xref: /aosp_15_r20/external/cronet/base/functional/bind.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2011 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_FUNCTIONAL_BIND_H_
6 #define BASE_FUNCTIONAL_BIND_H_
7 
8 #include <functional>
9 #include <memory>
10 #include <type_traits>
11 #include <utility>
12 
13 #include "base/compiler_specific.h"
14 #include "base/functional/bind_internal.h"
15 #include "base/memory/raw_ptr.h"
16 #include "build/build_config.h"
17 
18 // -----------------------------------------------------------------------------
19 // Usage documentation
20 // -----------------------------------------------------------------------------
21 //
22 // Overview:
23 // base::BindOnce() and base::BindRepeating() are helpers for creating
24 // base::OnceCallback and base::RepeatingCallback objects respectively.
25 //
26 // For a runnable object of n-arity, the base::Bind*() family allows partial
27 // application of the first m arguments. The remaining n - m arguments must be
28 // passed when invoking the callback with Run().
29 //
30 //   // The first argument is bound at callback creation; the remaining
31 //   // two must be passed when calling Run() on the callback object.
32 //   base::OnceCallback<long(int, long)> cb = base::BindOnce(
33 //       [](short x, int y, long z) { return x * y * z; }, 42);
34 //
35 // When binding to a method, the receiver object must also be specified at
36 // callback creation time. When Run() is invoked, the method will be invoked on
37 // the specified receiver object.
38 //
39 //   class C : public base::RefCounted<C> { void F(); };
40 //   auto instance = base::MakeRefCounted<C>();
41 //   auto cb = base::BindOnce(&C::F, instance);
42 //   std::move(cb).Run();  // Identical to instance->F()
43 //
44 // See //docs/callback.md for the full documentation.
45 //
46 // -----------------------------------------------------------------------------
47 // Implementation notes
48 // -----------------------------------------------------------------------------
49 //
50 // If you're reading the implementation, before proceeding further, you should
51 // read the top comment of base/functional/bind_internal.h for a definition of
52 // common terms and concepts.
53 
54 namespace base {
55 
56 // Bind as OnceCallback.
57 template <typename Functor, typename... Args>
BindOnce(Functor && functor,Args &&...args)58 inline auto BindOnce(Functor&& functor, Args&&... args) {
59   return internal::BindHelper<OnceCallback>::Bind(
60       std::forward<Functor>(functor), std::forward<Args>(args)...);
61 }
62 
63 // Bind as RepeatingCallback.
64 template <typename Functor, typename... Args>
BindRepeating(Functor && functor,Args &&...args)65 inline auto BindRepeating(Functor&& functor, Args&&... args) {
66   return internal::BindHelper<RepeatingCallback>::Bind(
67       std::forward<Functor>(functor), std::forward<Args>(args)...);
68 }
69 
70 // Overloads to allow nicer compile errors when attempting to pass the address
71 // an overloaded function to `BindOnce()` or `BindRepeating()`. Otherwise, clang
72 // provides only the error message "no matching function [...] candidate
73 // template ignored: couldn't infer template argument 'Functor'", with no
74 // reference to the fact that `&` is being used on an overloaded function.
75 //
76 // These overloads to provide better error messages will never be selected
77 // unless template type deduction fails because of how overload resolution
78 // works; per [over.ics.rank/2.2]:
79 //
80 //   When comparing the basic forms of implicit conversion sequences (as defined
81 //   in [over.best.ics])
82 //   - a standard conversion sequence is a better conversion sequence than a
83 //     user-defined conversion sequence or an ellipsis conversion sequence, and
84 //   - a user-defined conversion sequence is a better conversion sequence than
85 //     an ellipsis conversion sequence.
86 //
87 // So these overloads will only be selected as a last resort iff template type
88 // deduction fails.
89 BindFailedCheckPreviousErrors BindOnce(...);
90 BindFailedCheckPreviousErrors BindRepeating(...);
91 
92 // Unretained(), UnsafeDangling() and UnsafeDanglingUntriaged() allow binding a
93 // non-refcounted class, and to disable refcounting on arguments that are
94 // refcounted. The main difference is whether or not the raw pointers will be
95 // checked for dangling references (e.g. a pointer that points to an already
96 // destroyed object) when the callback is run.
