xref: /aosp_15_r20/external/cronet/base/memory/weak_ptr.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Weak pointers are pointers to an object that do not affect its lifetime,
6 // and which may be invalidated (i.e. reset to nullptr) by the object, or its
7 // owner, at any time, most commonly when the object is about to be deleted.
8 
9 // Weak pointers are useful when an object needs to be accessed safely by one
10 // or more objects other than its owner, and those callers can cope with the
11 // object vanishing and e.g. tasks posted to it being silently dropped.
12 // Reference-counting such an object would complicate the ownership graph and
13 // make it harder to reason about the object's lifetime.
14 
15 // EXAMPLE:
16 //
17 //  class Controller {
18 //   public:
19 //    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
20 //    void WorkComplete(const Result& result) { ... }
21 //   private:
22 //    // Member variables should appear before the WeakPtrFactory, to ensure
23 //    // that any WeakPtrs to Controller are invalidated before its members
24 //    // variable's destructors are executed, rendering them invalid.
25 //    WeakPtrFactory<Controller> weak_factory_{this};
26 //  };
27 //
28 //  class Worker {
29 //   public:
30 //    static void StartNew(WeakPtr<Controller> controller) {
31 //      // Move WeakPtr when possible to avoid atomic refcounting churn on its
32 //      // internal state.
33 //      Worker* worker = new Worker(std::move(controller));
34 //      // Kick off asynchronous processing...
35 //    }
36 //   private:
37 //    Worker(WeakPtr<Controller> controller)
38 //        : controller_(std::move(controller)) {}
39 //    void DidCompleteAsynchronousProcessing(const Result& result) {
40 //      if (controller_)
41 //        controller_->WorkComplete(result);
42 //    }
43 //    WeakPtr<Controller> controller_;
44 //  };
45 //
46 // With this implementation a caller may use SpawnWorker() to dispatch multiple
47 // Workers and subsequently delete the Controller, without waiting for all
48 // Workers to have completed.
49 
50 // ------------------------- IMPORTANT: Thread-safety -------------------------
51 
52 // Weak pointers may be passed safely between sequences, but must always be
53 // dereferenced and invalidated on the same SequencedTaskRunner otherwise
54 // checking the pointer would be racey.
55 //
56 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
57 // is dereferenced, the factory and its WeakPtrs become bound to the calling
58 // sequence or current SequencedWorkerPool token, and cannot be dereferenced or
59 // invalidated on any other task runner. Bound WeakPtrs can still be handed
60 // off to other task runners, e.g. to use to post tasks back to object on the
61 // bound sequence.
62 //
63 // If all WeakPtr objects are destroyed or invalidated then the factory is
64 // unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
65 // destroyed, or new WeakPtr objects may be used, from a different sequence.
66 //
67 // Thus, at least one WeakPtr object must exist and have been dereferenced on
68 // the correct sequence to enforce that other WeakPtr objects will enforce they
69 // are used on the desired sequence.
70 
71 #ifndef BASE_MEMORY_WEAK_PTR_H_
72 #define BASE_MEMORY_WEAK_PTR_H_
73 
74 #include <cstddef>
75 #include <type_traits>
76 #include <utility>
77 
78 #include "base/base_export.h"
79 #include "base/check.h"
80 #include "base/compiler_specific.h"
81 #include "base/dcheck_is_on.h"
82 #include "base/memory/raw_ptr.h"
83 #include "base/memory/ref_counted.h"
84 #include "base/memory/safe_ref_traits.h"
85 #include "base/sequence_checker.h"
86 #include "base/synchronization/atomic_flag.h"
87 
88 namespace performance_manager {
89 class FrameNodeImpl;
90 class PageNodeImpl;
91 class ProcessNodeImpl;
92 class WorkerNodeImpl;
93 }  // namespace performance_manager
94 
95 namespace base {
96 
97 namespace sequence_manager::internal {
98 class TaskQueueImpl;
99 }
100 
101 template <typename T> class SupportsWeakPtr;
102 template <typename T> class WeakPtr;
103 
104 namespace internal {
105 // These classes are part of the WeakPtr implementation.
