 
719         default:
720           printf ("?%d", *(p-1));
721 	}
722     }
723   printf ("/\n");
724 }
725 
726 
727 void
print_compiled_pattern(bufp)728 print_compiled_pattern (bufp)
729     struct re_pattern_buffer *bufp;
730 {
731   unsigned char *buffer = bufp->buffer;
732 
733   print_partial_compiled_pattern (buffer, buffer + bufp->used);
734   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
735 
736   if (bufp->fastmap_accurate && bufp->fastmap)
737     {
738       printf ("fastmap: ");
739       print_fastmap (bufp->fastmap);
740     }
741 
742   printf ("re_nsub: %d\t", bufp->re_nsub);
743   printf ("regs_alloc: %d\t", bufp->regs_allocated);
744   printf ("can_be_null: %d\t", bufp->can_be_null);
745   printf ("newline_anchor: %d\n", bufp->newline_anchor);
746   printf ("no_sub: %d\t", bufp->no_sub);
747   printf ("not_bol: %d\t", bufp->not_bol);
748   printf ("not_eol: %d\t", bufp->not_eol);
749   printf ("syntax: %d\n", bufp->syntax);
750   /* Perhaps we should print the translate table?  */
751 }
752 
753 
754 void
print_double_string(where,string1,size1,string2,size2)755 print_double_string (where, string1, size1, string2, size2)
756     const char *where;
757     const char *string1;
758     const char *string2;
759     int size1;
760     int size2;
761 {
762   unsigned this_char;
763 
764   if (where == NULL)
765     printf ("(null)");
766   else
767     {
768       if (FIRST_STRING_P (where))
769         {
770           for (this_char = where - string1; this_char < size1; this_char++)
771             printchar (string1[this_char]);
772 
773           where = string2;
774         }
775 
776       for (this_char = where - string2; this_char < size2; this_char++)
777         printchar (string2[this_char]);
778     }
779 }
780 
781 #else /* not DEBUG */
782 
783 #undef assert
784 #define assert(e)
785 
786 #define DEBUG_STATEMENT(e)
787 #define DEBUG_PRINT1(x)
788 #define DEBUG_PRINT2(x1, x2)
789 #define DEBUG_PRINT3(x1, x2, x3)
790 #define DEBUG_PRINT4(x1, x2, x3, x4)
791 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
792 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
793 
794 #endif /* not DEBUG */
795 
796 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
797    also be assigned to arbitrarily: each pattern buffer stores its own
798    syntax, so it can be changed between regex compilations.  */
799 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
800 
801 
802 /* Specify the precise syntax of regexps for compilation.  This provides
803    for compatibility for various utilities which historically have
804    different, incompatible syntaxes.
805 
806    The argument SYNTAX is a bit mask comprised of the various bits
807    defined in regex.h.  We return the old syntax.  */
808 
809 reg_syntax_t
re_set_syntax(syntax)810 re_set_syntax (syntax)
811     reg_syntax_t syntax;
812 {
813   reg_syntax_t ret = re_syntax_options;
814 
815   re_syntax_options = syntax;
816   return ret;
817 }
818 
819 /* This table gives an error message for each of the error codes listed
820    in regex.h.  Obviously the order here has to be same as there.  */
821 
822 static const char *re_error_msg[] =
823   { NULL,					/* REG_NOERROR */
824     "No match",					/* REG_NOMATCH */
825     "Invalid regular expression",		/* REG_BADPAT */
826     "Invalid collation character",		/* REG_ECOLLATE */
827     "Invalid character class name",		/* REG_ECTYPE */
828     "Trailing backslash",			/* REG_EESCAPE */
829     "Invalid back reference",			/* REG_ESUBREG */
830     "Unmatched [ or [^",			/* REG_EBRACK */
831     "Unmatched ( or \\(",			/* REG_EPAREN */
832     "Unmatched \\{",				/* REG_EBRACE */
833     "Invalid content of \\{\\}",		/* REG_BADBR */
834     "Invalid range end",			/* REG_ERANGE */
835     "Memory exhausted",				/* REG_ESPACE */
836     "Invalid preceding regular expression",	/* REG_BADRPT */
837     "Premature end of regular expression",	/* REG_EEND */
838     "Regular expression too big",		/* REG_ESIZE */
839     "Unmatched ) or \\)",			/* REG_ERPAREN */
840   };
841 
842 /* Subroutine declarations and macros for regex_compile.  */
843 
844 static void store_op1 (), store_op2 ();
845 static void insert_op1 (), insert_op2 ();
846 static boolean at_begline_loc_p (), at_endline_loc_p ();
847 static boolean group_in_compile_stack ();
848 static reg_errcode_t compile_range ();
849 
850 /* Fetch the next character in the uncompiled pattern---translating it
851    if necessary.  Also cast from a signed character in the constant
852    string passed to us by the user to an unsigned char that we can use
853    as an array index (in, e.g., `translate').  */
854 #define PATFETCH(c)							\
855   do {if (p == pend) return REG_EEND;					\
856     c = (unsigned char) *p++;						\
857     if (translate) c = translate[c]; 					\
858   } while (0)
859 
860 /* Fetch the next character in the uncompiled pattern, with no
861    translation.  */
862 #define PATFETCH_RAW(c)							\
863   do {if (p == pend) return REG_EEND;					\
864     c = (unsigned char) *p++; 						\
865   } while (0)
866 
867 /* Go backwards one character in the pattern.  */
868 #define PATUNFETCH p--
869 
870 
871 /* If `translate' is non-null, return translate[D], else just D.  We
872    cast the subscript to translate because some data is declared as
873    `char *', to avoid warnings when a string constant is passed.  But
874    when we use a character as a subscript we must make it unsigned.  */
875 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
876 
877 
878 /* Macros for outputting the compiled pattern into `buffer'.  */
879 
880 /* If the buffer isn't allocated when it comes in, use this.  */
881 #define INIT_BUF_SIZE  32
882 
883 /* Make sure we have at least N more bytes of space in buffer.  */
884 #define GET_BUFFER_SPACE(n)						\
885     while (b - bufp->buffer + (n) > bufp->allocated)			\
886       EXTEND_BUFFER ()
887 
888 /* Make sure we have one more byte of buffer space and then add C to it.  */
889 #define BUF_PUSH(c)							\
890   do {									\
891     GET_BUFFER_SPACE (1);						\
892     *b++ = (unsigned char) (c);						\
893   } while (0)
894 
895 
896 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
897 #define BUF_PUSH_2(c1, c2)						\
898   do {									\
899     GET_BUFFER_SPACE (2);						\
900     *b++ = (unsigned char) (c1);					\
901     *b++ = (unsigned char) (c2);					\
902   } while (0)
903 
904 
905 /* As with BUF_PUSH_2, except for three bytes.  */
906 #define BUF_PUSH_3(c1, c2, c3)						\
907   do {									\
908     GET_BUFFER_SPACE (3);						\
909     *b++ = (unsigned char) (c1);					\
910     *b++ = (unsigned char) (c2);					\
911     *b++ = (unsigned char) (c3);					\
912   } while (0)
913 
914 
915 /* Store a jump with opcode OP at LOC to location TO.  We store a
916    relative address offset by the three bytes the jump itself occupies.  */
917 #define STORE_JUMP(op, loc, to) \
918   store_op1 (op, loc, (to) - (loc) - 3)
919 
920 /* Likewise, for a two-argument jump.  */
921 #define STORE_JUMP2(op, loc, to, arg) \
922   store_op2 (op, loc, (to) - (loc) - 3, arg)
923 
924 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
925 #define INSERT_JUMP(op, loc, to) \
926   insert_op1 (op, loc, (to) - (loc) - 3, b)
927 
928 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
929 #define INSERT_JUMP2(op, loc, to, arg) \
930   insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
931 
932 
933 /* This is not an arbitrary limit: the arguments which represent offsets
934    into the pattern are two bytes long.  So if 2^16 bytes turns out to
935    be too small, many things would have to change.  */
936 #define MAX_BUF_SIZE (1L << 16)
937 
938 
939 /* Extend the buffer by twice its current size via realloc and
940    reset the pointers that pointed into the old block to point to the
941    correct places in the new one.  If extending the buffer results in it
942    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
943 #define EXTEND_BUFFER()							\
944   do { 									\
945     unsigned char *old_buffer = bufp->buffer;				\
946     if (bufp->allocated == MAX_BUF_SIZE) 				\
947       return REG_ESIZE;							\
948     bufp->allocated <<= 1;						\
949     if (bufp->allocated > MAX_BUF_SIZE)					\
950       bufp->allocated = MAX_BUF_SIZE; 					\
951     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
952     if (bufp->buffer == NULL)						\
953       return REG_ESPACE;						\
954     /* If the buffer moved, move all the pointers into it.  */		\
955     if (old_buffer != bufp->buffer)					\
956       {									\
957         b = (b - old_buffer) + bufp->buffer;				\
958         begalt = (begalt - old_buffer) + bufp->buffer;			\
959         if (fixup_alt_jump)						\
960           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
961         if (laststart)							\
962           laststart = (laststart - old_buffer) + bufp->buffer;		\
963         if (pending_exact)						\
964           pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
965       }									\
966   } while (0)
967 
968 
969 /* Since we have one byte reserved for the register number argument to
970    {start,stop}_memory, the maximum number of groups we can report
971    things about is what fits in that byte.  */
972 #define MAX_REGNUM 255
973 
974 /* But patterns can have more than `MAX_REGNUM' registers.  We just
975    ignore the excess.  */
976 typedef unsigned regnum_t;
977 
978 
979 /* Macros for the compile stack.  */
980 
981 /* Since offsets can go either forwards or backwards, this type needs to
982    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
983 typedef int pattern_offset_t;
984 
985 typedef struct
986 {
987   pattern_offset_t begalt_offset;
988   pattern_offset_t fixup_alt_jump;
989   pattern_offset_t inner_group_offset;
990   pattern_offset_t laststart_offset;
991   regnum_t regnum;
992 } compile_stack_elt_t;
993 
994 
995 typedef struct
996 {
997   compile_stack_elt_t *stack;
998   unsigned size;
999   unsigned avail;			/* Offset of next open position.  */
1000 } compile_stack_type;
1001 
1002 
1003 #define INIT_COMPILE_STACK_SIZE 32
1004 
1005 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1006 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1007 
1008 /* The next available element.  */
1009 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1010 
1011 
1012 /* Set the bit for character C in a list.  */
1013 #define SET_LIST_BIT(c)                               \
1014   (b[((unsigned char) (c)) / BYTEWIDTH]               \
1015    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1016 
1017 
1018 /* Get the next unsigned number in the uncompiled pattern.  */
1019 #define GET_UNSIGNED_NUMBER(num) 					\
1020   { if (p != pend)							\
1021      {									\
1022        PATFETCH (c); 							\
1023        while (ISDIGIT (c)) 						\
1024          { 								\
1025            if (num < 0)							\
1026               num = 0;							\
1027            num = num * 10 + c - '0'; 					\
1028            if (p == pend) 						\
1029               break; 							\
1030            PATFETCH (c);						\
1031          } 								\
1032        } 								\
1033     }
1034 
1035 #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1036 
1037 #define IS_CHAR_CLASS(string)						\
1038    (STREQ (string, "alpha") || STREQ (string, "upper")			\
1039     || STREQ (string, "lower") || STREQ (string, "digit")		\
1040     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1041     || STREQ (string, "space") || STREQ (string, "print")		\
1042     || STREQ (string, "punct") || STREQ (string, "graph")		\
1043     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1044 
1045 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1046    Returns one of error codes defined in `regex.h', or zero for success.
1047 
1048    Assumes the `allocated' (and perhaps `buffer') and `translate'
1049    fields are set in BUFP on entry.
1050 
1051    If it succeeds, results are put in BUFP (if it returns an error, the
1052    contents of BUFP are undefined):
1053      `buffer' is the compiled pattern;
1054      `syntax' is set to SYNTAX;
1055      `used' is set to the length of the compiled pattern;
1056      `fastmap_accurate' is zero;
1057      `re_nsub' is the number of subexpressions in PATTERN;
1058      `not_bol' and `not_eol' are zero;
1059 
1060    The `fastmap' and `newline_anchor' fields are neither
1061    examined nor set.  */
1062 
1063 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1064 regex_compile (pattern, size, syntax, bufp)
1065      const char *pattern;
1066      int size;
1067      reg_syntax_t syntax;
1068      struct re_pattern_buffer *bufp;
1069 {
1070   /* We fetch characters from PATTERN here.  Even though PATTERN is
1071      `char *' (i.e., signed), we declare these variables as unsigned, so
1072      they can be reliably used as array indices.  */
1073   register unsigned char c, c1;
1074 
1075   /* A random tempory spot in PATTERN.  */
1076   const char *p1;
1077 
1078   /* Points to the end of the buffer, where we should append.  */
1079   register unsigned char *b;
1080 
1081   /* Keeps track of unclosed groups.  */
1082   compile_stack_type compile_stack;
1083 
1084   /* Points to the current (ending) position in the pattern.  */
1085   const char *p = pattern;
1086   const char *pend = pattern + size;
1087 
1088   /* How to translate the characters in the pattern.  */
1089   char *translate = bufp->translate;
1090 
1091   /* Address of the count-byte of the most recently inserted `exactn'
1092      command.  This makes it possible to tell if a new exact-match
1093      character can be added to that command or if the character requires
1094      a new `exactn' command.  */
1095   unsigned char *pending_exact = NULL;
1096 
1097   /* Address of start of the most recently finished expression.
1098      This tells, e.g., postfix * where to find the start of its
1099      operand.  Reset at the beginning of groups and alternatives.  */
1100   unsigned char *laststart = NULL;
1101 
1102   /* Address of beginning of regexp, or inside of last group.  */
1103   unsigned char *begalt;
1104 
1105   /* Place in the uncompiled pattern (i.e., the {) to
1106      which to go back if the interval is invalid.  */
1107   const char *beg_interval;
1108 
1109   /* Address of the place where a forward jump should go to the end of
1110      the containing expression.  Each alternative of an `or' -- except the
1111      last -- ends with a forward jump of this sort.  */
1112   unsigned char *fixup_alt_jump = NULL;
1113 
1114   /* Counts open-groups as they are encountered.  Remembered for the
1115      matching close-group on the compile stack, so the same register
1116      number is put in the stop_memory as the start_memory.  */
1117   regnum_t regnum = 0;
1118 
1119 #ifdef DEBUG
1120   DEBUG_PRINT1 ("\nCompiling pattern: ");
1121   if (debug)
1122     {
1123       unsigned debug_count;
1124 
1125       for (debug_count = 0; debug_count < size; debug_count++)
1126         printchar (pattern[debug_count]);
1127       putchar ('\n');
1128     }
1129 #endif /* DEBUG */
1130 
1131   /* Initialize the compile stack.  */
1132   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1133   if (compile_stack.stack == NULL)
1134     return REG_ESPACE;
1135 
1136   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1137   compile_stack.avail = 0;
1138 
1139   /* Initialize the pattern buffer.  */
1140   bufp->syntax = syntax;
1141   bufp->fastmap_accurate = 0;
1142   bufp->not_bol = bufp->not_eol = 0;
1143 
1144   /* Set `used' to zero, so that if we return an error, the pattern
1145      printer (for debugging) will think there's no pattern.  We reset it
1146      at the end.  */
1147   bufp->used = 0;
1148 
1149   /* Always count groups, whether or not bufp->no_sub is set.  */
1150   bufp->re_nsub = 0;
1151 
1152 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1153   /* Initialize the syntax table.  */
1154    init_syntax_once ();
1155 #endif
1156 
1157   if (bufp->allocated == 0)
1158     {
1159       if (bufp->buffer)
1160 	{ /* If zero allocated, but buffer is non-null, try to realloc
1161              enough space.  This loses if buffer's address is bogus, but
1162              that is the user's responsibility.  */
1163           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1164         }
1165       else
1166         { /* Caller did not allocate a buffer.  Do it for them.  */
1167           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1168         }
1169       if (!bufp->buffer) return REG_ESPACE;
1170 
1171       bufp->allocated = INIT_BUF_SIZE;
1172     }
1173 
1174   begalt = b = bufp->buffer;
1175 
1176   /* Loop through the uncompiled pattern until we're at the end.  */
1177   while (p != pend)
1178     {
1179       PATFETCH (c);
1180 
1181       switch (c)
1182         {
1183         case '^':
1184           {
1185             if (   /* If at start of pattern, it's an operator.  */
1186                    p == pattern + 1
1187                    /* If context independent, it's an operator.  */
1188                 || syntax & RE_CONTEXT_INDEP_ANCHORS
1189                    /* Otherwise, depends on what's come before.  */
1190                 || at_begline_loc_p (pattern, p, syntax))
1191               BUF_PUSH (begline);
1192             else
1193               goto normal_char;
1194           }
1195           break;
1196 
1197 
1198         case '$':
1199           {
1200             if (   /* If at end of pattern, it's an operator.  */
1201                    p == pend
1202                    /* If context independent, it's an operator.  */
1203                 || syntax & RE_CONTEXT_INDEP_ANCHORS
1204                    /* Otherwise, depends on what's next.  */
1205                 || at_endline_loc_p (p, pend, syntax))
1206                BUF_PUSH (endline);
1207              else
1208                goto normal_char;
1209            }
1210            break;
1211 
1212 
1213 	case '+':
1214         case '?':
1215           if ((syntax & RE_BK_PLUS_QM)
1216               || (syntax & RE_LIMITED_OPS))
1217             goto normal_char;
1218         handle_plus:
1219         case '*':
1220           /* If there is no previous pattern... */
1221           if (!laststart)
1222             {
1223               if (syntax & RE_CONTEXT_INVALID_OPS)
1224                 return REG_BADRPT;
1225               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1226                 goto normal_char;
1227             }
1228 
1229           {
1230             /* Are we optimizing this jump?  */
1231             boolean keep_string_p = false;
1232 
1233             /* 1 means zero (many) matches is allowed.  */
1234             char zero_times_ok = 0, many_times_ok = 0;
1235 
1236             /* If there is a sequence of repetition chars, collapse it
1237                down to just one (the right one).  We can't combine
1238                interval operators with these because of, e.g., `a{2}*',
1239                which should only match an even number of `a's.  */
1240 
1241             for (;;)
1242               {
1243                 zero_times_ok |= c != '+';
1244                 many_times_ok |= c != '?';
1245 
1246                 if (p == pend)
1247                   break;
1248 
1249                 PATFETCH (c);
1250 
1251                 if (c == '*'
1252                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1253                   ;
1254 
1255                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
1256                   {
1257                     if (p == pend) return REG_EESCAPE;
1258 
1259                     PATFETCH (c1);
1260                     if (!(c1 == '+' || c1 == '?'))