97 //
98 // It is _required_ to use one of Unretained(), UnsafeDangling() or
99 // UnsafeDanglingUntriaged() for raw pointer receivers now. For other arguments,
100 // it remains optional. If not specified, default behavior is Unretained().
101 
102 // Unretained() pointers will be checked for dangling pointers when the
103 // callback is run, *if* the callback has not been cancelled.
104 //
105 // Example of Unretained() usage:
106 //
107 //   class Foo {
108 //    public:
109 //     void func() { cout << "Foo:f" << endl; }
110 //   };
111 //
112 //   // In some function somewhere.
113 //   Foo foo;
114 //   OnceClosure foo_callback =
115 //       BindOnce(&Foo::func, Unretained(&foo));
116 //   std::move(foo_callback).Run();  // Prints "Foo:f".
117 //
118 // Without the Unretained() wrapper on |&foo|, the above call would fail
119 // to compile because Foo does not support the AddRef() and Release() methods.
120 //
121 // Unretained() does not allow dangling pointers, e.g.:
122 //   class MyClass {
123 //    public:
124 //     OnError(int error);
125 //    private:
126 //     scoped_refptr<base::TaskRunner> runner_;
127 //     std::unique_ptr<AnotherClass> obj_;
128 //   };
129 //
130 //   void MyClass::OnError(int error) {
131 //     // the pointer (which is also the receiver here) to `AnotherClass`
132 //     // might dangle depending on when the task is invoked.
133 //     runner_->PostTask(FROM_HERE, base::BindOnce(&AnotherClass::OnError,
134 //         base::Unretained(obj_.get()), error));
135 //     // one of the way to solve this issue here would be:
136 //     // runner_->PostTask(FROM_HERE,
137 //     //                   base::BindOnce(&AnotherClass::OnError,
138 //     //                   base::Owned(std::move(obj_)), error));
139 //     delete this;
140 //   }
141 //
142 // the above example is a BAD USAGE of Unretained(), which might result in a
143 // use-after-free, as `AnotherClass::OnError` might be invoked with a dangling
144 // pointer as receiver.
145 template <typename T>
Unretained(T * o)146 inline auto Unretained(T* o) {
147   return internal::UnretainedWrapper<T, unretained_traits::MayNotDangle>(o);
148 }
149 
150 template <typename T, RawPtrTraits Traits>
Unretained(const raw_ptr<T,Traits> & o)151 inline auto Unretained(const raw_ptr<T, Traits>& o) {
152   return internal::UnretainedWrapper<T, unretained_traits::MayNotDangle,
153                                      Traits>(o);
154 }
155 
156 template <typename T, RawPtrTraits Traits>
Unretained(raw_ptr<T,Traits> && o)157 inline auto Unretained(raw_ptr<T, Traits>&& o) {
158   return internal::UnretainedWrapper<T, unretained_traits::MayNotDangle,
159                                      Traits>(std::move(o));
160 }
161 
162 template <typename T, RawPtrTraits Traits>
Unretained(const raw_ref<T,Traits> & o)163 inline auto Unretained(const raw_ref<T, Traits>& o) {
164   return internal::UnretainedRefWrapper<T, unretained_traits::MayNotDangle,
165                                         Traits>(o);
166 }
167 
168 template <typename T, RawPtrTraits Traits>
Unretained(raw_ref<T,Traits> && o)169 inline auto Unretained(raw_ref<T, Traits>&& o) {
170   return internal::UnretainedRefWrapper<T, unretained_traits::MayNotDangle,
171                                         Traits>(std::move(o));
172 }
173 
174 // Similar to `Unretained()`, but allows dangling pointers, e.g.:
175 //
176 //   class MyClass {
177 //     public:
178 //       DoSomething(HandlerClass* handler);
179 //     private:
180 //       void MyClass::DoSomethingInternal(HandlerClass::Id id,
181 //                                         HandlerClass* handler);
182 //
183 //       std::unordered_map<HandlerClass::Id, HandlerClass*> handlers_;
184 //       scoped_refptr<base::SequencedTaskRunner> runner_;
185 //       base::Lock lock_;
186 //   };
187 //   void MyClass::DoSomething(HandlerClass* handler) {
188 //      runner_->PostTask(FROM_HERE,
189 //          base::BindOnce(&MyClass::DoSomethingInternal,
190 //                         base::Unretained(this),
191 //                         handler->id(),
192 //                         base::Unretained(handler)));
193 //   }
194 //   void MyClass::DoSomethingInternal(HandlerClass::Id id,
195 //                                     HandlerClass* handler) {
196 //     base::AutoLock locker(lock_);
197 //     if (handlers_.find(id) == std::end(handlers_)) return;
198 //     // Now we can use `handler`.