106 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
107 
108 class BASE_EXPORT TRIVIAL_ABI WeakReference {
109  public:
110   // Although Flag is bound to a specific SequencedTaskRunner, it may be
111   // deleted from another via base::WeakPtr::~WeakPtr().
112   class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
113    public:
114     Flag();
115 
116     void Invalidate();
117     bool IsValid() const;
118 
119     bool MaybeValid() const;
120 
121 #if DCHECK_IS_ON()
122     void DetachFromSequence();
123     void BindToCurrentSequence();
124 #endif
125 
126    private:
127     friend class base::RefCountedThreadSafe<Flag>;
128 
129     ~Flag();
130 
131     SEQUENCE_CHECKER(sequence_checker_);
132     AtomicFlag invalidated_;
133   };
134 
135   WeakReference();
136   explicit WeakReference(const scoped_refptr<Flag>& flag);
137   ~WeakReference();
138 
139   WeakReference(const WeakReference& other);
140   WeakReference& operator=(const WeakReference& other);
141 
142   WeakReference(WeakReference&& other) noexcept;
143   WeakReference& operator=(WeakReference&& other) noexcept;
144 
145   void Reset();
146   // Returns whether the WeakReference is valid, meaning the WeakPtrFactory has
147   // not invalidated the pointer. Unlike, RefIsMaybeValid(), this may only be
148   // called from the same sequence as where the WeakPtr was created.
149   bool IsValid() const;
150   // Returns false if the WeakReference is confirmed to be invalid. This call is
151   // safe to make from any thread, e.g. to optimize away unnecessary work, but
152   // RefIsValid() must always be called, on the correct sequence, before
153   // actually using the pointer.
154   //
155   // Warning: as with any object, this call is only thread-safe if the WeakPtr
156   // instance isn't being re-assigned or reset() racily with this call.
157   bool MaybeValid() const;
158 
159  private:
160   scoped_refptr<const Flag> flag_;
161 };
162 
163 class BASE_EXPORT WeakReferenceOwner {
164  public:
165   WeakReferenceOwner();
166   ~WeakReferenceOwner();
167 
168   WeakReference GetRef() const;
169 
HasRefs()170   bool HasRefs() const { return !flag_->HasOneRef(); }
171 
172   void Invalidate();
173   void BindToCurrentSequence();
174 
175  private:
176   scoped_refptr<WeakReference::Flag> flag_;
177 };
178 
179 // This class provides a common implementation of common functions that would
180 // otherwise get instantiated separately for each distinct instantiation of
181 // SupportsWeakPtr<>.
182 class SupportsWeakPtrBase {
183  public:
184   // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
185   // conversion will only compile if Derived singly inherits from
186   // SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper function
187   // that makes calling this easier.
188   //
189   // Precondition: t != nullptr
190   template<typename Derived>
StaticAsWeakPtr(Derived * t)191   static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
192     static_assert(std::is_base_of_v<internal::SupportsWeakPtrBase, Derived>,
193                   "AsWeakPtr argument must inherit from SupportsWeakPtr");
194     using Base = typename decltype(ExtractSinglyInheritedBase(t))::Base;
195     // Ensure SupportsWeakPtr<Base>::AsWeakPtr() is called even if the subclass
196     // hides or overloads it.
197     WeakPtr<Base> weak = static_cast<SupportsWeakPtr<Base>*>(t)->AsWeakPtr();
198     return WeakPtr<Derived>(weak.CloneWeakReference(),
199                             static_cast<Derived*>(weak.ptr_));
200   }
201 
202  private:
203   // This class can only be instantiated if the constructor argument inherits
204   // from SupportsWeakPtr<T> in exactly one way.