1261                       {
1262                         PATUNFETCH;
1263                         PATUNFETCH;
1264                         break;
1265                       }
1266 
1267                     c = c1;
1268                   }
1269                 else
1270                   {
1271                     PATUNFETCH;
1272                     break;
1273                   }
1274 
1275                 /* If we get here, we found another repeat character.  */
1276                }
1277 
1278             /* Star, etc. applied to an empty pattern is equivalent
1279                to an empty pattern.  */
1280             if (!laststart)
1281               break;
1282 
1283             /* Now we know whether or not zero matches is allowed
1284                and also whether or not two or more matches is allowed.  */
1285             if (many_times_ok)
1286               { /* More than one repetition is allowed, so put in at the
1287                    end a backward relative jump from `b' to before the next
1288                    jump we're going to put in below (which jumps from
1289                    laststart to after this jump).
1290 
1291                    But if we are at the `*' in the exact sequence `.*\n',
1292                    insert an unconditional jump backwards to the .,
1293                    instead of the beginning of the loop.  This way we only
1294                    push a failure point once, instead of every time
1295                    through the loop.  */
1296                 assert (p - 1 > pattern);
1297 
1298                 /* Allocate the space for the jump.  */
1299                 GET_BUFFER_SPACE (3);
1300 
1301                 /* We know we are not at the first character of the pattern,
1302                    because laststart was nonzero.  And we've already
1303                    incremented `p', by the way, to be the character after
1304                    the `*'.  Do we have to do something analogous here
1305                    for null bytes, because of RE_DOT_NOT_NULL?  */
1306                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1307 		    && zero_times_ok
1308                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1309                     && !(syntax & RE_DOT_NEWLINE))
1310                   { /* We have .*\n.  */
1311                     STORE_JUMP (jump, b, laststart);
1312                     keep_string_p = true;
1313                   }
1314                 else
1315                   /* Anything else.  */
1316                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1317 
1318                 /* We've added more stuff to the buffer.  */
1319                 b += 3;
1320               }
1321 
1322             /* On failure, jump from laststart to b + 3, which will be the
1323                end of the buffer after this jump is inserted.  */
1324             GET_BUFFER_SPACE (3);
1325             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1326                                        : on_failure_jump,
1327                          laststart, b + 3);
1328             pending_exact = 0;
1329             b += 3;
1330 
1331             if (!zero_times_ok)
1332               {
1333                 /* At least one repetition is required, so insert a
1334                    `dummy_failure_jump' before the initial
1335                    `on_failure_jump' instruction of the loop. This
1336                    effects a skip over that instruction the first time
1337                    we hit that loop.  */
1338                 GET_BUFFER_SPACE (3);
1339                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1340                 b += 3;
1341               }
1342             }
1343 	  break;
1344 
1345 
1346 	case '.':
1347           laststart = b;
1348           BUF_PUSH (anychar);
1349           break;
1350 
1351 
1352         case '[':
1353           {
1354             boolean had_char_class = false;
1355 
1356             if (p == pend) return REG_EBRACK;
1357 
1358             /* Ensure that we have enough space to push a charset: the
1359                opcode, the length count, and the bitset; 34 bytes in all.  */
1360 	    GET_BUFFER_SPACE (34);
1361 
1362             laststart = b;
1363 
1364             /* We test `*p == '^' twice, instead of using an if
1365                statement, so we only need one BUF_PUSH.  */
1366             BUF_PUSH (*p == '^' ? charset_not : charset);
1367             if (*p == '^')
1368               p++;
1369 
1370             /* Remember the first position in the bracket expression.  */
1371             p1 = p;
1372 
1373             /* Push the number of bytes in the bitmap.  */
1374             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1375 
1376             /* Clear the whole map.  */
1377             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1378 
1379             /* charset_not matches newline according to a syntax bit.  */
1380             if ((re_opcode_t) b[-2] == charset_not
1381                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1382               SET_LIST_BIT ('\n');
1383 
1384             /* Read in characters and ranges, setting map bits.  */
1385             for (;;)
1386               {
1387                 if (p == pend) return REG_EBRACK;
1388 
1389                 PATFETCH (c);
1390 
1391                 /* \ might escape characters inside [...] and [^...].  */
1392                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1393                   {
1394                     if (p == pend) return REG_EESCAPE;
1395 
1396                     PATFETCH (c1);
1397                     SET_LIST_BIT (c1);
1398                     continue;
1399                   }
1400 
1401                 /* Could be the end of the bracket expression.  If it's
1402                    not (i.e., when the bracket expression is `[]' so
1403                    far), the ']' character bit gets set way below.  */
1404                 if (c == ']' && p != p1 + 1)
1405                   break;
1406 
1407                 /* Look ahead to see if it's a range when the last thing
1408                    was a character class.  */
1409                 if (had_char_class && c == '-' && *p != ']')
1410                   return REG_ERANGE;
1411 
1412                 /* Look ahead to see if it's a range when the last thing
1413                    was a character: if this is a hyphen not at the
1414                    beginning or the end of a list, then it's the range
1415                    operator.  */
1416                 if (c == '-'
1417                     && !(p - 2 >= pattern && p[-2] == '[')
1418                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1419                     && *p != ']')
1420                   {
1421                     reg_errcode_t ret
1422                       = compile_range (&p, pend, translate, syntax, b);
1423                     if (ret != REG_NOERROR) return ret;
1424                   }
1425 
1426                 else if (p[0] == '-' && p[1] != ']')
1427                   { /* This handles ranges made up of characters only.  */
1428                     reg_errcode_t ret;
1429 
1430 		    /* Move past the `-'.  */
1431                     PATFETCH (c1);
1432 
1433                     ret = compile_range (&p, pend, translate, syntax, b);
1434                     if (ret != REG_NOERROR) return ret;
1435                   }
1436 
1437                 /* See if we're at the beginning of a possible character
1438                    class.  */
1439 
1440                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1441                   { /* Leave room for the null.  */
1442                     char str[CHAR_CLASS_MAX_LENGTH + 1];
1443 
1444                     PATFETCH (c);
1445                     c1 = 0;
1446 
1447                     /* If pattern is `[[:'.  */
1448                     if (p == pend) return REG_EBRACK;
1449 
1450                     for (;;)
1451                       {
1452                         PATFETCH (c);
1453                         if (c == ':' || c == ']' || p == pend
1454                             || c1 == CHAR_CLASS_MAX_LENGTH)
1455                           break;
1456                         str[c1++] = c;
1457                       }
1458                     str[c1] = '\0';
1459 
1460                     /* If isn't a word bracketed by `[:' and:`]':
1461                        undo the ending character, the letters, and leave
1462                        the leading `:' and `[' (but set bits for them).  */
1463                     if (c == ':' && *p == ']')
1464                       {
1465                         int ch;
1466                         boolean is_alnum = STREQ (str, "alnum");
1467                         boolean is_alpha = STREQ (str, "alpha");
1468                         boolean is_blank = STREQ (str, "blank");
1469                         boolean is_cntrl = STREQ (str, "cntrl");
1470                         boolean is_digit = STREQ (str, "digit");
1471                         boolean is_graph = STREQ (str, "graph");
1472                         boolean is_lower = STREQ (str, "lower");
1473                         boolean is_print = STREQ (str, "print");
1474                         boolean is_punct = STREQ (str, "punct");
1475                         boolean is_space = STREQ (str, "space");
1476                         boolean is_upper = STREQ (str, "upper");
1477                         boolean is_xdigit = STREQ (str, "xdigit");
1478 
1479                         if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1480 
1481                         /* Throw away the ] at the end of the character
1482                            class.  */
1483                         PATFETCH (c);
1484 
1485                         if (p == pend) return REG_EBRACK;
1486 
1487                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1488                           {
1489                             if (   (is_alnum  && ISALNUM (ch))
1490                                 || (is_alpha  && ISALPHA (ch))
1491                                 || (is_blank  && ISBLANK (ch))
1492                                 || (is_cntrl  && ISCNTRL (ch))
1493                                 || (is_digit  && ISDIGIT (ch))
1494                                 || (is_graph  && ISGRAPH (ch))
1495                                 || (is_lower  && ISLOWER (ch))
1496                                 || (is_print  && ISPRINT (ch))
1497                                 || (is_punct  && ISPUNCT (ch))
1498                                 || (is_space  && ISSPACE (ch))
1499                                 || (is_upper  && ISUPPER (ch))
1500                                 || (is_xdigit && ISXDIGIT (ch)))
1501                             SET_LIST_BIT (ch);
1502                           }
1503                         had_char_class = true;
1504                       }
1505                     else
1506                       {
1507                         c1++;
1508                         while (c1--)
1509                           PATUNFETCH;
1510                         SET_LIST_BIT ('[');
1511                         SET_LIST_BIT (':');
1512                         had_char_class = false;
1513                       }
1514                   }
1515                 else
1516                   {
1517                     had_char_class = false;
1518                     SET_LIST_BIT (c);
1519                   }
1520               }
1521 
1522             /* Discard any (non)matching list bytes that are all 0 at the
1523                end of the map.  Decrease the map-length byte too.  */
1524             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1525               b[-1]--;
1526             b += b[-1];
1527           }
1528           break;
1529 
1530 
1531 	case '(':
1532           if (syntax & RE_NO_BK_PARENS)
1533             goto handle_open;
1534           else
1535             goto normal_char;
1536 
1537 
1538         case ')':
1539           if (syntax & RE_NO_BK_PARENS)
1540             goto handle_close;
1541           else
1542             goto normal_char;
1543 
1544 
1545         case '\n':
1546           if (syntax & RE_NEWLINE_ALT)
1547             goto handle_alt;
1548           else
1549             goto normal_char;
1550 
1551 
1552 	case '|':
1553           if (syntax & RE_NO_BK_VBAR)
1554             goto handle_alt;
1555           else
1556             goto normal_char;
1557 
1558 
1559         case '{':
1560            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1561              goto handle_interval;
1562            else
1563              goto normal_char;
1564 
1565 
1566         case '\\':
1567           if (p == pend) return REG_EESCAPE;
1568 
1569           /* Do not translate the character after the \, so that we can
1570              distinguish, e.g., \B from \b, even if we normally would
1571              translate, e.g., B to b.  */
1572           PATFETCH_RAW (c);
1573 
1574           switch (c)
1575             {
1576             case '(':
1577               if (syntax & RE_NO_BK_PARENS)
1578                 goto normal_backslash;
1579 
1580             handle_open:
1581               bufp->re_nsub++;
1582               regnum++;
1583 
1584               if (COMPILE_STACK_FULL)
1585                 {
1586                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
1587                             compile_stack_elt_t);
1588                   if (compile_stack.stack == NULL) return REG_ESPACE;
1589 
1590                   compile_stack.size <<= 1;
1591                 }
1592 
1593               /* These are the values to restore when we hit end of this
1594                  group.  They are all relative offsets, so that if the
1595                  whole pattern moves because of realloc, they will still
1596                  be valid.  */
1597               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1598               COMPILE_STACK_TOP.fixup_alt_jump
1599                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1600               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1601               COMPILE_STACK_TOP.regnum = regnum;
1602 
1603               /* We will eventually replace the 0 with the number of
1604                  groups inner to this one.  But do not push a
1605                  start_memory for groups beyond the last one we can
1606                  represent in the compiled pattern.  */
1607               if (regnum <= MAX_REGNUM)
1608                 {
1609                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1610                   BUF_PUSH_3 (start_memory, regnum, 0);
1611                 }
1612 
1613               compile_stack.avail++;
1614 
1615               fixup_alt_jump = 0;
1616               laststart = 0;
1617               begalt = b;
1618 	      /* If we've reached MAX_REGNUM groups, then this open
1619 		 won't actually generate any code, so we'll have to
1620 		 clear pending_exact explicitly.  */
1621 	      pending_exact = 0;
1622               break;
1623 
1624 
1625             case ')':
1626               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1627 
1628               if (COMPILE_STACK_EMPTY)
1629                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1630                   goto normal_backslash;
1631                 else
1632                   return REG_ERPAREN;
1633 
1634             handle_close:
1635               if (fixup_alt_jump)
1636                 { /* Push a dummy failure point at the end of the
1637                      alternative for a possible future
1638                      `pop_failure_jump' to pop.  See comments at
1639                      `push_dummy_failure' in `re_match_2'.  */
1640                   BUF_PUSH (push_dummy_failure);
1641 
1642                   /* We allocated space for this jump when we assigned
1643                      to `fixup_alt_jump', in the `handle_alt' case below.  */
1644                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1645                 }
1646 
1647               /* See similar code for backslashed left paren above.  */
1648               if (COMPILE_STACK_EMPTY)
1649                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1650                   goto normal_char;
1651                 else
1652                   return REG_ERPAREN;
1653 
1654               /* Since we just checked for an empty stack above, this
1655                  ``can't happen''.  */
1656               assert (compile_stack.avail != 0);
1657               {
1658                 /* We don't just want to restore into `regnum', because
1659                    later groups should continue to be numbered higher,
1660                    as in `(ab)c(de)' -- the second group is #2.  */
1661                 regnum_t this_group_regnum;
1662 
1663                 compile_stack.avail--;
1664                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1665                 fixup_alt_jump
1666                   = COMPILE_STACK_TOP.fixup_alt_jump
1667                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1668                     : 0;
1669                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1670                 this_group_regnum = COMPILE_STACK_TOP.regnum;
1671 		/* If we've reached MAX_REGNUM groups, then this open
1672 		   won't actually generate any code, so we'll have to
1673 		   clear pending_exact explicitly.  */
1674 		pending_exact = 0;
1675 
1676                 /* We're at the end of the group, so now we know how many
1677                    groups were inside this one.  */
1678                 if (this_group_regnum <= MAX_REGNUM)
1679                   {
1680                     unsigned char *inner_group_loc
1681                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1682 
1683                     *inner_group_loc = regnum - this_group_regnum;
1684                     BUF_PUSH_3 (stop_memory, this_group_regnum,
1685                                 regnum - this_group_regnum);
1686                   }
1687               }
1688               break;
1689 
1690 
1691             case '|':					/* `\|'.  */
1692               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1693                 goto normal_backslash;
1694             handle_alt:
1695               if (syntax & RE_LIMITED_OPS)
1696                 goto normal_char;
1697 
1698               /* Insert before the previous alternative a jump which
1699                  jumps to this alternative if the former fails.  */
1700               GET_BUFFER_SPACE (3);
1701               INSERT_JUMP (on_failure_jump, begalt, b + 6);
1702               pending_exact = 0;
1703               b += 3;
1704 
1705               /* The alternative before this one has a jump after it
1706                  which gets executed if it gets matched.  Adjust that
1707                  jump so it will jump to this alternative's analogous
1708                  jump (put in below, which in turn will jump to the next
1709                  (if any) alternative's such jump, etc.).  The last such
1710                  jump jumps to the correct final destination.  A picture:
1711                           _____ _____
1712                           |   | |   |
1713                           |   v |   v
1714                          a | b   | c
1715 
1716                  If we are at `b', then fixup_alt_jump right now points to a
1717                  three-byte space after `a'.  We'll put in the jump, set
1718                  fixup_alt_jump to right after `b', and leave behind three
1719                  bytes which we'll fill in when we get to after `c'.  */
1720 
1721               if (fixup_alt_jump)
1722                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1723 
1724               /* Mark and leave space for a jump after this alternative,
1725                  to be filled in later either by next alternative or
1726                  when know we're at the end of a series of alternatives.  */
1727               fixup_alt_jump = b;
1728               GET_BUFFER_SPACE (3);
1729               b += 3;
1730 
1731               laststart = 0;
1732               begalt = b;
1733               break;
1734 
1735 
1736             case '{':
1737               /* If \{ is a literal.  */
1738               if (!(syntax & RE_INTERVALS)
1739                      /* If we're at `\{' and it's not the open-interval
1740                         operator.  */
1741                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1742                   || (p - 2 == pattern  &&  p == pend))
1743                 goto normal_backslash;
1744 
1745             handle_interval:
1746               {
1747                 /* If got here, then the syntax allows intervals.  */
1748 
1749                 /* At least (most) this many matches must be made.  */
1750                 int lower_bound = -1, upper_bound = -1;
1751 
1752                 beg_interval = p - 1;
1753 
1754                 if (p == pend)
1755                   {
1756                     if (syntax & RE_NO_BK_BRACES)
1757                       goto unfetch_interval;
1758                     else
1759                       return REG_EBRACE;
1760                   }
1761 
1762                 GET_UNSIGNED_NUMBER (lower_bound);
1763 
1764                 if (c == ',')
1765                   {
1766                     GET_UNSIGNED_NUMBER (upper_bound);
1767                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1768                   }
1769                 else
1770                   /* Interval such as `{1}' => match exactly once. */
1771                   upper_bound = lower_bound;
1772 
1773                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1774                     || lower_bound > upper_bound)
1775                   {
1776                     if (syntax & RE_NO_BK_BRACES)
1777                       goto unfetch_interval;
1778                     else
1779                       return REG_BADBR;
1780                   }
1781 
1782                 if (!(syntax & RE_NO_BK_BRACES))
1783                   {
1784                     if (c != '\\') return REG_EBRACE;
1785 
1786                     PATFETCH (c);
1787                   }
1788 
1789                 if (c != '}')
1790                   {
1791                     if (syntax & RE_NO_BK_BRACES)
1792                       goto unfetch_interval;
1793                     else
1794                       return REG_BADBR;
1795                   }
1796 
1797                 /* We just parsed a valid interval.  */
1798 
1799                 /* If it's invalid to have no preceding re.  */
1800                 if (!laststart)
1801                   {
1802                     if (syntax & RE_CONTEXT_INVALID_OPS)
1803                       return REG_BADRPT;
1804                     else if (syntax & RE_CONTEXT_INDEP_OPS)
1805                       laststart = b;
1806                     else
1807                       goto unfetch_interval;
1808                   }
1809 
1810                 /* If the upper bound is zero, don't want to succeed at
1811                    all; jump from `laststart' to `b + 3', which will be
1812                    the end of the buffer after we insert the jump.  */
1813                  if (upper_bound == 0)
1814                    {
1815                      GET_BUFFER_SPACE (3);
1816                      INSERT_JUMP (jump, laststart, b + 3);
1817                      b += 3;
1818                    }
1819 
1820                  /* Otherwise, we have a nontrivial interval.  When
1821                     we're all done, the pattern will look like:
1822                       set_number_at <jump count> <upper bound>
1823                       set_number_at <succeed_n count> <lower bound>
1824                       succeed_n <after jump addr> <succed_n count>
1825                       <body of loop>
1826                       jump_n <succeed_n addr> <jump count>
1827                     (The upper bound and `jump_n' are omitted if
1828                     `upper_bound' is 1, though.)  */
1829                  else
1830                    { /* If the upper bound is > 1, we need to insert
1831                         more at the end of the loop.  */
1832                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
1833 
1834                      GET_BUFFER_SPACE (nbytes);
1835 
1836                      /* Initialize lower bound of the `succeed_n', even
1837                         though it will be set during matching by its
1838                         attendant `set_number_at' (inserted next),
1839                         because `re_compile_fastmap' needs to know.