199 //   }
200 //
201 // As `DoSomethingInternal` is run on a sequence (and we can imagine
202 // `handlers_` being modified on it as well), we protect the function from
203 // using a dangling `handler` by making sure it is still contained in the
204 // map.
205 //
206 // Strongly prefer `Unretained()`. This is useful in limited situations such as
207 // the one above.
208 //
209 // When using `UnsafeDangling()`, the receiver must be of type MayBeDangling<>.
210 template <typename T>
UnsafeDangling(T * o)211 inline auto UnsafeDangling(T* o) {
212   return internal::UnretainedWrapper<T, unretained_traits::MayDangle>(o);
213 }
214 
215 template <typename T, RawPtrTraits Traits>
UnsafeDangling(const raw_ptr<T,Traits> & o)216 auto UnsafeDangling(const raw_ptr<T, Traits>& o) {
217   return internal::UnretainedWrapper<T, unretained_traits::MayDangle, Traits>(
218       o);
219 }
220 
221 template <typename T, RawPtrTraits Traits>
UnsafeDangling(raw_ptr<T,Traits> && o)222 auto UnsafeDangling(raw_ptr<T, Traits>&& o) {
223   return internal::UnretainedWrapper<T, unretained_traits::MayDangle, Traits>(
224       std::move(o));
225 }
226 
227 template <typename T, RawPtrTraits Traits>
UnsafeDangling(const raw_ref<T,Traits> & o)228 auto UnsafeDangling(const raw_ref<T, Traits>& o) {
229   return internal::UnretainedRefWrapper<T, unretained_traits::MayDangle,
230                                         Traits>(o);
231 }
232 
233 template <typename T, RawPtrTraits Traits>
UnsafeDangling(raw_ref<T,Traits> && o)234 auto UnsafeDangling(raw_ref<T, Traits>&& o) {
235   return internal::UnretainedRefWrapper<T, unretained_traits::MayDangle,
236                                         Traits>(std::move(o));
237 }
238 
239 // Like `UnsafeDangling()`, but used to annotate places that still need to be
240 // triaged and either migrated to `Unretained()` and safer ownership patterns
241 // (preferred) or `UnsafeDangling()` if the correct pattern to use is the one
242 // in the `UnsafeDangling()` example above for example.
243 //
244 // Unlike `UnsafeDangling()`, the receiver doesn't have to be MayBeDangling<>.