205   template <typename T>
206   struct ExtractSinglyInheritedBase;
207   template <typename T>
208   struct ExtractSinglyInheritedBase<SupportsWeakPtr<T>> {
209     using Base = T;
210     explicit ExtractSinglyInheritedBase(SupportsWeakPtr<T>*);
211   };
212   template <typename T>
213   ExtractSinglyInheritedBase(SupportsWeakPtr<T>*)
214       -> ExtractSinglyInheritedBase<SupportsWeakPtr<T>>;
215 };
216 
217 // Forward declaration from safe_ptr.h.
218 template <typename T>
219 SafeRef<T> MakeSafeRefFromWeakPtrInternals(internal::WeakReference&& ref,
220                                            T* ptr);
221 
222 }  // namespace internal
223 
224 template <typename T> class WeakPtrFactory;
225 
226 // The WeakPtr class holds a weak reference to |T*|.
227 //
228 // This class is designed to be used like a normal pointer.  You should always
229 // null-test an object of this class before using it or invoking a method that
230 // may result in the underlying object being destroyed.
231 //
232 // EXAMPLE:
233 //
234 //   class Foo { ... };
235 //   WeakPtr<Foo> foo;
236 //   if (foo)
237 //     foo->method();
238 //
239 template <typename T>
240 class TRIVIAL_ABI WeakPtr {
241  public:
242   WeakPtr() = default;
243   // NOLINTNEXTLINE(google-explicit-constructor)
244   WeakPtr(std::nullptr_t) {}
245 
246   // Allow conversion from U to T provided U "is a" T. Note that this
247   // is separate from the (implicit) copy and move constructors.
248   template <typename U>
249     requires(std::convertible_to<U*, T*>)
250   // NOLINTNEXTLINE(google-explicit-constructor)
251   WeakPtr(const WeakPtr<U>& other) : ref_(other.ref_), ptr_(other.ptr_) {}
252   template <typename U>
253     requires(std::convertible_to<U*, T*>)
254   // NOLINTNEXTLINE(google-explicit-constructor)
255   WeakPtr& operator=(const WeakPtr<U>& other) {
256     ref_ = other.ref_;
257     ptr_ = other.ptr_;
258     return *this;
259   }
260 
261   template <typename U>
262     requires(std::convertible_to<U*, T*>)
263   // NOLINTNEXTLINE(google-explicit-constructor)
264   WeakPtr(WeakPtr<U>&& other)
265       : ref_(std::move(other.ref_)), ptr_(std::move(other.ptr_)) {}
266   template <typename U>
267     requires(std::convertible_to<U*, T*>)
268   // NOLINTNEXTLINE(google-explicit-constructor)
269   WeakPtr& operator=(WeakPtr<U>&& other) {
270     ref_ = std::move(other.ref_);
271     ptr_ = std::move(other.ptr_);
272     return *this;
273   }
274 
275   T* get() const { return ref_.IsValid() ? ptr_ : nullptr; }
276 
277   // Provide access to the underlying T as a reference. Will CHECK() if the T
278   // pointee is no longer alive.
279   T& operator*() const {
280     CHECK(ref_.IsValid());
281     return *ptr_;
282   }
283 
284   // Used to call methods on the underlying T. Will CHECK() if the T pointee is
285   // no longer alive.
286   T* operator->() const {
287     CHECK(ref_.IsValid());
288     return ptr_;
289   }
290 
291   // Allow conditionals to test validity, e.g. if (weak_ptr) {...};
292   explicit operator bool() const { return get() != nullptr; }
293 
294   // Resets the WeakPtr to hold nothing.
295   //
296   // The `get()` method will return `nullptr` thereafter, and `MaybeValid()`
297   // will be `false`.
298   void reset() {
299     ref_.Reset();
300     ptr_ = nullptr;
301   }
302 
303   // Do not use this method. Almost all callers should instead use operator
304   // bool().
305   //
306   // There are a few rare cases where the caller intentionally needs to check
307   // validity of a base::WeakPtr on a sequence different from the bound sequence
308   // as an unavoidable performance optimization. This is the only valid use-case
309   // for this method. See
310   // https://docs.google.com/document/d/1IGzq9Nx69GS_2iynGmPWo5sFAD2DcCyBY1zIvZwF7k8
311   // for details.