1840                         Jump to the `jump_n' we might insert below.  */
1841                      INSERT_JUMP2 (succeed_n, laststart,
1842                                    b + 5 + (upper_bound > 1) * 5,
1843                                    lower_bound);
1844                      b += 5;
1845 
1846                      /* Code to initialize the lower bound.  Insert
1847                         before the `succeed_n'.  The `5' is the last two
1848                         bytes of this `set_number_at', plus 3 bytes of
1849                         the following `succeed_n'.  */
1850                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1851                      b += 5;
1852 
1853                      if (upper_bound > 1)
1854                        { /* More than one repetition is allowed, so
1855                             append a backward jump to the `succeed_n'
1856                             that starts this interval.
1857 
1858                             When we've reached this during matching,
1859                             we'll have matched the interval once, so
1860                             jump back only `upper_bound - 1' times.  */
1861                          STORE_JUMP2 (jump_n, b, laststart + 5,
1862                                       upper_bound - 1);
1863                          b += 5;
1864 
1865                          /* The location we want to set is the second
1866                             parameter of the `jump_n'; that is `b-2' as
1867                             an absolute address.  `laststart' will be
1868                             the `set_number_at' we're about to insert;
1869                             `laststart+3' the number to set, the source
1870                             for the relative address.  But we are
1871                             inserting into the middle of the pattern --
1872                             so everything is getting moved up by 5.
1873                             Conclusion: (b - 2) - (laststart + 3) + 5,
1874                             i.e., b - laststart.
1875 
1876                             We insert this at the beginning of the loop
1877                             so that if we fail during matching, we'll
1878                             reinitialize the bounds.  */
1879                          insert_op2 (set_number_at, laststart, b - laststart,
1880                                      upper_bound - 1, b);
1881                          b += 5;
1882                        }
1883                    }
1884                 pending_exact = 0;
1885                 beg_interval = NULL;
1886               }
1887               break;
1888 
1889             unfetch_interval:
1890               /* If an invalid interval, match the characters as literals.  */
1891                assert (beg_interval);
1892                p = beg_interval;
1893                beg_interval = NULL;
1894 
1895                /* normal_char and normal_backslash need `c'.  */
1896                PATFETCH (c);
1897 
1898                if (!(syntax & RE_NO_BK_BRACES))
1899                  {
1900                    if (p > pattern  &&  p[-1] == '\\')
1901                      goto normal_backslash;
1902                  }
1903                goto normal_char;
1904 
1905 #ifdef emacs
1906             /* There is no way to specify the before_dot and after_dot
1907                operators.  rms says this is ok.  --karl  */
1908             case '=':
1909               BUF_PUSH (at_dot);
1910               break;
1911 
1912             case 's':
1913               laststart = b;
1914               PATFETCH (c);
1915               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1916               break;
1917 
1918             case 'S':
1919               laststart = b;
1920               PATFETCH (c);
1921               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1922               break;
1923 #endif /* emacs */
1924 
1925 
1926             case 'w':
1927               laststart = b;
1928               BUF_PUSH (wordchar);
1929               break;
1930 
1931 
1932             case 'W':
1933               laststart = b;
1934               BUF_PUSH (notwordchar);
1935               break;
1936 
1937 
1938             case '<':
1939               BUF_PUSH (wordbeg);
1940               break;
1941 
1942             case '>':
1943               BUF_PUSH (wordend);
1944               break;
1945 
1946             case 'b':
1947               BUF_PUSH (wordbound);
1948               break;
1949 
1950             case 'B':
1951               BUF_PUSH (notwordbound);
1952               break;
1953 
1954             case '`':
1955               BUF_PUSH (begbuf);
1956               break;
1957 
1958             case '\'':
1959               BUF_PUSH (endbuf);
1960               break;
1961 
1962             case '1': case '2': case '3': case '4': case '5':
1963             case '6': case '7': case '8': case '9':
1964               if (syntax & RE_NO_BK_REFS)
1965                 goto normal_char;
1966 
1967               c1 = c - '0';
1968 
1969               if (c1 > regnum)
1970                 return REG_ESUBREG;
1971 
1972               /* Can't back reference to a subexpression if inside of it.  */
1973               if (group_in_compile_stack (compile_stack, c1))
1974                 goto normal_char;
1975 
1976               laststart = b;
1977               BUF_PUSH_2 (duplicate, c1);
1978               break;
1979 
1980 
1981             case '+':
1982             case '?':
1983               if (syntax & RE_BK_PLUS_QM)
1984                 goto handle_plus;
1985               else
1986                 goto normal_backslash;
1987 
1988             default:
1989             normal_backslash:
1990               /* You might think it would be useful for \ to mean
1991                  not to translate; but if we don't translate it
1992                  it will never match anything.  */
1993               c = TRANSLATE (c);
1994               goto normal_char;
1995             }
1996           break;
1997 
1998 
1999 	default:
2000         /* Expects the character in `c'.  */
2001 	normal_char:
2002 	      /* If no exactn currently being built.  */
2003           if (!pending_exact
2004 
2005               /* If last exactn not at current position.  */
2006               || pending_exact + *pending_exact + 1 != b
2007 
2008               /* We have only one byte following the exactn for the count.  */
2009 	      || *pending_exact == (1 << BYTEWIDTH) - 1
2010 
2011               /* If followed by a repetition operator.  */
2012               || *p == '*' || *p == '^'
2013 	      || ((syntax & RE_BK_PLUS_QM)
2014 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2015 		  : (*p == '+' || *p == '?'))
2016 	      || ((syntax & RE_INTERVALS)
2017                   && ((syntax & RE_NO_BK_BRACES)
2018 		      ? *p == '{'
2019                       : (p[0] == '\\' && p[1] == '{'))))
2020 	    {
2021 	      /* Start building a new exactn.  */
2022 
2023               laststart = b;
2024 
2025 	      BUF_PUSH_2 (exactn, 0);
2026 	      pending_exact = b - 1;
2027             }
2028 
2029 	  BUF_PUSH (c);
2030           (*pending_exact)++;
2031 	  break;
2032         } /* switch (c) */
2033     } /* while p != pend */
2034 
2035 
2036   /* Through the pattern now.  */
2037 
2038   if (fixup_alt_jump)
2039     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2040 
2041   if (!COMPILE_STACK_EMPTY)
2042     return REG_EPAREN;
2043 
2044   free (compile_stack.stack);
2045 
2046   /* We have succeeded; set the length of the buffer.  */
2047   bufp->used = b - bufp->buffer;
2048 
2049 #ifdef DEBUG
2050   if (debug)
2051     {
2052       DEBUG_PRINT1 ("\nCompiled pattern: ");
2053       print_compiled_pattern (bufp);
2054     }
2055 #endif /* DEBUG */
2056 
2057   return REG_NOERROR;
2058 } /* regex_compile */
2059 
2060 /* Subroutines for `regex_compile'.  */
2061 
2062 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
2063 
2064 static void
store_op1(op,loc,arg)2065 store_op1 (op, loc, arg)
2066     re_opcode_t op;
2067     unsigned char *loc;
2068     int arg;
2069 {
2070   *loc = (unsigned char) op;
2071   STORE_NUMBER (loc + 1, arg);
2072 }
2073 
2074 
2075 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
2076 
2077 static void
store_op2(op,loc,arg1,arg2)2078 store_op2 (op, loc, arg1, arg2)
2079     re_opcode_t op;
2080     unsigned char *loc;
2081     int arg1, arg2;
2082 {
2083   *loc = (unsigned char) op;
2084   STORE_NUMBER (loc + 1, arg1);
2085   STORE_NUMBER (loc + 3, arg2);
2086 }
2087 
2088 
2089 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2090    for OP followed by two-byte integer parameter ARG.  */
2091 
2092 static void
insert_op1(op,loc,arg,end)2093 insert_op1 (op, loc, arg, end)
2094     re_opcode_t op;
2095     unsigned char *loc;
2096     int arg;
2097     unsigned char *end;
2098 {
2099   register unsigned char *pfrom = end;
2100   register unsigned char *pto = end + 3;
2101 
2102   while (pfrom != loc)
2103     *--pto = *--pfrom;
2104 
2105   store_op1 (op, loc, arg);
2106 }
2107 
2108 
2109 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
2110 
2111 static void
insert_op2(op,loc,arg1,arg2,end)2112 insert_op2 (op, loc, arg1, arg2, end)
2113     re_opcode_t op;
2114     unsigned char *loc;
2115     int arg1, arg2;
2116     unsigned char *end;
2117 {
2118   register unsigned char *pfrom = end;
2119   register unsigned char *pto = end + 5;
2120 
2121   while (pfrom != loc)
2122     *--pto = *--pfrom;
2123 
2124   store_op2 (op, loc, arg1, arg2);
2125 }
2126 
2127 
2128 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
2129    after an alternative or a begin-subexpression.  We assume there is at
2130    least one character before the ^.  */
2131 
2132 static boolean
at_begline_loc_p(pattern,p,syntax)2133 at_begline_loc_p (pattern, p, syntax)
2134     const char *pattern, *p;
2135     reg_syntax_t syntax;
2136 {
2137   const char *prev = p - 2;
2138   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2139 
2140   return
2141        /* After a subexpression?  */
2142        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2143        /* After an alternative?  */
2144     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2145 }
2146 
2147 
2148 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
2149    at least one character after the $, i.e., `P < PEND'.  */
2150 
2151 static boolean
at_endline_loc_p(p,pend,syntax)2152 at_endline_loc_p (p, pend, syntax)
2153     const char *p, *pend;
2154     int syntax;
2155 {
2156   const char *next = p;
2157   boolean next_backslash = *next == '\\';
2158   const char *next_next = p + 1 < pend ? p + 1 : NULL;
2159 
2160   return
2161        /* Before a subexpression?  */
2162        (syntax & RE_NO_BK_PARENS ? *next == ')'
2163         : next_backslash && next_next && *next_next == ')')
2164        /* Before an alternative?  */
2165     || (syntax & RE_NO_BK_VBAR ? *next == '|'
2166         : next_backslash && next_next && *next_next == '|');
2167 }
2168 
2169 
2170 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2171    false if it's not.  */
2172 
2173 static boolean
group_in_compile_stack(compile_stack,regnum)2174 group_in_compile_stack (compile_stack, regnum)
2175     compile_stack_type compile_stack;
2176     regnum_t regnum;
2177 {
2178   int this_element;
2179 
2180   for (this_element = compile_stack.avail - 1;
2181        this_element >= 0;
2182        this_element--)
2183     if (compile_stack.stack[this_element].regnum == regnum)
2184       return true;
2185 
2186   return false;
2187 }
2188 
2189 
2190 /* Read the ending character of a range (in a bracket expression) from the
2191    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
2192    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
2193    Then we set the translation of all bits between the starting and
2194    ending characters (inclusive) in the compiled pattern B.
2195 
2196    Return an error code.
2197 
2198    We use these short variable names so we can use the same macros as
2199    `regex_compile' itself.  */
2200 
2201 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)2202 compile_range (p_ptr, pend, translate, syntax, b)
2203     const char **p_ptr, *pend;
2204     char *translate;
2205     reg_syntax_t syntax;
2206     unsigned char *b;
2207 {
2208   unsigned this_char;
2209 
2210   const char *p = *p_ptr;
2211   int range_start, range_end;
2212 
2213   if (p == pend)
2214     return REG_ERANGE;
2215 
2216   /* Even though the pattern is a signed `char *', we need to fetch
2217      with unsigned char *'s; if the high bit of the pattern character
2218      is set, the range endpoints will be negative if we fetch using a
2219      signed char *.
2220 
2221      We also want to fetch the endpoints without translating them; the
2222      appropriate translation is done in the bit-setting loop below.  */
2223   range_start = ((unsigned char *) p)[-2];
2224   range_end   = ((unsigned char *) p)[0];
2225 
2226   /* Have to increment the pointer into the pattern string, so the
2227      caller isn't still at the ending character.  */
2228   (*p_ptr)++;
2229 
2230   /* If the start is after the end, the range is empty.  */
2231   if (range_start > range_end)
2232     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2233 
2234   /* Here we see why `this_char' has to be larger than an `unsigned
2235      char' -- the range is inclusive, so if `range_end' == 0xff
2236      (assuming 8-bit characters), we would otherwise go into an infinite
2237      loop, since all characters <= 0xff.  */
2238   for (this_char = range_start; this_char <= range_end; this_char++)
2239     {
2240       SET_LIST_BIT (TRANSLATE (this_char));
2241     }
2242 
2243   return REG_NOERROR;
2244 }
2245 
2246 /* Failure stack declarations and macros; both re_compile_fastmap and
2247    re_match_2 use a failure stack.  These have to be macros because of
2248    REGEX_ALLOCATE.  */
2249 
2250 
2251 /* Number of failure points for which to initially allocate space
2252    when matching.  If this number is exceeded, we allocate more
2253    space, so it is not a hard limit.  */
2254 #ifndef INIT_FAILURE_ALLOC
2255 #define INIT_FAILURE_ALLOC 5
2256 #endif
2257 
2258 /* Roughly the maximum number of failure points on the stack.  Would be
2259    exactly that if always used MAX_FAILURE_SPACE each time we failed.