245 template <typename T>
UnsafeDanglingUntriaged(T * o)246 inline auto UnsafeDanglingUntriaged(T* o) {
247   return internal::UnretainedWrapper<T, unretained_traits::MayDangleUntriaged>(
248       o);
249 }
250 
251 template <typename T, RawPtrTraits Traits>
UnsafeDanglingUntriaged(const raw_ptr<T,Traits> & o)252 auto UnsafeDanglingUntriaged(const raw_ptr<T, Traits>& o) {
253   return internal::UnretainedWrapper<T, unretained_traits::MayDangleUntriaged,
254                                      Traits>(o);
255 }
256 
257 template <typename T, RawPtrTraits Traits>
UnsafeDanglingUntriaged(raw_ptr<T,Traits> && o)258 auto UnsafeDanglingUntriaged(raw_ptr<T, Traits>&& o) {
259   return internal::UnretainedWrapper<T, unretained_traits::MayDangleUntriaged,
260                                      Traits>(std::move(o));
261 }
262 
263 template <typename T, RawPtrTraits Traits>
UnsafeDanglingUntriaged(const raw_ref<T,Traits> & o)264 auto UnsafeDanglingUntriaged(const raw_ref<T, Traits>& o) {
265   return internal::UnretainedRefWrapper<
266       T, unretained_traits::MayDangleUntriaged, Traits>(o);
267 }
268 
269 template <typename T, RawPtrTraits Traits>
UnsafeDanglingUntriaged(raw_ref<T,Traits> && o)270 auto UnsafeDanglingUntriaged(raw_ref<T, Traits>&& o) {
271   return internal::UnretainedRefWrapper<
272       T, unretained_traits::MayDangleUntriaged, Traits>(std::move(o));
273 }
274 
275 // RetainedRef() accepts a ref counted object and retains a reference to it.
276 // When the callback is called, the object is passed as a raw pointer.
277 //
278 // EXAMPLE OF RetainedRef():
279 //
280 //    void foo(RefCountedBytes* bytes) {}
281 //
282 //    scoped_refptr<RefCountedBytes> bytes = ...;
283 //    OnceClosure callback = BindOnce(&foo, base::RetainedRef(bytes));
284 //    std::move(callback).Run();
285 //
286 // Without RetainedRef, the scoped_refptr would try to implicitly convert to
287 // a raw pointer and fail compilation:
288 //
289 //    OnceClosure callback = BindOnce(&foo, bytes); // ERROR!
290 template <typename T>
RetainedRef(T * o)291 inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
292   return internal::RetainedRefWrapper<T>(o);
293 }
294 template <typename T>
RetainedRef(scoped_refptr<T> o)295 inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
296   return internal::RetainedRefWrapper<T>(std::move(o));
297 }
298 
299 // Owned() transfers ownership of an object to the callback resulting from
300 // bind; the object will be deleted when the callback is deleted.
301 //
302 // EXAMPLE OF Owned():
303 //
304 //   void foo(int* arg) { cout << *arg << endl }
305 //
306 //   int* pn = new int(1);
307 //   RepeatingClosure foo_callback = BindRepeating(&foo, Owned(pn));
308 //
309 //   foo_callback.Run();  // Prints "1"
310 //   foo_callback.Run();  // Prints "1"
311 //   *pn = 2;
312 //   foo_callback.Run();  // Prints "2"
313 //
314 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
315 //                          // |foo_callback| goes out of scope.
316 //
317 // Without Owned(), someone would have to know to delete |pn| when the last
318 // reference to the callback is deleted.
319 template <typename T>
Owned(T * o)320 inline internal::OwnedWrapper<T> Owned(T* o) {
321   return internal::OwnedWrapper<T>(o);
322 }
323 
324 template <typename T, typename Deleter>
Owned(std::unique_ptr<T,Deleter> && ptr)325 inline internal::OwnedWrapper<T, Deleter> Owned(
326     std::unique_ptr<T, Deleter>&& ptr) {
327   return internal::OwnedWrapper<T, Deleter>(std::move(ptr));
328 }
329 
330 // OwnedRef() stores an object in the callback resulting from
331 // bind and passes a reference to the object to the bound function.
332 //
333 // EXAMPLE OF OwnedRef():
334 //
335 //   void foo(int& arg) { cout << ++arg << endl }
336 //
337 //   int counter = 0;
338 //   RepeatingClosure foo_callback = BindRepeating(&foo, OwnedRef(counter));
339 //
340 //   foo_callback.Run();  // Prints "1"
341 //   foo_callback.Run();  // Prints "2"
342 //   foo_callback.Run();  // Prints "3"
343 //
344 //   cout << counter;     // Prints "0", OwnedRef creates a copy of counter.