312   //
313   // Returns false if the WeakPtr is confirmed to be invalid. This call is safe
314   // to make from any thread, e.g. to optimize away unnecessary work, but
315   // RefIsValid() must always be called, on the correct sequence, before
316   // actually using the pointer.
317   //
318   // Warning: as with any object, this call is only thread-safe if the WeakPtr
319   // instance isn't being re-assigned or reset() racily with this call.
320   bool MaybeValid() const { return ref_.MaybeValid(); }
321 
322   // Returns whether the object |this| points to has been invalidated. This can
323   // be used to distinguish a WeakPtr to a destroyed object from one that has
324   // been explicitly set to null.
325   bool WasInvalidated() const { return ptr_ && !ref_.IsValid(); }
326 
327  private:
328   friend class internal::SupportsWeakPtrBase;
329   template <typename U> friend class WeakPtr;
330   friend class SupportsWeakPtr<T>;
331   friend class WeakPtrFactory<T>;
332   friend class WeakPtrFactory<std::remove_const_t<T>>;
333 
334   WeakPtr(internal::WeakReference&& ref, T* ptr)
335       : ref_(std::move(ref)), ptr_(ptr) {
336     DCHECK(ptr);
337   }
338 
339   internal::WeakReference CloneWeakReference() const { return ref_; }
340 
341   internal::WeakReference ref_;
342 
343   // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
344   // value is undefined (as opposed to nullptr). The pointer is allowed to
345   // dangle as we verify its liveness through `ref_` before allowing access to
346   // the pointee. We don't use raw_ptr<T> here to prevent WeakPtr from keeping
347   // the memory allocation in quarantine, as it can't be accessed through the
348   // WeakPtr.
349   RAW_PTR_EXCLUSION T* ptr_ = nullptr;
350 };
351 
352 // Allow callers to compare WeakPtrs against nullptr to test validity.
353 template <class T>
354 bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
355   return !(weak_ptr == nullptr);
356 }
357 template <class T>
358 bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
359   return weak_ptr != nullptr;
360 }
361 template <class T>
362 bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
363   return weak_ptr.get() == nullptr;
364 }
365 template <class T>
366 bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
367   return weak_ptr == nullptr;
368 }
369 
370 namespace internal {
371 class BASE_EXPORT WeakPtrFactoryBase {
372  protected:
373   WeakPtrFactoryBase(uintptr_t ptr);
374   ~WeakPtrFactoryBase();
375   internal::WeakReferenceOwner weak_reference_owner_;
376   uintptr_t ptr_;
377 };
378 }  // namespace internal
379 
380 namespace subtle {
381 
382 // Restricts access to WeakPtrFactory::BindToCurrentSequence() to authorized
383 // callers.
384 class BASE_EXPORT BindWeakPtrFactoryPassKey {
385  private:
386   // Avoid =default to disallow creation by uniform initialization.