2260    This is a variable only so users of regex can assign to it; we never
2261    change it ourselves.  */
2262 int re_max_failures = 2000;
2263 
2264 typedef const unsigned char *fail_stack_elt_t;
2265 
2266 typedef struct
2267 {
2268   fail_stack_elt_t *stack;
2269   unsigned size;
2270   unsigned avail;			/* Offset of next open position.  */
2271 } fail_stack_type;
2272 
2273 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
2274 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2275 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
2276 #define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
2277 
2278 
2279 /* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
2280 
2281 #define INIT_FAIL_STACK()						\
2282   do {									\
2283     fail_stack.stack = (fail_stack_elt_t *)				\
2284       REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
2285 									\
2286     if (fail_stack.stack == NULL)					\
2287       return -2;							\
2288 									\
2289     fail_stack.size = INIT_FAILURE_ALLOC;				\
2290     fail_stack.avail = 0;						\
2291   } while (0)
2292 
2293 
2294 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2295 
2296    Return 1 if succeeds, and 0 if either ran out of memory
2297    allocating space for it or it was already too large.
2298 
2299    REGEX_REALLOCATE requires `destination' be declared.   */
2300 
2301 #define DOUBLE_FAIL_STACK(fail_stack)					\
2302   ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
2303    ? 0									\
2304    : ((fail_stack).stack = (fail_stack_elt_t *)				\
2305         REGEX_REALLOCATE ((fail_stack).stack, 				\
2306           (fail_stack).size * sizeof (fail_stack_elt_t),		\
2307           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
2308 									\
2309       (fail_stack).stack == NULL					\
2310       ? 0								\
2311       : ((fail_stack).size <<= 1, 					\
2312          1)))
2313 
2314 
2315 /* Push PATTERN_OP on FAIL_STACK.
2316 
2317    Return 1 if was able to do so and 0 if ran out of memory allocating
2318    space to do so.  */
2319 #define PUSH_PATTERN_OP(pattern_op, fail_stack)				\
2320   ((FAIL_STACK_FULL ()							\
2321     && !DOUBLE_FAIL_STACK (fail_stack))					\
2322     ? 0									\
2323     : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,		\
2324        1))
2325 
2326 /* This pushes an item onto the failure stack.  Must be a four-byte
2327    value.  Assumes the variable `fail_stack'.  Probably should only
2328    be called from within `PUSH_FAILURE_POINT'.  */
2329 #define PUSH_FAILURE_ITEM(item)						\
2330   fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2331 
2332 /* The complement operation.  Assumes `fail_stack' is nonempty.  */
2333 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2334 
2335 /* Used to omit pushing failure point id's when we're not debugging.  */
2336 #ifdef DEBUG
2337 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2338 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2339 #else
2340 #define DEBUG_PUSH(item)
2341 #define DEBUG_POP(item_addr)
2342 #endif
2343 
2344 
2345 /* Push the information about the state we will need
2346    if we ever fail back to it.
2347 
2348    Requires variables fail_stack, regstart, regend, reg_info, and
2349    num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
2350    declared.
2351 
2352    Does `return FAILURE_CODE' if runs out of memory.  */
2353 
2354 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
2355   do {									\
2356     char *destination;							\
2357     /* Must be int, so when we don't save any registers, the arithmetic	\
2358        of 0 + -1 isn't done as unsigned.  */				\
2359     int this_reg;							\
2360     									\
2361     DEBUG_STATEMENT (failure_id++);					\
2362     DEBUG_STATEMENT (nfailure_points_pushed++);				\
2363     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
2364     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
2365     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
2366 									\
2367     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
2368     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
2369 									\
2370     /* Ensure we have enough space allocated for what we will push.  */	\
2371     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
2372       {									\
2373         if (!DOUBLE_FAIL_STACK (fail_stack))			\
2374           return failure_code;						\
2375 									\
2376         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
2377 		       (fail_stack).size);				\
2378         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2379       }									\
2380 									\
2381     /* Push the info, starting with the registers.  */			\
2382     DEBUG_PRINT1 ("\n");						\
2383 									\
2384     for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;	\
2385          this_reg++)							\
2386       {									\
2387 	DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);			\
2388         DEBUG_STATEMENT (num_regs_pushed++);				\
2389 									\
2390 	DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);		\
2391         PUSH_FAILURE_ITEM (regstart[this_reg]);				\
2392                                                                         \
2393 	DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
2394         PUSH_FAILURE_ITEM (regend[this_reg]);				\
2395 									\
2396 	DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
2397         DEBUG_PRINT2 (" match_null=%d",					\
2398                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
2399         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
2400         DEBUG_PRINT2 (" matched_something=%d",				\
2401                       MATCHED_SOMETHING (reg_info[this_reg]));		\
2402         DEBUG_PRINT2 (" ever_matched=%d",				\
2403                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
2404 	DEBUG_PRINT1 ("\n");						\
2405         PUSH_FAILURE_ITEM (reg_info[this_reg].word);			\
2406       }									\
2407 									\
2408     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
2409     PUSH_FAILURE_ITEM (lowest_active_reg);				\
2410 									\
2411     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
2412     PUSH_FAILURE_ITEM (highest_active_reg);				\
2413 									\
2414     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
2415     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
2416     PUSH_FAILURE_ITEM (pattern_place);					\
2417 									\
2418     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
2419     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
2420 				 size2);				\
2421     DEBUG_PRINT1 ("'\n");						\
2422     PUSH_FAILURE_ITEM (string_place);					\
2423 									\
2424     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
2425     DEBUG_PUSH (failure_id);						\
2426   } while (0)
2427 
2428 /* This is the number of items that are pushed and popped on the stack
2429    for each register.  */
2430 #define NUM_REG_ITEMS  3
2431 
2432 /* Individual items aside from the registers.  */
2433 #ifdef DEBUG
2434 #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
2435 #else
2436 #define NUM_NONREG_ITEMS 4
2437 #endif
2438 
2439 /* We push at most this many items on the stack.  */
2440 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2441 
2442 /* We actually push this many items.  */
2443 #define NUM_FAILURE_ITEMS						\
2444   ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS 	\
2445     + NUM_NONREG_ITEMS)
2446 
2447 /* How many items can still be added to the stack without overflowing it.  */
2448 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2449 
2450 
2451 /* Pops what PUSH_FAIL_STACK pushes.
2452 
2453    We restore into the parameters, all of which should be lvalues:
2454      STR -- the saved data position.
2455      PAT -- the saved pattern position.
2456      LOW_REG, HIGH_REG -- the highest and lowest active registers.
2457      REGSTART, REGEND -- arrays of string positions.
2458      REG_INFO -- array of information about each subexpression.
2459 
2460    Also assumes the variables `fail_stack' and (if debugging), `bufp',
2461    `pend', `string1', `size1', `string2', and `size2'.  */
2462 
2463 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2464 {									\
2465   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
2466   int this_reg;								\
2467   const unsigned char *string_temp;					\
2468 									\
2469   assert (!FAIL_STACK_EMPTY ());					\
2470 									\
2471   /* Remove failure points and point to how many regs pushed.  */	\
2472   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
2473   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
2474   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
2475 									\
2476   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
2477 									\
2478   DEBUG_POP (&failure_id);						\
2479   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
2480 									\
2481   /* If the saved string location is NULL, it came from an		\
2482      on_failure_keep_string_jump opcode, and we want to throw away the	\
2483      saved NULL, thus retaining our current position in the string.  */	\
2484   string_temp = POP_FAILURE_ITEM ();					\
2485   if (string_temp != NULL)						\
2486     str = (const char *) string_temp;					\
2487 									\
2488   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
2489   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
2490   DEBUG_PRINT1 ("'\n");							\
2491 									\
2492   pat = (unsigned char *) POP_FAILURE_ITEM ();				\
2493   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
2494   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
2495 									\
2496   /* Restore register info.  */						\
2497   high_reg = (unsigned) POP_FAILURE_ITEM ();				\
2498   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
2499 									\
2500   low_reg = (unsigned) POP_FAILURE_ITEM ();				\
2501   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
2502 									\
2503   for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
2504     {									\
2505       DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);			\
2506 									\
2507       reg_info[this_reg].word = POP_FAILURE_ITEM ();			\
2508       DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);		\
2509 									\
2510       regend[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
2511       DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
2512 									\
2513       regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
2514       DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);		\
2515     }									\
2516 									\
2517   DEBUG_STATEMENT (nfailure_points_popped++);				\
2518 } /* POP_FAILURE_POINT */
2519 
2520 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2521    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
2522    characters can start a string that matches the pattern.  This fastmap
2523    is used by re_search to skip quickly over impossible starting points.
2524 
2525    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2526    area as BUFP->fastmap.
2527 
2528    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2529    the pattern buffer.
2530 
2531    Returns 0 if we succeed, -2 if an internal error.   */
2532 
2533 int
re_compile_fastmap(bufp)2534 re_compile_fastmap (bufp)
2535      struct re_pattern_buffer *bufp;
2536 {
2537   int j, k;
2538   fail_stack_type fail_stack;
2539 #ifndef REGEX_MALLOC
2540   char *destination;
2541 #endif
2542   /* We don't push any register information onto the failure stack.  */
2543   unsigned num_regs = 0;
2544 
2545   register char *fastmap = bufp->fastmap;
2546   unsigned char *pattern = bufp->buffer;
2547   unsigned long size = bufp->used;
2548   const unsigned char *p = pattern;
2549   register unsigned char *pend = pattern + size;
2550 
2551   /* Assume that each path through the pattern can be null until
2552      proven otherwise.  We set this false at the bottom of switch
2553      statement, to which we get only if a particular path doesn't
2554      match the empty string.  */
2555   boolean path_can_be_null = true;
2556 
2557   /* We aren't doing a `succeed_n' to begin with.  */
2558   boolean succeed_n_p = false;
2559 
2560   assert (fastmap != NULL && p != NULL);
2561 
2562   INIT_FAIL_STACK ();
2563   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
2564   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
2565   bufp->can_be_null = 0;
2566 
2567   while (p != pend || !FAIL_STACK_EMPTY ())
2568     {
2569       if (p == pend)
2570         {
2571           bufp->can_be_null |= path_can_be_null;
2572 
2573           /* Reset for next path.  */
2574           path_can_be_null = true;
2575 
2576           p = fail_stack.stack[--fail_stack.avail];
2577 	}
2578 
2579       /* We should never be about to go beyond the end of the pattern.  */
2580       assert (p < pend);
2581 
2582 #ifdef SWITCH_ENUM_BUG
2583       switch ((int) ((re_opcode_t) *p++))
2584 #else
2585       switch ((re_opcode_t) *p++)
2586 #endif
2587 	{
2588 
2589         /* I guess the idea here is to simply not bother with a fastmap
2590            if a backreference is used, since it's too hard to figure out
2591            the fastmap for the corresponding group.  Setting
2592            `can_be_null' stops `re_search_2' from using the fastmap, so
2593            that is all we do.  */
2594 	case duplicate:
2595 	  bufp->can_be_null = 1;
2596           return 0;
2597 
2598 
2599       /* Following are the cases which match a character.  These end
2600          with `break'.  */
2601 
2602 	case exactn:
2603           fastmap[p[1]] = 1;
2604 	  break;
2605 
2606 
2607         case charset:
2608           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2609 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2610               fastmap[j] = 1;
2611 	  break;
2612 
2613 
2614 	case charset_not:
2615 	  /* Chars beyond end of map must be allowed.  */
2616 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2617             fastmap[j] = 1;
2618 
2619 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2620 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2621               fastmap[j] = 1;
2622           break;
2623 
2624 
2625 	case wordchar:
2626 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2627 	    if (SYNTAX (j) == Sword)
2628 	      fastmap[j] = 1;
2629 	  break;
2630 
2631 
2632 	case notwordchar:
2633 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2634 	    if (SYNTAX (j) != Sword)
2635 	      fastmap[j] = 1;
2636 	  break;
2637 
2638 
2639         case anychar:
2640           /* `.' matches anything ...  */
2641 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2642             fastmap[j] = 1;
2643 
2644           /* ... except perhaps newline.  */
2645           if (!(bufp->syntax & RE_DOT_NEWLINE))
2646             fastmap['\n'] = 0;
2647 
2648           /* Return if we have already set `can_be_null'; if we have,
2649              then the fastmap is irrelevant.  Something's wrong here.  */
2650 	  else if (bufp->can_be_null)
2651 	    return 0;
2652 
2653           /* Otherwise, have to check alternative paths.  */
2654 	  break;
2655 
2656 
2657 #ifdef emacs
2658         case syntaxspec:
2659 	  k = *p++;
2660 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2661 	    if (SYNTAX (j) == (enum syntaxcode) k)
2662 	      fastmap[j] = 1;
2663 	  break;
2664 
2665 
2666 	case notsyntaxspec:
2667 	  k = *p++;
2668 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2669 	    if (SYNTAX (j) != (enum syntaxcode) k)
2670 	      fastmap[j] = 1;
2671 	  break;
2672 
2673 
2674       /* All cases after this match the empty string.  These end with
2675          `continue'.  */
2676 
2677 
2678 	case before_dot:
2679 	case at_dot:
2680 	case after_dot:
2681           continue;
2682 #endif /* not emacs */
2683 
2684 
2685         case no_op:
2686         case begline:
2687         case endline:
2688 	case begbuf:
2689 	case endbuf:
2690 	case wordbound:
2691 	case notwordbound:
2692 	case wordbeg:
2693 	case wordend:
2694         case push_dummy_failure:
2695           continue;
2696 
2697 
2698 	case jump_n:
2699         case pop_failure_jump:
2700 	case maybe_pop_jump:
2701 	case jump:
2702         case jump_past_alt:
2703 	case dummy_failure_jump:
2704           EXTRACT_NUMBER_AND_INCR (j, p);
2705 	  p += j;
2706 	  if (j > 0)
2707 	    continue;
2708 
2709           /* Jump backward implies we just went through the body of a
2710              loop and matched nothing.  Opcode jumped to should be
2711              `on_failure_jump' or `succeed_n'.  Just treat it like an
2712              ordinary jump.  For a * loop, it has pushed its failure
2713              point already; if so, discard that as redundant.  */
2714           if ((re_opcode_t) *p != on_failure_jump
2715 	      && (re_opcode_t) *p != succeed_n)
2716 	    continue;
2717 
2718           p++;
2719           EXTRACT_NUMBER_AND_INCR (j, p);
2720           p += j;
2721 
2722           /* If what's on the stack is where we are now, pop it.  */
2723           if (!FAIL_STACK_EMPTY ()
2724 	      && fail_stack.stack[fail_stack.avail - 1] == p)
2725             fail_stack.avail--;
2726 
2727           continue;
2728 
2729 
2730         case on_failure_jump:
2731         case on_failure_keep_string_jump:
2732 	handle_on_failure_jump:
2733           EXTRACT_NUMBER_AND_INCR (j, p);
2734 
2735           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2736              end of the pattern.  We don't want to push such a point,
2737              since when we restore it above, entering the switch will
2738              increment `p' past the end of the pattern.  We don't need
2739              to push such a point since we obviously won't find any more
2740              fastmap entries beyond `pend'.  Such a pattern can match
2741              the null string, though.  */
2742           if (p + j < pend)
2743             {
2744               if (!PUSH_PATTERN_OP (p + j, fail_stack))
2745                 return -2;
2746             }
2747           else
2748             bufp->can_be_null = 1;
2749 
2750           if (succeed_n_p)
2751             {
2752               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
2753               succeed_n_p = false;
2754 	    }
2755 
2756           continue;
2757 
2758 
2759 	case succeed_n:
2760           /* Get to the number of times to succeed.  */
2761           p += 2;
2762 
2763           /* Increment p past the n for when k != 0.  */
2764           EXTRACT_NUMBER_AND_INCR (k, p);
2765           if (k == 0)
2766 	    {
2767               p -= 4;
2768   	      succeed_n_p = true;  /* Spaghetti code alert.  */
2769               goto handle_on_failure_jump;
2770             }
2771           continue;
2772 
2773 
2774 	case set_number_at:
2775           p += 4;
2776           continue;
2777 
2778 
2779 	case start_memory:
2780         case stop_memory:
2781 	  p += 2;
2782 	  continue;
2783 
2784 
2785 	default:
2786           abort (); /* We have listed all the cases.  */
2787         } /* switch *p++ */
2788 
2789       /* Getting here means we have found the possible starting
2790          characters for one path of the pattern -- and that the empty
2791          string does not match.  We need not follow this path further.
2792          Instead, look at the next alternative (remembered on the
2793          stack), or quit if no more.  The test at the top of the loop
2794          does these things.  */
2795       path_can_be_null = false;
2796       p = pend;
2797     } /* while p */
2798 
2799   /* Set `can_be_null' for the last path (also the first path, if the
2800      pattern is empty).  */
2801   bufp->can_be_null |= path_can_be_null;
2802   return 0;
2803 } /* re_compile_fastmap */
2804 
2805 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2806    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
2807    this memory for recording register information.  STARTS and ENDS
2808    must be allocated using the malloc library routine, and must each
2809    be at least NUM_REGS * sizeof (regoff_t) bytes long.
2810 
2811    If NUM_REGS == 0, then subsequent matches should allocate their own
2812    register data.