345 //
346 //  Supports OnceCallbacks as well, useful to pass placeholder arguments:
347 //
348 //   void bar(int& ignore, const std::string& s) { cout << s << endl }
349 //
350 //   OnceClosure bar_callback = BindOnce(&bar, OwnedRef(0), "Hello");
351 //
352 //   std::move(bar_callback).Run(); // Prints "Hello"
353 //
354 // Without OwnedRef() it would not be possible to pass a mutable reference to an
355 // object owned by the callback.
356 template <typename T>
OwnedRef(T && t)357 internal::OwnedRefWrapper<std::decay_t<T>> OwnedRef(T&& t) {
358   return internal::OwnedRefWrapper<std::decay_t<T>>(std::forward<T>(t));
359 }
360 
361 // Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr)
362 // through a RepeatingCallback. Logically, this signifies a destructive transfer
363 // of the state of the argument into the target function. Invoking
364 // RepeatingCallback::Run() twice on a callback that was created with a Passed()
365 // argument will CHECK() because the first invocation would have already
366 // transferred ownership to the target function.
367 //
368 // Note that Passed() is not necessary with BindOnce(), as std::move() does the
369 // same thing. Avoid Passed() in favor of std::move() with BindOnce().
370 //
371 // EXAMPLE OF Passed():
372 //
373 //   void TakesOwnership(std::unique_ptr<Foo> arg) { }
374 //   std::unique_ptr<Foo> CreateFoo() { return std::make_unique<Foo>();
375 //   }
376 //
377 //   auto f = std::make_unique<Foo>();
378 //
379 //   // |cb| is given ownership of Foo(). |f| is now NULL.
380 //   // You can use std::move(f) in place of &f, but it's more verbose.
381 //   RepeatingClosure cb = BindRepeating(&TakesOwnership, Passed(&f));
382 //
383 //   // Run was never called so |cb| still owns Foo() and deletes
384 //   // it on Reset().
385 //   cb.Reset();
386 //
387 //   // |cb| is given a new Foo created by CreateFoo().
388 //   cb = BindRepeating(&TakesOwnership, Passed(CreateFoo()));
389 //
390 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
391 //   // no longer owns Foo() and, if reset, would not delete Foo().
392 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
393 //   cb.Run();  // This CHECK()s since Foo() already been used once.
394 //
395 // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and is
396 // best suited for use with the return value of a function or other temporary
397 // rvalues. The second takes a pointer to the scoper and is just syntactic sugar
398 // to avoid having to write Passed(std::move(scoper)).
399 //
400 // Both versions of Passed() prevent T from being an lvalue reference. The first
401 // via use of enable_if, and the second takes a T* which will not bind to T&.
402 //
403 // DEPRECATED - Do not use in new code. See https://crbug.com/1326449
404 template <typename T>
405   requires(!std::is_lvalue_reference_v<T>)
Passed(T && scoper)406 inline internal::PassedWrapper<T> Passed(T&& scoper) {
407   return internal::PassedWrapper<T>(std::move(scoper));
408 }
409 template <typename T>
Passed(T * scoper)410 inline internal::PassedWrapper<T> Passed(T* scoper) {
411   return internal::PassedWrapper<T>(std::move(*scoper));
412 }
413 
414 // IgnoreResult() is used to adapt a function or callback with a return type to
415 // one with a void return. This is most useful if you have a function with,
416 // say, a pesky ignorable bool return that you want to use with PostTask or
417 // something else that expect a callback with a void return.
418 //
419 // EXAMPLE OF IgnoreResult():
420 //
421 //   int DoSomething(int arg) { cout << arg << endl; }
422 //
423 //   // Assign to a callback with a void return type.
424 //   OnceCallback<void(int)> cb = BindOnce(IgnoreResult(&DoSomething));
425 //   std::move(cb).Run(1);  // Prints "1".
426 //
427 //   // Prints "2" on |ml|.
428 //   ml->PostTask(FROM_HERE, BindOnce(IgnoreResult(&DoSomething), 2);
429 template <typename T>
IgnoreResult(T data)430 inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
431   return internal::IgnoreResultHelper<T>(std::move(data));
432 }
433 
434 }  // namespace base
435 
436 #endif  // BASE_FUNCTIONAL_BIND_H_
437