387   BindWeakPtrFactoryPassKey() {}
388 
389   friend class BindWeakPtrFactoryForTesting;
390   friend class performance_manager::FrameNodeImpl;
391   friend class performance_manager::PageNodeImpl;
392   friend class performance_manager::ProcessNodeImpl;
393   friend class performance_manager::WorkerNodeImpl;
394   friend class sequence_manager::internal::TaskQueueImpl;
395 };
396 
397 }  // namespace subtle
398 
399 // A class may be composed of a WeakPtrFactory and thereby
400 // control how it exposes weak pointers to itself.  This is helpful if you only
401 // need weak pointers within the implementation of a class.  This class is also
402 // useful when working with primitive types.  For example, you could have a
403 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
404 template <class T>
405 class WeakPtrFactory : public internal::WeakPtrFactoryBase {
406  public:
407   WeakPtrFactory() = delete;
408 
409   explicit WeakPtrFactory(T* ptr)
410       : WeakPtrFactoryBase(reinterpret_cast<uintptr_t>(ptr)) {}
411 
412   WeakPtrFactory(const WeakPtrFactory&) = delete;
413   WeakPtrFactory& operator=(const WeakPtrFactory&) = delete;
414 
415   ~WeakPtrFactory() = default;
416 
417   WeakPtr<const T> GetWeakPtr() const {
418     return WeakPtr<const T>(weak_reference_owner_.GetRef(),
419                             reinterpret_cast<const T*>(ptr_));
420   }
421 
422   WeakPtr<T> GetWeakPtr()
423     requires(!std::is_const_v<T>)
424   {
425     return WeakPtr<T>(weak_reference_owner_.GetRef(),
426                       reinterpret_cast<T*>(ptr_));
427   }
428 
429   WeakPtr<T> GetMutableWeakPtr() const
430     requires(!std::is_const_v<T>)
431   {
432     return WeakPtr<T>(weak_reference_owner_.GetRef(),
433                       reinterpret_cast<T*>(ptr_));
434   }
435 
436   // Returns a smart pointer that is valid until the WeakPtrFactory is
437   // invalidated. Unlike WeakPtr, this smart pointer cannot be null, and cannot
438   // be checked to see if the WeakPtrFactory is invalidated. It's intended to
439   // express that the pointer will not (intentionally) outlive the `T` object it
440   // points to, and to crash safely in the case of a bug instead of causing a
441   // use-after-free. This type provides an alternative to WeakPtr to prevent
442   // use-after-free bugs without also introducing "fuzzy lifetimes" that can be
443   // checked for at runtime.
444   SafeRef<T> GetSafeRef() const {
445     return internal::MakeSafeRefFromWeakPtrInternals(
446         weak_reference_owner_.GetRef(), reinterpret_cast<T*>(ptr_));
447   }
448 
449   // Call this method to invalidate all existing weak pointers.
450   void InvalidateWeakPtrs() {
451     DCHECK(ptr_);
452     weak_reference_owner_.Invalidate();
453   }
454 
455   // Call this method to determine if any weak pointers exist.
456   bool HasWeakPtrs() const {
457     DCHECK(ptr_);
458     return weak_reference_owner_.HasRefs();
459   }
460 
461   // Rebind the factory to the current sequence. This allows creating an object
462   // and associated weak pointers on a different thread from the one they are
463   // used on.
464   void BindToCurrentSequence(subtle::BindWeakPtrFactoryPassKey) {
465     weak_reference_owner_.BindToCurrentSequence();
466   }
467 };
468 
469 // A class may extend from SupportsWeakPtr to let others take weak pointers to
470 // it. This avoids the class itself implementing boilerplate to dispense weak
471 // pointers.  However, since SupportsWeakPtr's destructor won't invalidate
472 // weak pointers to the class until after the derived class' members have been
473 // destroyed, its use can lead to subtle use-after-destroy issues.
474 template <class T>
475 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
476  public:
477   SupportsWeakPtr() = default;
478 
479   SupportsWeakPtr(const SupportsWeakPtr&) = delete;
480   SupportsWeakPtr& operator=(const SupportsWeakPtr&) = delete;
481 
482   WeakPtr<T> AsWeakPtr() {
483     return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
484   }
485 
486  protected:
487   ~SupportsWeakPtr() = default;
488 
489  private:
490   internal::WeakReferenceOwner weak_reference_owner_;
491 };
492 
493 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
494 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
495 // extends a Base that extends SupportsWeakPtr<Base>.
496 //
497 // EXAMPLE:
498 //   class Base : public base::SupportsWeakPtr<Producer> {};
499 //   class Derived : public Base {};
500 //
501 //   Derived derived;
502 //   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
503 //
504 // Note that the following doesn't work (invalid type conversion) since
505 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
506 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
507 // the caller.
508 //
509 //   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
510 
511 template <typename Derived>
512 WeakPtr<Derived> AsWeakPtr(Derived* t) {
513   return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
514 }
515 
516 }  // namespace base
517 
518 #endif  // BASE_MEMORY_WEAK_PTR_H_
519