2813 
2814    Unless this function is called, the first search or match using
2815    PATTERN_BUFFER will allocate its own register data, without
2816    freeing the old data.  */
2817 
2818 void
re_set_registers(bufp,regs,num_regs,starts,ends)2819 re_set_registers (bufp, regs, num_regs, starts, ends)
2820     struct re_pattern_buffer *bufp;
2821     struct re_registers *regs;
2822     unsigned num_regs;
2823     regoff_t *starts, *ends;
2824 {
2825   if (num_regs)
2826     {
2827       bufp->regs_allocated = REGS_REALLOCATE;
2828       regs->num_regs = num_regs;
2829       regs->start = starts;
2830       regs->end = ends;
2831     }
2832   else
2833     {
2834       bufp->regs_allocated = REGS_UNALLOCATED;
2835       regs->num_regs = 0;
2836       regs->start = regs->end = (regoff_t) 0;
2837     }
2838 }
2839 
2840 /* Searching routines.  */
2841 
2842 /* Like re_search_2, below, but only one string is specified, and
2843    doesn't let you say where to stop matching. */
2844 
2845 int
re_search(bufp,string,size,startpos,range,regs)2846 re_search (bufp, string, size, startpos, range, regs)
2847      struct re_pattern_buffer *bufp;
2848      const char *string;
2849      int size, startpos, range;
2850      struct re_registers *regs;
2851 {
2852   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2853 		      regs, size);
2854 }
2855 
2856 
2857 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2858    virtual concatenation of STRING1 and STRING2, starting first at index
2859    STARTPOS, then at STARTPOS + 1, and so on.
2860 
2861    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2862 
2863    RANGE is how far to scan while trying to match.  RANGE = 0 means try
2864    only at STARTPOS; in general, the last start tried is STARTPOS +
2865    RANGE.
2866 
2867    In REGS, return the indices of the virtual concatenation of STRING1
2868    and STRING2 that matched the entire BUFP->buffer and its contained
2869    subexpressions.
2870 
2871    Do not consider matching one past the index STOP in the virtual
2872    concatenation of STRING1 and STRING2.
2873 
2874    We return either the position in the strings at which the match was
2875    found, -1 if no match, or -2 if error (such as failure
2876    stack overflow).  */
2877 
2878 int
re_search_2(bufp,string1,size1,string2,size2,startpos,range,regs,stop)2879 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2880      struct re_pattern_buffer *bufp;
2881      const char *string1, *string2;
2882      int size1, size2;
2883      int startpos;
2884      int range;
2885      struct re_registers *regs;
2886      int stop;
2887 {
2888   int val;
2889   register char *fastmap = bufp->fastmap;
2890   register char *translate = bufp->translate;
2891   int total_size = size1 + size2;
2892   int endpos = startpos + range;
2893 
2894   /* Check for out-of-range STARTPOS.  */
2895   if (startpos < 0 || startpos > total_size)
2896     return -1;
2897 
2898   /* Fix up RANGE if it might eventually take us outside
2899      the virtual concatenation of STRING1 and STRING2.  */
2900   if (endpos < -1)
2901     range = -1 - startpos;
2902   else if (endpos > total_size)
2903     range = total_size - startpos;
2904 
2905   /* If the search isn't to be a backwards one, don't waste time in a
2906      search for a pattern that must be anchored.  */
2907   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2908     {
2909       if (startpos > 0)
2910 	return -1;
2911       else
2912 	range = 1;
2913     }
2914 
2915   /* Update the fastmap now if not correct already.  */
2916   if (fastmap && !bufp->fastmap_accurate)
2917     if (re_compile_fastmap (bufp) == -2)
2918       return -2;
2919 
2920   /* Loop through the string, looking for a place to start matching.  */
2921   for (;;)
2922     {
2923       /* If a fastmap is supplied, skip quickly over characters that
2924          cannot be the start of a match.  If the pattern can match the
2925          null string, however, we don't need to skip characters; we want
2926          the first null string.  */
2927       if (fastmap && startpos < total_size && !bufp->can_be_null)
2928 	{
2929 	  if (range > 0)	/* Searching forwards.  */
2930 	    {
2931 	      register const char *d;
2932 	      register int lim = 0;
2933 	      int irange = range;
2934 
2935               if (startpos < size1 && startpos + range >= size1)
2936                 lim = range - (size1 - startpos);
2937 
2938 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2939 
2940               /* Written out as an if-else to avoid testing `translate'
2941                  inside the loop.  */
2942 	      if (translate)
2943                 while (range > lim
2944                        && !fastmap[(unsigned char)
2945 				   translate[(unsigned char) *d++]])
2946                   range--;
2947 	      else
2948                 while (range > lim && !fastmap[(unsigned char) *d++])
2949                   range--;
2950 
2951 	      startpos += irange - range;
2952 	    }
2953 	  else				/* Searching backwards.  */
2954 	    {
2955 	      register char c = (size1 == 0 || startpos >= size1
2956                                  ? string2[startpos - size1]
2957                                  : string1[startpos]);
2958 
2959 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
2960 		goto advance;
2961 	    }
2962 	}
2963 
2964       /* If can't match the null string, and that's all we have left, fail.  */
2965       if (range >= 0 && startpos == total_size && fastmap
2966           && !bufp->can_be_null)
2967 	return -1;
2968 
2969       val = re_match_2 (bufp, string1, size1, string2, size2,
2970 	                startpos, regs, stop);
2971       if (val >= 0)
2972 	return startpos;
2973 
2974       if (val == -2)
2975 	return -2;
2976 
2977     advance:
2978       if (!range)
2979         break;
2980       else if (range > 0)
2981         {
2982           range--;
2983           startpos++;
2984         }
2985       else
2986         {
2987           range++;
2988           startpos--;
2989         }
2990     }
2991   return -1;
2992 } /* re_search_2 */
2993 
2994 /* Declarations and macros for re_match_2.  */
2995 
2996 static int bcmp_translate ();
2997 static boolean alt_match_null_string_p (),
2998                common_op_match_null_string_p (),
2999                group_match_null_string_p ();
3000 
3001 /* Structure for per-register (a.k.a. per-group) information.
3002    This must not be longer than one word, because we push this value
3003    onto the failure stack.  Other register information, such as the
3004    starting and ending positions (which are addresses), and the list of
3005    inner groups (which is a bits list) are maintained in separate
3006    variables.
3007 
3008    We are making a (strictly speaking) nonportable assumption here: that
3009    the compiler will pack our bit fields into something that fits into
3010    the type of `word', i.e., is something that fits into one item on the
3011    failure stack.  */
3012 typedef union
3013 {
3014   fail_stack_elt_t word;
3015   struct
3016   {
3017       /* This field is one if this group can match the empty string,
3018          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
3019 #define MATCH_NULL_UNSET_VALUE 3
3020     unsigned match_null_string_p : 2;
3021     unsigned is_active : 1;
3022     unsigned matched_something : 1;
3023     unsigned ever_matched_something : 1;
3024   } bits;
3025 } register_info_type;
3026 
3027 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
3028 #define IS_ACTIVE(R)  ((R).bits.is_active)
3029 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
3030 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
3031 
3032 
3033 /* Call this when have matched a real character; it sets `matched' flags
3034    for the subexpressions which we are currently inside.  Also records
3035    that those subexprs have matched.  */
3036 #define SET_REGS_MATCHED()						\
3037   do									\
3038     {									\
3039       unsigned r;							\
3040       for (r = lowest_active_reg; r <= highest_active_reg; r++)		\
3041         {								\
3042           MATCHED_SOMETHING (reg_info[r])				\
3043             = EVER_MATCHED_SOMETHING (reg_info[r])			\
3044             = 1;							\
3045         }								\
3046     }									\
3047   while (0)
3048 
3049 
3050 /* This converts PTR, a pointer into one of the search strings `string1'
3051    and `string2' into an offset from the beginning of that string.  */
3052 #define POINTER_TO_OFFSET(ptr)						\
3053   (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3054 
3055 /* Registers are set to a sentinel when they haven't yet matched.  */
3056 #define REG_UNSET_VALUE ((char *) -1)
3057 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3058 
3059 
3060 /* Macros for dealing with the split strings in re_match_2.  */
3061 
3062 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3063 
3064 /* Call before fetching a character with *d.  This switches over to
3065    string2 if necessary.  */
3066 #define PREFETCH()							\
3067   while (d == dend)						    	\
3068     {									\
3069       /* End of string2 => fail.  */					\
3070       if (dend == end_match_2) 						\
3071         goto fail;							\
3072       /* End of string1 => advance to string2.  */ 			\
3073       d = string2;						        \
3074       dend = end_match_2;						\
3075     }
3076 
3077 
3078 /* Test if at very beginning or at very end of the virtual concatenation
3079    of `string1' and `string2'.  If only one string, it's `string2'.  */
3080 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3081 #define AT_STRINGS_END(d) ((d) == end2)
3082 
3083 
3084 /* Test if D points to a character which is word-constituent.  We have
3085    two special cases to check for: if past the end of string1, look at
3086    the first character in string2; and if before the beginning of
3087    string2, look at the last character in string1.  */
3088 #define WORDCHAR_P(d)							\
3089   (SYNTAX ((d) == end1 ? *string2					\
3090            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3091    == Sword)
3092 
3093 /* Test if the character before D and the one at D differ with respect
3094    to being word-constituent.  */
3095 #define AT_WORD_BOUNDARY(d)						\
3096   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3097    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3098 
3099 
3100 /* Free everything we malloc.  */
3101 #define FREE_VAR(var) if (var) free (var); var = NULL
3102 #define FREE_VARIABLES()						\
3103   do {									\
3104     FREE_VAR (fail_stack.stack);					\
3105     FREE_VAR (regstart);						\
3106     FREE_VAR (regend);							\
3107     FREE_VAR (old_regstart);						\
3108     FREE_VAR (old_regend);						\
3109     FREE_VAR (best_regstart);						\
3110     FREE_VAR (best_regend);						\
3111     FREE_VAR (reg_info);						\
3112     FREE_VAR (reg_dummy);						\
3113     FREE_VAR (reg_info_dummy);						\
3114   } while (0)
3115 
3116 
3117 /* These values must meet several constraints.  They must not be valid
3118    register values; since we have a limit of 255 registers (because
3119    we use only one byte in the pattern for the register number), we can
3120    use numbers larger than 255.  They must differ by 1, because of
3121    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3122    be larger than the value for the highest register, so we do not try
3123    to actually save any registers when none are active.  */
3124 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3125 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3126 
3127 /* Matching routines.  */
3128 
3129 #ifndef emacs   /* Emacs never uses this.  */
3130 /* re_match is like re_match_2 except it takes only a single string.  */
3131 
3132 int
re_match(bufp,string,size,pos,regs)3133 re_match (bufp, string, size, pos, regs)
3134      struct re_pattern_buffer *bufp;
3135      const char *string;
3136      int size, pos;
3137      struct re_registers *regs;
3138  {
3139   return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3140 }
3141 #endif /* not emacs */
3142 
3143 
3144 /* re_match_2 matches the compiled pattern in BUFP against the
3145    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3146    and SIZE2, respectively).  We start matching at POS, and stop
3147    matching at STOP.
3148 
3149    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3150    store offsets for the substring each group matched in REGS.  See the
3151    documentation for exactly how many groups we fill.
3152 
3153    We return -1 if no match, -2 if an internal error (such as the
3154    failure stack overflowing).  Otherwise, we return the length of the
3155    matched substring.  */
3156 
3157 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3158 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3159      struct re_pattern_buffer *bufp;
3160      const char *string1, *string2;
3161      int size1, size2;
3162      int pos;
3163      struct re_registers *regs;
3164      int stop;
3165 {
3166   /* General temporaries.  */
3167   int mcnt;
3168   unsigned char *p1;
3169 
3170   /* Just past the end of the corresponding string.  */
3171   const char *end1, *end2;
3172 
3173   /* Pointers into string1 and string2, just past the last characters in
3174      each to consider matching.  */
3175   const char *end_match_1, *end_match_2;
3176 
3177   /* Where we are in the data, and the end of the current string.  */
3178   const char *d, *dend;
3179 
3180   /* Where we are in the pattern, and the end of the pattern.  */
3181   unsigned char *p = bufp->buffer;
3182   register unsigned char *pend = p + bufp->used;
3183 
3184   /* We use this to map every character in the string.  */
3185   char *translate = bufp->translate;
3186 
3187   /* Failure point stack.  Each place that can handle a failure further
3188      down the line pushes a failure point on this stack.  It consists of
3189      restart, regend, and reg_info for all registers corresponding to
3190      the subexpressions we're currently inside, plus the number of such
3191      registers, and, finally, two char *'s.  The first char * is where
3192      to resume scanning the pattern; the second one is where to resume
3193      scanning the strings.  If the latter is zero, the failure point is
3194      a ``dummy''; if a failure happens and the failure point is a dummy,
3195      it gets discarded and the next next one is tried.  */
3196   fail_stack_type fail_stack;
3197 #ifdef DEBUG
3198   static unsigned failure_id = 0;
3199   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3200 #endif
3201 
3202   /* We fill all the registers internally, independent of what we
3203      return, for use in backreferences.  The number here includes
3204      an element for register zero.  */
3205   unsigned num_regs = bufp->re_nsub + 1;
3206 
3207   /* The currently active registers.  */
3208   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3209   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3210 
3211   /* Information on the contents of registers. These are pointers into
3212      the input strings; they record just what was matched (on this
3213      attempt) by a subexpression part of the pattern, that is, the
3214      regnum-th regstart pointer points to where in the pattern we began
3215      matching and the regnum-th regend points to right after where we
3216      stopped matching the regnum-th subexpression.  (The zeroth register
3217      keeps track of what the whole pattern matches.)  */
3218   const char **regstart, **regend;
3219 
3220   /* If a group that's operated upon by a repetition operator fails to
3221      match anything, then the register for its start will need to be
3222      restored because it will have been set to wherever in the string we
3223      are when we last see its open-group operator.  Similarly for a
3224      register's end.  */
3225   const char **old_regstart, **old_regend;
3226 
3227   /* The is_active field of reg_info helps us keep track of which (possibly
3228      nested) subexpressions we are currently in. The matched_something
3229      field of reg_info[reg_num] helps us tell whether or not we have
3230      matched any of the pattern so far this time through the reg_num-th
3231      subexpression.  These two fields get reset each time through any
3232      loop their register is in.  */
3233   register_info_type *reg_info;
3234 
3235   /* The following record the register info as found in the above
3236      variables when we find a match better than any we've seen before.
3237      This happens as we backtrack through the failure points, which in
3238      turn happens only if we have not yet matched the entire string. */
3239   unsigned best_regs_set = false;
3240   const char **best_regstart, **best_regend;
3241 
3242   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3243      allocate space for that if we're not allocating space for anything
3244      else (see below).  Also, we never need info about register 0 for
3245      any of the other register vectors, and it seems rather a kludge to
3246      treat `best_regend' differently than the rest.  So we keep track of
3247      the end of the best match so far in a separate variable.  We
3248      initialize this to NULL so that when we backtrack the first time
3249      and need to test it, it's not garbage.  */
3250   const char *match_end = NULL;
3251 
3252   /* Used when we pop values we don't care about.  */
3253   const char **reg_dummy;
3254   register_info_type *reg_info_dummy;
3255 
3256 #ifdef DEBUG
3257   /* Counts the total number of registers pushed.  */
3258   unsigned num_regs_pushed = 0;
3259 #endif
3260 
3261   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3262 
3263   INIT_FAIL_STACK ();
3264 
3265   /* Do not bother to initialize all the register variables if there are
3266      no groups in the pattern, as it takes a fair amount of time.  If
3267      there are groups, we include space for register 0 (the whole
3268      pattern), even though we never use it, since it simplifies the
3269      array indexing.  We should fix this.  */
3270   if (bufp->re_nsub)
3271     {
3272       regstart = REGEX_TALLOC (num_regs, const char *);
3273       regend = REGEX_TALLOC (num_regs, const char *);
3274       old_regstart = REGEX_TALLOC (num_regs, const char *);
3275       old_regend = REGEX_TALLOC (num_regs, const char *);
3276       best_regstart = REGEX_TALLOC (num_regs, const char *);
3277       best_regend = REGEX_TALLOC (num_regs, const char *);
3278       reg_info = REGEX_TALLOC (num_regs, register_info_type);
3279       reg_dummy = REGEX_TALLOC (num_regs, const char *);
3280       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3281 
3282       if (!(regstart && regend && old_regstart && old_regend && reg_info
3283             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3284         {
3285           FREE_VARIABLES ();
3286           return -2;
3287         }
3288     }
3289 #ifdef REGEX_MALLOC
3290   else
3291     {
3292       /* We must initialize all our variables to NULL, so that
3293          `FREE_VARIABLES' doesn't try to free them.  */
3294       regstart = regend = old_regstart = old_regend = best_regstart
3295         = best_regend = reg_dummy = NULL;
3296       reg_info = reg_info_dummy = (register_info_type *) NULL;
3297     }
3298 #endif /* REGEX_MALLOC */
3299 
3300   /* The starting position is bogus.  */
3301   if (pos < 0 || pos > size1 + size2)
3302     {
3303       FREE_VARIABLES ();
3304       return -1;
3305     }
3306 
3307   /* Initialize subexpression text positions to -1 to mark ones that no
3308      start_memory/stop_memory has been seen for. Also initialize the
3309      register information struct.  */
3310   for (mcnt = 1; mcnt < num_regs; mcnt++)
3311     {
3312       regstart[mcnt] = regend[mcnt]
3313         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3314 
3315       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3316       IS_ACTIVE (reg_info[mcnt]) = 0;
3317       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3318       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3319     }
3320 
3321   /* We move `string1' into `string2' if the latter's empty -- but not if
3322      `string1' is null.  */
3323   if (size2 == 0 && string1 != NULL)
3324     {
3325       string2 = string1;
3326       size2 = size1;
3327       string1 = 0;
3328       size1 = 0;
3329     }
3330   end1 = string1 + size1;
3331   end2 = string2 + size2;
3332 
3333   /* Compute where to stop matching, within the two strings.  */
3334   if (stop <= size1)
3335     {
3336       end_match_1 = string1 + stop;
3337       end_match_2 = string2;
3338     }
3339   else
3340     {
3341       end_match_1 = end1;
3342       end_match_2 = string2 + stop - size1;
3343     }
3344 
3345   /* `p' scans through the pattern as `d' scans through the data.
3346      `dend' is the end of the input string that `d' points within.  `d'
3347      is advanced into the following input string whenever necessary, but
3348      this happens before fetching; therefore, at the beginning of the
3349      loop, `d' can be pointing at the end of a string, but it cannot
3350      equal `string2'.  */
3351   if (size1 > 0 && pos <= size1)
3352     {
3353       d = string1 + pos;
3354       dend = end_match_1;
3355     }
3356   else
3357     {
3358       d = string2 + pos - size1;
3359       dend = end_match_2;
3360     }
3361 
3362   DEBUG_PRINT1 ("The compiled pattern is: ");
3363   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3364   DEBUG_PRINT1 ("The string to match is: `");
3365   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3366   DEBUG_PRINT1 ("'\n");
3367 
3368   /* This loops over pattern commands.  It exits by returning from the
3369      function if the match is complete, or it drops through if the match
3370      fails at this starting point in the input data.  */
3371   for (;;)
3372     {
3373       DEBUG_PRINT2 ("\n0x%x: ", p);
3374 
3375       if (p == pend)
3376 	{ /* End of pattern means we might have succeeded.  */
3377           DEBUG_PRINT1 ("end of pattern ... ");
3378 
3379 	  /* If we haven't matched the entire string, and we want the
3380              longest match, try backtracking.  */
3381           if (d != end_match_2)
3382 	    {
3383               DEBUG_PRINT1 ("backtracking.\n");
3384 
3385               if (!FAIL_STACK_EMPTY ())
3386                 { /* More failure points to try.  */
3387                   boolean same_str_p = (FIRST_STRING_P (match_end)
3388 	        	                == MATCHING_IN_FIRST_STRING);
3389 
3390                   /* If exceeds best match so far, save it.  */
3391                   if (!best_regs_set
3392                       || (same_str_p && d > match_end)
3393                       || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3394                     {
3395                       best_regs_set = true;
3396                       match_end = d;
3397 
3398                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3399 
3400                       for (mcnt = 1; mcnt < num_regs; mcnt++)
3401                         {
3402                           best_regstart[mcnt] = regstart[mcnt];
3403                           best_regend[mcnt] = regend[mcnt];
3404                         }
3405                     }
3406                   goto fail;
3407                 }
3408 
3409               /* If no failure points, don't restore garbage.  */
3410               else if (best_regs_set)
3411                 {
3412   	        restore_best_regs:
3413                   /* Restore best match.  It may happen that `dend ==
3414                      end_match_1' while the restored d is in string2.
3415                      For example, the pattern `x.*y.*z' against the
3416                      strings `x-' and `y-z-', if the two strings are
3417                      not consecutive in memory.  */
3418                   DEBUG_PRINT1 ("Restoring best registers.\n");
3419 
3420                   d = match_end;
3421                   dend = ((d >= string1 && d <= end1)
3422 		           ? end_match_1 : end_match_2);
3423 
3424 		  for (mcnt = 1; mcnt < num_regs; mcnt++)
3425 		    {
3426 		      regstart[mcnt] = best_regstart[mcnt];
3427 		      regend[mcnt] = best_regend[mcnt];
3428 		    }
3429                 }
3430             } /* d != end_match_2 */
3431 
3432           DEBUG_PRINT1 ("Accepting match.\n");
3433 
3434           /* If caller wants register contents data back, do it.  */
3435           if (regs && !bufp->no_sub)
3436 	    {
3437               /* Have the register data arrays been allocated?  */
3438               if (bufp->regs_allocated == REGS_UNALLOCATED)
3439                 { /* No.  So allocate them with malloc.  We need one
3440                      extra element beyond `num_regs' for the `-1' marker
3441                      GNU code uses.  */
3442                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3443                   regs->start = TALLOC (regs->num_regs, regoff_t);
3444                   regs->end = TALLOC (regs->num_regs, regoff_t);
3445                   if (regs->start == NULL || regs->end == NULL)
3446                     return -2;
3447                   bufp->regs_allocated = REGS_REALLOCATE;
3448                 }
3449               else if (bufp->regs_allocated == REGS_REALLOCATE)
3450                 { /* Yes.  If we need more elements than were already
3451                      allocated, reallocate them.  If we need fewer, just
3452                      leave it alone.  */
3453                   if (regs->num_regs < num_regs + 1)
3454                     {
3455                       regs->num_regs = num_regs + 1;
3456                       RETALLOC (regs->start, regs->num_regs, regoff_t);
3457                       RETALLOC (regs->end, regs->num_regs, regoff_t);
3458                       if (regs->start == NULL || regs->end == NULL)
3459                         return -2;
3460                     }
3461                 }
3462               else
3463                 assert (bufp->regs_allocated == REGS_FIXED);
3464 
3465               /* Convert the pointer data in `regstart' and `regend' to
3466                  indices.  Register zero has to be set differently,
3467                  since we haven't kept track of any info for it.  */
3468               if (regs->num_regs > 0)
3469                 {
3470                   regs->start[0] = pos;
3471                   regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3472 			          : d - string2 + size1);
3473                 }
3474 
3475               /* Go through the first `min (num_regs, regs->num_regs)'
3476                  registers, since that is all we initialized.  */
3477 	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3478 		{
3479                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3480                     regs->start[mcnt] = regs->end[mcnt] = -1;
3481                   else
3482                     {
3483 		      regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3484                       regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3485                     }
3486 		}
3487 
3488               /* If the regs structure we return has more elements than
3489                  were in the pattern, set the extra elements to -1.  If
3490                  we (re)allocated the registers, this is the case,
3491                  because we always allocate enough to have at least one
3492                  -1 at the end.  */
3493               for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3494                 regs->start[mcnt] = regs->end[mcnt] = -1;
3495 	    } /* regs && !bufp->no_sub */
3496 
3497           FREE_VARIABLES ();
3498           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3499                         nfailure_points_pushed, nfailure_points_popped,
3500                         nfailure_points_pushed - nfailure_points_popped);
3501           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3502 
3503           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3504 			    ? string1
3505 			    : string2 - size1);
3506 
3507           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3508 
3509           return mcnt;
3510         }
3511 
3512       /* Otherwise match next pattern command.  */
3513 #ifdef SWITCH_ENUM_BUG
3514       switch ((int) ((re_opcode_t) *p++))
3515 #else
3516       switch ((re_opcode_t) *p++)
3517 #endif
3518 	{
3519         /* Ignore these.  Used to ignore the n of succeed_n's which
3520            currently have n == 0.  */
3521         case no_op:
3522           DEBUG_PRINT1 ("EXECUTING no_op.\n");
3523           break;
3524 
3525 
3526         /* Match the next n pattern characters exactly.  The following
3527            byte in the pattern defines n, and the n bytes after that
3528            are the characters to match.  */
3529 	case exactn:
3530 	  mcnt = *p++;
3531           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3532 
3533           /* This is written out as an if-else so we don't waste time
3534              testing `translate' inside the loop.  */
3535           if (translate)
3536 	    {
3537 	      do
3538 		{
3539 		  PREFETCH ();
3540 		  if (translate[(unsigned char) *d++] != (char) *p++)
3541                     goto fail;
3542 		}
3543 	      while (--mcnt);
3544 	    }
3545 	  else
3546 	    {
3547 	      do
3548 		{
3549 		  PREFETCH ();
3550 		  if (*d++ != (char) *p++) goto fail;
3551 		}
3552 	      while (--mcnt);
3553 	    }
3554 	  SET_REGS_MATCHED ();
3555           break;
3556 
3557 
3558         /* Match any character except possibly a newline or a null.  */
3559 	case anychar:
3560           DEBUG_PRINT1 ("EXECUTING anychar.\n");
3561 
3562           PREFETCH ();
3563 
3564           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3565               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3566 	    goto fail;
3567 
3568           SET_REGS_MATCHED ();
3569           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
3570           d++;
3571 	  break;
3572 
3573 
3574 	case charset:
3575 	case charset_not:
3576 	  {
3577 	    register unsigned char c;
3578 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
3579 
3580             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3581 
3582 	    PREFETCH ();
3583 	    c = TRANSLATE (*d); /* The character to match.  */
3584 
3585             /* Cast to `unsigned' instead of `unsigned char' in case the
3586                bit list is a full 32 bytes long.  */
3587 	    if (c < (unsigned) (*p * BYTEWIDTH)
3588 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3589 	      not = !not;
3590 
3591 	    p += 1 + *p;
3592 
3593 	    if (!not) goto fail;
3594 
3595 	    SET_REGS_MATCHED ();
3596             d++;
3597 	    break;
3598 	  }
3599 
3600 
3601         /* The beginning of a group is represented by start_memory.
3602            The arguments are the register number in the next byte, and the
3603            number of groups inner to this one in the next.  The text
3604            matched within the group is recorded (in the internal
3605            registers data structure) under the register number.  */
3606         case start_memory:
3607 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3608 
3609           /* Find out if this group can match the empty string.  */
3610 	  p1 = p;		/* To send to group_match_null_string_p.  */
3611 
3612           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3613             REG_MATCH_NULL_STRING_P (reg_info[*p])
3614               = group_match_null_string_p (&p1, pend, reg_info);
3615 
3616           /* Save the position in the string where we were the last time
3617              we were at this open-group operator in case the group is
3618              operated upon by a repetition operator, e.g., with `(a*)*b'
3619              against `ab'; then we want to ignore where we are now in
3620              the string in case this attempt to match fails.  */
3621           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3622                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3623                              : regstart[*p];
3624 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
3625 			 POINTER_TO_OFFSET (old_regstart[*p]));
3626 
3627           regstart[*p] = d;
3628 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3629 
3630           IS_ACTIVE (reg_info[*p]) = 1;
3631           MATCHED_SOMETHING (reg_info[*p]) = 0;
3632 
3633           /* This is the new highest active register.  */
3634           highest_active_reg = *p;
3635 
3636           /* If nothing was active before, this is the new lowest active
3637              register.  */
3638           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3639             lowest_active_reg = *p;
3640 
3641           /* Move past the register number and inner group count.  */
3642           p += 2;
3643           break;
3644 
3645 
3646         /* The stop_memory opcode represents the end of a group.  Its
3647            arguments are the same as start_memory's: the register
3648            number, and the number of inner groups.  */
3649 	case stop_memory:
3650 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3651 
3652           /* We need to save the string position the last time we were at
3653              this close-group operator in case the group is operated
3654              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3655              against `aba'; then we want to ignore where we are now in
3656              the string in case this attempt to match fails.  */
3657           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3658                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
3659 			   : regend[*p];
3660 	  DEBUG_PRINT2 ("      old_regend: %d\n",
3661 			 POINTER_TO_OFFSET (old_regend[*p]));
3662 
3663           regend[*p] = d;
3664 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3665 
3666           /* This register isn't active anymore.  */
3667           IS_ACTIVE (reg_info[*p]) = 0;
3668 
3669           /* If this was the only register active, nothing is active
3670              anymore.  */
3671           if (lowest_active_reg == highest_active_reg)
3672             {
3673               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3674               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3675             }
3676           else
3677             { /* We must scan for the new highest active register, since
3678                  it isn't necessarily one less than now: consider
3679                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
3680                  new highest active register is 1.  */
3681               unsigned char r = *p - 1;
3682               while (r > 0 && !IS_ACTIVE (reg_info[r]))
3683                 r--;
3684 
3685               /* If we end up at register zero, that means that we saved
3686                  the registers as the result of an `on_failure_jump', not
3687                  a `start_memory', and we jumped to past the innermost
3688                  `stop_memory'.  For example, in ((.)*) we save
3689                  registers 1 and 2 as a result of the *, but when we pop
3690                  back to the second ), we are at the stop_memory 1.
3691                  Thus, nothing is active.  */
3692 	      if (r == 0)
3693                 {
3694                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3695                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3696                 }
3697               else
3698                 highest_active_reg = r;
3699             }
3700 
3701           /* If just failed to match something this time around with a
3702              group that's operated on by a repetition operator, try to
3703              force exit from the ``loop'', and restore the register
3704              information for this group that we had before trying this
3705              last match.  */
3706           if ((!MATCHED_SOMETHING (reg_info[*p])
3707                || (re_opcode_t) p[-3] == start_memory)
3708 	      && (p + 2) < pend)
3709             {
3710               boolean is_a_jump_n = false;
3711 
3712               p1 = p + 2;
3713               mcnt = 0;
3714               switch ((re_opcode_t) *p1++)
3715                 {
3716                   case jump_n:
3717 		    is_a_jump_n = true;
3718                   case pop_failure_jump:
3719 		  case maybe_pop_jump:
3720 		  case jump:
3721 		  case dummy_failure_jump:
3722                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3723 		    if (is_a_jump_n)
3724 		      p1 += 2;
3725                     break;
3726 
3727                   default:
3728                     /* do nothing */ ;
3729                 }
3730 	      p1 += mcnt;
3731 
3732               /* If the next operation is a jump backwards in the pattern
3733 	         to an on_failure_jump right before the start_memory
3734                  corresponding to this stop_memory, exit from the loop
3735                  by forcing a failure after pushing on the stack the
3736                  on_failure_jump's jump in the pattern, and d.  */
3737               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3738                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3739 		{
3740                   /* If this group ever matched anything, then restore
3741                      what its registers were before trying this last
3742                      failed match, e.g., with `(a*)*b' against `ab' for
3743                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
3744                      against `aba' for regend[3].
3745 
3746                      Also restore the registers for inner groups for,
3747                      e.g., `((a*)(b*))*' against `aba' (register 3 would
3748                      otherwise get trashed).  */
3749 
3750                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3751 		    {
3752 		      unsigned r;
3753 
3754                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3755 
3756 		      /* Restore this and inner groups' (if any) registers.  */
3757                       for (r = *p; r < *p + *(p + 1); r++)
3758                         {
3759                           regstart[r] = old_regstart[r];
3760 
3761                           /* xx why this test?  */
3762                           if ((int) old_regend[r] >= (int) regstart[r])
3763                             regend[r] = old_regend[r];
3764                         }
3765                     }
3766 		  p1++;
3767                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3768                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3769 
3770                   goto fail;
3771                 }
3772             }
3773 
3774           /* Move past the register number and the inner group count.  */
3775           p += 2;
3776           break;
3777 
3778 
3779 	/* \<digit> has been turned into a `duplicate' command which is
3780            followed by the numeric value of <digit> as the register number.  */
3781         case duplicate:
3782 	  {
3783 	    register const char *d2, *dend2;
3784 	    int regno = *p++;   /* Get which register to match against.  */
3785 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3786 
3787 	    /* Can't back reference a group which we've never matched.  */
3788             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3789               goto fail;
3790 
3791             /* Where in input to try to start matching.  */
3792             d2 = regstart[regno];
3793 
3794             /* Where to stop matching; if both the place to start and
3795                the place to stop matching are in the same string, then
3796                set to the place to stop, otherwise, for now have to use
3797                the end of the first string.  */
3798 
3799             dend2 = ((FIRST_STRING_P (regstart[regno])
3800 		      == FIRST_STRING_P (regend[regno]))
3801 		     ? regend[regno] : end_match_1);
3802 	    for (;;)
3803 	      {
3804 		/* If necessary, advance to next segment in register
3805                    contents.  */
3806 		while (d2 == dend2)
3807 		  {
3808 		    if (dend2 == end_match_2) break;
3809 		    if (dend2 == regend[regno]) break;
3810 
3811                     /* End of string1 => advance to string2. */
3812                     d2 = string2;
3813                     dend2 = regend[regno];
3814 		  }
3815 		/* At end of register contents => success */
3816 		if (d2 == dend2) break;
3817 
3818 		/* If necessary, advance to next segment in data.  */
3819 		PREFETCH ();
3820 
3821 		/* How many characters left in this segment to match.  */
3822 		mcnt = dend - d;
3823 
3824 		/* Want how many consecutive characters we can match in
3825                    one shot, so, if necessary, adjust the count.  */
3826                 if (mcnt > dend2 - d2)
3827 		  mcnt = dend2 - d2;
3828 
3829 		/* Compare that many; failure if mismatch, else move
3830                    past them.  */
3831 		if (translate
3832                     ? bcmp_translate (d, d2, mcnt, translate)
3833                     : bcmp (d, d2, mcnt))
3834 		  goto fail;
3835 		d += mcnt, d2 += mcnt;
3836 	      }
3837 	  }
3838 	  break;
3839 
3840 
3841         /* begline matches the empty string at the beginning of the string
3842            (unless `not_bol' is set in `bufp'), and, if
3843            `newline_anchor' is set, after newlines.  */
3844 	case begline:
3845           DEBUG_PRINT1 ("EXECUTING begline.\n");
3846 
3847           if (AT_STRINGS_BEG (d))
3848             {
3849               if (!bufp->not_bol) break;
3850             }
3851           else if (d[-1] == '\n' && bufp->newline_anchor)
3852             {
3853               break;
3854             }
3855           /* In all other cases, we fail.  */
3856           goto fail;
3857 
3858 
3859         /* endline is the dual of begline.  */
3860 	case endline:
3861           DEBUG_PRINT1 ("EXECUTING endline.\n");
3862 
3863           if (AT_STRINGS_END (d))
3864             {
3865               if (!bufp->not_eol) break;
3866             }
3867 
3868           /* We have to ``prefetch'' the next character.  */
3869           else if ((d == end1 ? *string2 : *d) == '\n'
3870                    && bufp->newline_anchor)
3871             {
3872               break;
3873             }
3874           goto fail;
3875 
3876 
3877 	/* Match at the very beginning of the data.  */
3878         case begbuf:
3879           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3880           if (AT_STRINGS_BEG (d))
3881             break;
3882           goto fail;
3883 
3884 
3885 	/* Match at the very end of the data.  */
3886         case endbuf:
3887           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3888 	  if (AT_STRINGS_END (d))
3889 	    break;
3890           goto fail;
3891 
3892 
3893         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
3894            pushes NULL as the value for the string on the stack.  Then
3895            `pop_failure_point' will keep the current value for the
3896            string, instead of restoring it.  To see why, consider
3897            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
3898            then the . fails against the \n.  But the next thing we want
3899            to do is match the \n against the \n; if we restored the
3900            string value, we would be back at the foo.
3901 
3902            Because this is used only in specific cases, we don't need to
3903            check all the things that `on_failure_jump' does, to make
3904            sure the right things get saved on the stack.  Hence we don't
3905            share its code.  The only reason to push anything on the
3906            stack at all is that otherwise we would have to change
3907            `anychar's code to do something besides goto fail in this
3908            case; that seems worse than this.  */
3909         case on_failure_keep_string_jump:
3910           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3911 
3912           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3913           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3914 
3915           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3916           break;
3917 
3918 
3919 	/* Uses of on_failure_jump:
3920 
3921            Each alternative starts with an on_failure_jump that points
3922            to the beginning of the next alternative.  Each alternative
3923            except the last ends with a jump that in effect jumps past
3924            the rest of the alternatives.  (They really jump to the
3925            ending jump of the following alternative, because tensioning
3926            these jumps is a hassle.)
3927 
3928            Repeats start with an on_failure_jump that points past both
3929            the repetition text and either the following jump or
3930            pop_failure_jump back to this on_failure_jump.  */
3931 	case on_failure_jump:
3932         on_failure:
3933           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3934 
3935           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3936           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3937 
3938           /* If this on_failure_jump comes right before a group (i.e.,
3939              the original * applied to a group), save the information
3940              for that group and all inner ones, so that if we fail back
3941              to this point, the group's information will be correct.
3942              For example, in \(a*\)*\1, we need the preceding group,
3943              and in \(\(a*\)b*\)\2, we need the inner group.  */
3944 
3945           /* We can't use `p' to check ahead because we push
3946              a failure point to `p + mcnt' after we do this.  */
3947           p1 = p;
3948 
3949           /* We need to skip no_op's before we look for the
3950              start_memory in case this on_failure_jump is happening as
3951              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3952              against aba.  */
3953           while (p1 < pend && (re_opcode_t) *p1 == no_op)
3954             p1++;
3955 
3956           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3957             {
3958               /* We have a new highest active register now.  This will
3959                  get reset at the start_memory we are about to get to,
3960                  but we will have saved all the registers relevant to
3961                  this repetition op, as described above.  */
3962               highest_active_reg = *(p1 + 1) + *(p1 + 2);
3963               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3964                 lowest_active_reg = *(p1 + 1);
3965             }
3966 
3967           DEBUG_PRINT1 (":\n");
3968           PUSH_FAILURE_POINT (p + mcnt, d, -2);
3969           break;
3970 
3971 
3972         /* A smart repeat ends with `maybe_pop_jump'.
3973 	   We change it to either `pop_failure_jump' or `jump'.  */
3974         case maybe_pop_jump:
3975           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3976           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3977           {
3978 	    register unsigned char *p2 = p;
3979 
3980             /* Compare the beginning of the repeat with what in the
3981                pattern follows its end. If we can establish that there
3982                is nothing that they would both match, i.e., that we
3983                would have to backtrack because of (as in, e.g., `a*a')
3984                then we can change to pop_failure_jump, because we'll
3985                never have to backtrack.
3986 
3987                This is not true in the case of alternatives: in
3988                `(a|ab)*' we do need to backtrack to the `ab' alternative
3989                (e.g., if the string was `ab').  But instead of trying to
3990                detect that here, the alternative has put on a dummy
3991                failure point which is what we will end up popping.  */
3992 
3993 	    /* Skip over open/close-group commands.  */
3994 	    while (p2 + 2 < pend
3995 		   && ((re_opcode_t) *p2 == stop_memory
3996 		       || (re_opcode_t) *p2 == start_memory))
3997 	      p2 += 3;			/* Skip over args, too.  */
3998 
3999             /* If we're at the end of the pattern, we can change.  */
4000             if (p2 == pend)
4001 	      {
4002 		/* Consider what happens when matching ":\(.*\)"
4003 		   against ":/".  I don't really understand this code
4004 		   yet.  */
4005   	        p[-3] = (unsigned char) pop_failure_jump;
4006                 DEBUG_PRINT1
4007                   ("  End of pattern: change to `pop_failure_jump'.\n");
4008               }
4009 
4010             else if ((re_opcode_t) *p2 == exactn
4011 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4012 	      {
4013 		register unsigned char c
4014                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4015 		p1 = p + mcnt;
4016 
4017                 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4018                    to the `maybe_finalize_jump' of this case.  Examine what
4019                    follows.  */
4020                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4021                   {
4022   		    p[-3] = (unsigned char) pop_failure_jump;
4023                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4024                                   c, p1[5]);
4025                   }
4026 
4027 		else if ((re_opcode_t) p1[3] == charset
4028 			 || (re_opcode_t) p1[3] == charset_not)
4029 		  {
4030 		    int not = (re_opcode_t) p1[3] == charset_not;
4031 
4032 		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4033 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4034 		      not = !not;
4035 
4036                     /* `not' is equal to 1 if c would match, which means
4037                         that we can't change to pop_failure_jump.  */
4038 		    if (!not)
4039                       {
4040   		        p[-3] = (unsigned char) pop_failure_jump;
4041                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4042                       }
4043 		  }
4044 	      }
4045 	  }
4046 	  p -= 2;		/* Point at relative address again.  */
4047 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
4048 	    {
4049 	      p[-1] = (unsigned char) jump;
4050               DEBUG_PRINT1 ("  Match => jump.\n");
4051 	      goto unconditional_jump;
4052 	    }
4053         /* Note fall through.  */
4054 
4055 
4056 	/* The end of a simple repeat has a pop_failure_jump back to
4057            its matching on_failure_jump, where the latter will push a
4058            failure point.  The pop_failure_jump takes off failure
4059            points put on by this pop_failure_jump's matching
4060            on_failure_jump; we got through the pattern to here from the
4061            matching on_failure_jump, so didn't fail.  */
4062         case pop_failure_jump:
4063           {
4064             /* We need to pass separate storage for the lowest and
4065                highest registers, even though we don't care about the
4066                actual values.  Otherwise, we will restore only one
4067                register from the stack, since lowest will == highest in
4068                `pop_failure_point'.  */
4069             unsigned dummy_low_reg, dummy_high_reg;
4070             unsigned char *pdummy;
4071             const char *sdummy;
4072 
4073             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4074             POP_FAILURE_POINT (sdummy, pdummy,
4075                                dummy_low_reg, dummy_high_reg,
4076                                reg_dummy, reg_dummy, reg_info_dummy);
4077           }
4078           /* Note fall through.  */
4079 
4080 
4081         /* Unconditionally jump (without popping any failure points).  */
4082         case jump:
4083 	unconditional_jump:
4084 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
4085           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4086 	  p += mcnt;				/* Do the jump.  */
4087           DEBUG_PRINT2 ("(to 0x%x).\n", p);
4088 	  break;
4089 
4090 
4091         /* We need this opcode so we can detect where alternatives end
4092            in `group_match_null_string_p' et al.  */
4093         case jump_past_alt:
4094           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4095           goto unconditional_jump;
4096 
4097 
4098         /* Normally, the on_failure_jump pushes a failure point, which
4099            then gets popped at pop_failure_jump.  We will end up at
4100            pop_failure_jump, also, and with a pattern of, say, `a+', we
4101            are skipping over the on_failure_jump, so we have to push
4102            something meaningless for pop_failure_jump to pop.  */
4103         case dummy_failure_jump:
4104           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4105           /* It doesn't matter what we push for the string here.  What
4106              the code at `fail' tests is the value for the pattern.  */
4107           PUSH_FAILURE_POINT (0, 0, -2);
4108           goto unconditional_jump;
4109 
4110 
4111         /* At the end of an alternative, we need to push a dummy failure
4112            point in case we are followed by a `pop_failure_jump', because
4113            we don't want the failure point for the alternative to be
4114            popped.  For example, matching `(a|ab)*' against `aab'
4115            requires that we match the `ab' alternative.  */
4116         case push_dummy_failure:
4117           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4118           /* See comments just above at `dummy_failure_jump' about the
4119              two zeroes.  */
4120           PUSH_FAILURE_POINT (0, 0, -2);
4121           break;
4122 
4123         /* Have to succeed matching what follows at least n times.
4124            After that, handle like `on_failure_jump'.  */
4125         case succeed_n:
4126           EXTRACT_NUMBER (mcnt, p + 2);
4127           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4128 
4129           assert (mcnt >= 0);
4130           /* Originally, this is how many times we HAVE to succeed.  */
4131           if (mcnt > 0)
4132             {
4133                mcnt--;
4134 	       p += 2;
4135                STORE_NUMBER_AND_INCR (p, mcnt);
4136                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
4137             }
4138 	  else if (mcnt == 0)
4139             {
4140               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
4141 	      p[2] = (unsigned char) no_op;
4142               p[3] = (unsigned char) no_op;
4143               goto on_failure;
4144             }
4145           break;
4146 
4147         case jump_n:
4148           EXTRACT_NUMBER (mcnt, p + 2);
4149           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4150 
4151           /* Originally, this is how many times we CAN jump.  */
4152           if (mcnt)
4153             {
4154                mcnt--;
4155                STORE_NUMBER (p + 2, mcnt);
4156 	       goto unconditional_jump;
4157             }
4158           /* If don't have to jump any more, skip over the rest of command.  */
4159 	  else
4160 	    p += 4;
4161           break;
4162 
4163 	case set_number_at:
4164 	  {
4165             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4166 
4167             EXTRACT_NUMBER_AND_INCR (mcnt, p);
4168             p1 = p + mcnt;
4169             EXTRACT_NUMBER_AND_INCR (mcnt, p);
4170             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
4171 	    STORE_NUMBER (p1, mcnt);
4172             break;
4173           }
4174 
4175         case wordbound:
4176           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4177           if (AT_WORD_BOUNDARY (d))
4178 	    break;
4179           goto fail;
4180 
4181 	case notwordbound:
4182           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4183 	  if (AT_WORD_BOUNDARY (d))
4184 	    goto fail;
4185           break;
4186 
4187 	case wordbeg:
4188           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4189 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4190 	    break;
4191           goto fail;
4192 
4193 	case wordend:
4194           DEBUG_PRINT1 ("EXECUTING wordend.\n");
4195 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4196               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4197 	    break;
4198           goto fail;
4199 
4200 #ifdef emacs
4201 #ifdef emacs19
4202   	case before_dot:
4203           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4204  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4205   	    goto fail;
4206   	  break;
4207 
4208   	case at_dot:
4209           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4210  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
4211   	    goto fail;
4212   	  break;
4213 
4214   	case after_dot:
4215           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4216           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4217   	    goto fail;
4218   	  break;
4219 #else /* not emacs19 */
4220 	case at_dot:
4221           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4222 	  if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4223 	    goto fail;
4224 	  break;
4225 #endif /* not emacs19 */
4226 
4227 	case syntaxspec:
4228           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4229 	  mcnt = *p++;
4230 	  goto matchsyntax;
4231 
4232         case wordchar:
4233           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4234 	  mcnt = (int) Sword;
4235         matchsyntax:
4236 	  PREFETCH ();
4237 	  if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4238             goto fail;
4239           SET_REGS_MATCHED ();
4240 	  break;
4241 
4242 	case notsyntaxspec:
4243           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4244 	  mcnt = *p++;
4245 	  goto matchnotsyntax;
4246 
4247         case notwordchar:
4248           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4249 	  mcnt = (int) Sword;
4250         matchnotsyntax:
4251 	  PREFETCH ();
4252 	  if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4253             goto fail;
4254 	  SET_REGS_MATCHED ();
4255           break;
4256 
4257 #else /* not emacs */
4258 	case wordchar:
4259           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4260 	  PREFETCH ();
4261           if (!WORDCHAR_P (d))
4262             goto fail;
4263 	  SET_REGS_MATCHED ();
4264           d++;
4265 	  break;
4266 
4267 	case notwordchar:
4268           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4269 	  PREFETCH ();
4270 	  if (WORDCHAR_P (d))
4271             goto fail;
4272           SET_REGS_MATCHED ();
4273           d++;
4274 	  break;
4275 #endif /* not emacs */
4276 
4277         default:
4278           abort ();
4279 	}
4280       continue;  /* Successfully executed one pattern command; keep going.  */
4281 
4282 
4283     /* We goto here if a matching operation fails. */
4284     fail:
4285       if (!FAIL_STACK_EMPTY ())
4286 	{ /* A restart point is known.  Restore to that state.  */
4287           DEBUG_PRINT1 ("\nFAIL:\n");
4288           POP_FAILURE_POINT (d, p,
4289                              lowest_active_reg, highest_active_reg,
4290                              regstart, regend, reg_info);
4291 
4292           /* If this failure point is a dummy, try the next one.  */
4293           if (!p)
4294 	    goto fail;
4295 
4296           /* If we failed to the end of the pattern, don't examine *p.  */
4297 	  assert (p <= pend);
4298           if (p < pend)
4299             {
4300               boolean is_a_jump_n = false;
4301 
4302               /* If failed to a backwards jump that's part of a repetition
4303                  loop, need to pop this failure point and use the next one.  */
4304               switch ((re_opcode_t) *p)
4305                 {
4306                 case jump_n:
4307                   is_a_jump_n = true;
4308                 case maybe_pop_jump:
4309                 case pop_failure_jump:
4310                 case jump:
4311                   p1 = p + 1;
4312                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4313                   p1 += mcnt;
4314 
4315                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4316                       || (!is_a_jump_n
4317                           && (re_opcode_t) *p1 == on_failure_jump))
4318                     goto fail;
4319                   break;
4320                 default:
4321                   /* do nothing */ ;
4322                 }
4323             }
4324 
4325           if (d >= string1 && d <= end1)
4326 	    dend = end_match_1;
4327         }
4328       else
4329         break;   /* Matching at this starting point really fails.  */
4330     } /* for (;;) */
4331 
4332   if (best_regs_set)
4333     goto restore_best_regs;
4334 
4335   FREE_VARIABLES ();
4336 
4337   return -1;         			/* Failure to match.  */
4338 } /* re_match_2 */
4339 
4340 /* Subroutine definitions for re_match_2.  */
4341 
4342 
4343 /* We are passed P pointing to a register number after a start_memory.
4344 
4345    Return true if the pattern up to the corresponding stop_memory can
4346    match the empty string, and false otherwise.
4347 
4348    If we find the matching stop_memory, sets P to point to one past its number.
4349    Otherwise, sets P to an undefined byte less than or equal to END.
4350 
4351    We don't handle duplicates properly (yet).  */
4352 
4353 static boolean
group_match_null_string_p(p,end,reg_info)4354 group_match_null_string_p (p, end, reg_info)
4355     unsigned char **p, *end;
4356     register_info_type *reg_info;
4357 {
4358   int mcnt;
4359   /* Point to after the args to the start_memory.  */
4360   unsigned char *p1 = *p + 2;
4361 
4362   while (p1 < end)
4363     {
4364       /* Skip over opcodes that can match nothing, and return true or
4365 	 false, as appropriate, when we get to one that can't, or to the
4366          matching stop_memory.  */
4367 
4368       switch ((re_opcode_t) *p1)
4369         {
4370         /* Could be either a loop or a series of alternatives.  */
4371         case on_failure_jump:
4372           p1++;
4373           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4374 
4375           /* If the next operation is not a jump backwards in the
4376 	     pattern.  */
4377 
4378 	  if (mcnt >= 0)
4379 	    {
4380               /* Go through the on_failure_jumps of the alternatives,
4381                  seeing if any of the alternatives cannot match nothing.
4382                  The last alternative starts with only a jump,
4383                  whereas the rest start with on_failure_jump and end
4384                  with a jump, e.g., here is the pattern for `a|b|c':
4385 
4386                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4387                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4388                  /exactn/1/c
4389 
4390                  So, we have to first go through the first (n-1)
4391                  alternatives and then deal with the last one separately.  */
4392 
4393 
4394               /* Deal with the first (n-1) alternatives, which start
4395                  with an on_failure_jump (see above) that jumps to right
4396                  past a jump_past_alt.  */
4397 
4398               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4399                 {
4400                   /* `mcnt' holds how many bytes long the alternative
4401                      is, including the ending `jump_past_alt' and
4402                      its number.  */
4403 
4404                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4405 				                      reg_info))
4406                     return false;
4407 
4408                   /* Move to right after this alternative, including the
4409 		     jump_past_alt.  */
4410                   p1 += mcnt;
4411 
4412                   /* Break if it's the beginning of an n-th alternative
4413                      that doesn't begin with an on_failure_jump.  */
4414                   if ((re_opcode_t) *p1 != on_failure_jump)
4415                     break;
4416 
4417 		  /* Still have to check that it's not an n-th
4418 		     alternative that starts with an on_failure_jump.  */
4419 		  p1++;
4420                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4421                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4422                     {
4423 		      /* Get to the beginning of the n-th alternative.  */
4424                       p1 -= 3;
4425                       break;
4426                     }
4427                 }
4428 
4429               /* Deal with the last alternative: go back and get number
4430                  of the `jump_past_alt' just before it.  `mcnt' contains
4431                  the length of the alternative.  */
4432               EXTRACT_NUMBER (mcnt, p1 - 2);
4433 
4434               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4435                 return false;
4436 
4437               p1 += mcnt;	/* Get past the n-th alternative.  */
4438             } /* if mcnt > 0 */
4439           break;
4440 
4441 
4442         case stop_memory:
4443 	  assert (p1[1] == **p);
4444           *p = p1 + 2;
4445           return true;
4446 
4447 
4448         default:
4449           if (!common_op_match_null_string_p (&p1, end, reg_info))
4450             return false;
4451         }
4452     } /* while p1 < end */
4453 
4454   return false;
4455 } /* group_match_null_string_p */
4456 
4457 
4458 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4459    It expects P to be the first byte of a single alternative and END one
4460    byte past the last. The alternative can contain groups.  */
4461 
4462 static boolean
alt_match_null_string_p(p,end,reg_info)4463 alt_match_null_string_p (p, end, reg_info)
4464     unsigned char *p, *end;
4465     register_info_type *reg_info;
4466 {
4467   int mcnt;
4468   unsigned char *p1 = p;
4469 
4470   while (p1 < end)
4471     {
4472       /* Skip over opcodes that can match nothing, and break when we get
4473          to one that can't.  */
4474 
4475       switch ((re_opcode_t) *p1)
4476         {
4477 	/* It's a loop.  */
4478         case on_failure_jump:
4479           p1++;
4480           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4481           p1 += mcnt;
4482           break;
4483 
4484 	default:
4485           if (!common_op_match_null_string_p (&p1, end, reg_info))
4486             return false;
4487         }
4488     }  /* while p1 < end */
4489 
4490   return true;
4491 } /* alt_match_null_string_p */
4492 
4493 
4494 /* Deals with the ops common to group_match_null_string_p and
4495    alt_match_null_string_p.
4496 
4497    Sets P to one after the op and its arguments, if any.  */
4498 
4499 static boolean
common_op_match_null_string_p(p,end,reg_info)4500 common_op_match_null_string_p (p, end, reg_info)
4501     unsigned char **p, *end;
4502     register_info_type *reg_info;
4503 {
4504   int mcnt;
4505   boolean ret;
4506   int reg_no;
4507   unsigned char *p1 = *p;
4508 
4509   switch ((re_opcode_t) *p1++)
4510     {
4511     case no_op:
4512     case begline:
4513     case endline:
4514     case begbuf:
4515     case endbuf:
4516     case wordbeg:
4517     case wordend:
4518     case wordbound:
4519     case notwordbound:
4520 #ifdef emacs
4521     case before_dot:
4522     case at_dot:
4523     case after_dot:
4524 #endif
4525       break;
4526 
4527     case start_memory:
4528       reg_no = *p1;
4529       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4530       ret = group_match_null_string_p (&p1, end, reg_info);
4531 
4532       /* Have to set this here in case we're checking a group which
4533          contains a group and a back reference to it.  */
4534 
4535       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4536         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4537 
4538       if (!ret)
4539         return false;
4540       break;
4541 
4542     /* If this is an optimized succeed_n for zero times, make the jump.  */
4543     case jump:
4544       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4545       if (mcnt >= 0)
4546         p1 += mcnt;
4547       else
4548         return false;
4549       break;
4550 
4551     case succeed_n:
4552       /* Get to the number of times to succeed.  */
4553       p1 += 2;
4554       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4555 
4556       if (mcnt == 0)
4557         {
4558           p1 -= 4;
4559           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4560           p1 += mcnt;
4561         }
4562       else
4563         return false;
4564       break;
4565 
4566     case duplicate:
4567       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4568         return false;
4569       break;
4570 
4571     case set_number_at:
4572       p1 += 4;
4573 
4574     default:
4575       /* All other opcodes mean we cannot match the empty string.  */
4576       return false;
4577   }
4578 
4579   *p = p1;
4580   return true;
4581 } /* common_op_match_null_string_p */
4582 
4583 
4584 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4585    bytes; nonzero otherwise.  */
4586 
4587 static int
bcmp_translate(s1,s2,len,translate)4588 bcmp_translate (s1, s2, len, translate)
4589      unsigned char *s1, *s2;
4590      register int len;
4591      char *translate;
4592 {
4593   register unsigned char *p1 = s1, *p2 = s2;
4594   while (len)
4595     {
4596       if (translate[*p1++] != translate[*p2++]) return 1;
4597       len--;
4598     }
4599   return 0;
4600 }
4601 
4602 /* Entry points for GNU code.  */
4603 
4604 /* re_compile_pattern is the GNU regular expression compiler: it
4605    compiles PATTERN (of length SIZE) and puts the result in BUFP.
4606    Returns 0 if the pattern was valid, otherwise an error string.
4607 
4608    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4609    are set in BUFP on entry.
4610 
4611    We call regex_compile to do the actual compilation.  */
4612 
4613 const char *
re_compile_pattern(pattern,length,bufp)4614 re_compile_pattern (pattern, length, bufp)
4615      const char *pattern;
4616      int length;
4617      struct re_pattern_buffer *bufp;
4618 {
4619   reg_errcode_t ret;
4620 
4621   /* GNU code is written to assume at least RE_NREGS registers will be set
4622      (and at least one extra will be -1).  */
4623   bufp->regs_allocated = REGS_UNALLOCATED;
4624 
4625   /* And GNU code determines whether or not to get register information
4626      by passing null for the REGS argument to re_match, etc., not by
4627      setting no_sub.  */
4628   bufp->no_sub = 0;
4629 
4630   /* Match anchors at newline.  */
4631   bufp->newline_anchor = 1;
4632 
4633   ret = regex_compile (pattern, length, re_syntax_options, bufp);
4634 
4635   return re_error_msg[(int) ret];
4636 }
4637 
4638 /* Entry points compatible with 4.2 BSD regex library.  We don't define
4639    them if this is an Emacs or POSIX compilation.  */
4640 
4641 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4642 
4643 /* BSD has one and only one pattern buffer.  */
4644 static struct re_pattern_buffer re_comp_buf;
4645 
4646 char *
re_comp(s)4647 re_comp (s)
4648     const char *s;
4649 {
4650   reg_errcode_t ret;
4651 
4652   if (!s)
4653     {
4654       if (!re_comp_buf.buffer)
4655 	return "No previous regular expression";
4656       return 0;
4657     }
4658 
4659   if (!re_comp_buf.buffer)
4660     {
4661       re_comp_buf.buffer = (unsigned char *) malloc (200);
4662       if (re_comp_buf.buffer == NULL)
4663         return "Memory exhausted";
4664       re_comp_buf.allocated = 200;
4665 
4666       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4667       if (re_comp_buf.fastmap == NULL)
4668 	return "Memory exhausted";
4669     }
4670 
4671   /* Since `re_exec' always passes NULL for the `regs' argument, we
4672      don't need to initialize the pattern buffer fields which affect it.  */
4673 
4674   /* Match anchors at newlines.  */
4675   re_comp_buf.newline_anchor = 1;
4676 
4677   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4678 
4679   /* Yes, we're discarding `const' here.  */
4680   return (char *) re_error_msg[(int) ret];
4681 }
4682 
4683 
4684 int
re_exec(s)4685 re_exec (s)
4686     const char *s;
4687 {
4688   const int len = strlen (s);
4689   return
4690     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4691 }
4692 #endif /* not emacs and not _POSIX_SOURCE */
4693 
4694 /* POSIX.2 functions.  Don't define these for Emacs.  */
4695 
4696 #ifndef emacs
4697 
4698 /* regcomp takes a regular expression as a string and compiles it.
4699 
4700    PREG is a regex_t *.  We do not expect any fields to be initialized,
4701    since POSIX says we shouldn't.  Thus, we set
4702 
4703      `buffer' to the compiled pattern;
4704      `used' to the length of the compiled pattern;
4705      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4706        REG_EXTENDED bit in CFLAGS is set; otherwise, to
4707        RE_SYNTAX_POSIX_BASIC;
4708      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4709      `fastmap' and `fastmap_accurate' to zero;
4710      `re_nsub' to the number of subexpressions in PATTERN.
4711 
4712    PATTERN is the address of the pattern string.
4713 
4714    CFLAGS is a series of bits which affect compilation.
4715 
4716      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4717      use POSIX basic syntax.
4718 
4719      If REG_NEWLINE is set, then . and [^...] don't match newline.
4720      Also, regexec will try a match beginning after every newline.
4721 
4722      If REG_ICASE is set, then we considers upper- and lowercase
4723      versions of letters to be equivalent when matching.
4724 
4725      If REG_NOSUB is set, then when PREG is passed to regexec, that
4726      routine will report only success or failure, and nothing about the
4727      registers.
4728 
4729    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
4730    the return codes and their meanings.)  */
4731 
4732 int
regcomp(preg,pattern,cflags)4733 regcomp (preg, pattern, cflags)
4734     regex_t *preg;
4735     const char *pattern;
4736     int cflags;
4737 {
4738   reg_errcode_t ret;
4739   unsigned syntax
4740     = (cflags & REG_EXTENDED) ?
4741       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4742 
4743   /* regex_compile will allocate the space for the compiled pattern.  */
4744   preg->buffer = 0;
4745   preg->allocated = 0;
4746 
4747   /* Don't bother to use a fastmap when searching.  This simplifies the
4748      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4749      characters after newlines into the fastmap.  This way, we just try
4750      every character.  */
4751   preg->fastmap = 0;
4752 
4753   if (cflags & REG_ICASE)
4754     {
4755       unsigned i;
4756 
4757       preg->translate = (char *) malloc (CHAR_SET_SIZE);
4758       if (preg->translate == NULL)
4759         return (int) REG_ESPACE;
4760 
4761       /* Map uppercase characters to corresponding lowercase ones.  */
4762       for (i = 0; i < CHAR_SET_SIZE; i++)
4763         preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4764     }
4765   else
4766     preg->translate = NULL;
4767 
4768   /* If REG_NEWLINE is set, newlines are treated differently.  */
4769   if (cflags & REG_NEWLINE)
4770     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
4771       syntax &= ~RE_DOT_NEWLINE;
4772       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4773       /* It also changes the matching behavior.  */
4774       preg->newline_anchor = 1;
4775     }
4776   else
4777     preg->newline_anchor = 0;
4778 
4779   preg->no_sub = !!(cflags & REG_NOSUB);
4780 
4781   /* POSIX says a null character in the pattern terminates it, so we
4782      can use strlen here in compiling the pattern.  */
4783   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4784 
4785   /* POSIX doesn't distinguish between an unmatched open-group and an
4786      unmatched close-group: both are REG_EPAREN.  */
4787   if (ret == REG_ERPAREN) ret = REG_EPAREN;
4788 
4789   return (int) ret;
4790 }
4791 
4792 
4793 /* regexec searches for a given pattern, specified by PREG, in the
4794    string STRING.
4795 
4796    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4797    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
4798    least NMATCH elements, and we set them to the offsets of the
4799    corresponding matched substrings.
4800 
4801    EFLAGS specifies `execution flags' which affect matching: if
4802    REG_NOTBOL is set, then ^ does not match at the beginning of the
4803    string; if REG_NOTEOL is set, then $ does not match at the end.
4804 
4805    We return 0 if we find a match and REG_NOMATCH if not.  */
4806 
4807 int
regexec(preg,string,nmatch,pmatch,eflags)4808 regexec (preg, string, nmatch, pmatch, eflags)
4809     const regex_t *preg;
4810     const char *string;
4811     size_t nmatch;
4812     regmatch_t pmatch[];
4813     int eflags;
4814 {
4815   int ret;
4816   struct re_registers regs;
4817   regex_t private_preg;
4818   int len = strlen (string);
4819   boolean want_reg_info = !preg->no_sub && nmatch > 0;
4820 
4821   private_preg = *preg;
4822 
4823   private_preg.not_bol = !!(eflags & REG_NOTBOL);
4824   private_preg.not_eol = !!(eflags & REG_NOTEOL);
4825 
4826   /* The user has told us exactly how many registers to return
4827      information about, via `nmatch'.  We have to pass that on to the
4828      matching routines.  */
4829   private_preg.regs_allocated = REGS_FIXED;
4830 
4831   if (want_reg_info)
4832     {
4833       regs.num_regs = nmatch;
4834       regs.start = TALLOC (nmatch, regoff_t);
4835       regs.end = TALLOC (nmatch, regoff_t);
4836       if (regs.start == NULL || regs.end == NULL)
4837         return (int) REG_NOMATCH;
4838     }
4839 
4840   /* Perform the searching operation.  */
4841   ret = re_search (&private_preg, string, len,
4842                    /* start: */ 0, /* range: */ len,
4843                    want_reg_info ? &regs : (struct re_registers *) 0);
4844 
4845   /* Copy the register information to the POSIX structure.  */
4846   if (want_reg_info)
4847     {
4848       if (ret >= 0)
4849         {
4850           unsigned r;
4851 
4852           for (r = 0; r < nmatch; r++)
4853             {
4854               pmatch[r].rm_so = regs.start[r];
4855               pmatch[r].rm_eo = regs.end[r];
4856             }
4857         }
4858 
4859       /* If we needed the temporary register info, free the space now.  */
4860       free (regs.start);
4861       free (regs.end);
4862     }
4863 
4864   /* We want zero return to mean success, unlike `re_search'.  */
4865   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4866 }
4867 
4868 
4869 /* Returns a message corresponding to an error code, ERRCODE, returned
4870    from either regcomp or regexec.   We don't use PREG here.  */
4871 
4872 size_t
regerror(errcode,preg,errbuf,errbuf_size)4873 regerror (errcode, preg, errbuf, errbuf_size)
4874     int errcode;
4875     const regex_t *preg;
4876     char *errbuf;
4877     size_t errbuf_size;
4878 {
4879   const char *msg;
4880   size_t msg_size;
4881 
4882   if (errcode < 0
4883       || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4884     /* Only error codes returned by the rest of the code should be passed
4885        to this routine.  If we are given anything else, or if other regex
4886        code generates an invalid error code, then the program has a bug.
4887        Dump core so we can fix it.  */
4888     abort ();
4889 
4890   msg = re_error_msg[errcode];
4891 
4892   /* POSIX doesn't require that we do anything in this case, but why
4893      not be nice.  */
4894   if (! msg)
4895     msg = "Success";
4896 
4897   msg_size = strlen (msg) + 1; /* Includes the null.  */
4898 
4899   if (errbuf_size != 0)
4900     {
4901       if (msg_size > errbuf_size)
4902         {
4903           strncpy (errbuf, msg, errbuf_size - 1);
4904           errbuf[errbuf_size - 1] = 0;
4905         }
4906       else
4907         strcpy (errbuf, msg);
4908     }
4909 
4910   return msg_size;
4911 }
4912 
4913 
4914 /* Free dynamically allocated space used by PREG.  */
4915 
4916 void
regfree(preg)4917 regfree (preg)
4918     regex_t *preg;
4919 {
4920   if (preg->buffer != NULL)
4921     free (preg->buffer);
4922   preg->buffer = NULL;
4923 
4924   preg->allocated = 0;
4925   preg->used = 0;
4926 
4927   if (preg->fastmap != NULL)
4928     free (preg->fastmap);
4929   preg->fastmap = NULL;
4930   preg->fastmap_accurate = 0;
4931 
4932   if (preg->translate != NULL)
4933     free (preg->translate);
4934   preg->translate = NULL;
4935 }
4936 
4937 #endif /* not emacs  */
4938 
4939 /*
4940 Local variables:
4941 make-backup-files: t
4942 version-control: t
4943 trim-versions-without-asking: nil
4944 End:
4945 */
4946