xref: /aosp_15_r20/external/cronet/base/strings/safe_sprintf.cc (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2013 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/strings/safe_sprintf.h"
6 
7 #include <errno.h>
8 #include <string.h>
9 
10 #include <algorithm>
11 #include <limits>
12 
13 #include "base/memory/raw_ptr.h"
14 #include "build/build_config.h"
15 
16 #if !defined(NDEBUG)
17 // In debug builds, we use RAW_CHECK() to print useful error messages, if
18 // SafeSPrintf() is called with broken arguments.
19 // As our contract promises that SafeSPrintf() can be called from any
20 // restricted run-time context, it is not actually safe to call logging
21 // functions from it; and we only ever do so for debug builds and hope for the
22 // best. We should _never_ call any logging function other than RAW_CHECK(),
23 // and we should _never_ include any logging code that is active in production
24 // builds. Most notably, we should not include these logging functions in
25 // unofficial release builds, even though those builds would otherwise have
26 // DCHECKS() enabled.
27 // In other words; please do not remove the #ifdef around this #include.
28 // Instead, in production builds we opt for returning a degraded result,
29 // whenever an error is encountered.
30 // E.g. The broken function call
31 //        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
32 //      will print something like
33 //        errno = 13, (%x)
34 //      instead of
35 //        errno = 13 (Access denied)
36 //      In most of the anticipated use cases, that's probably the preferred
37 //      behavior.
38 #include "base/check.h"
39 #define DEBUG_CHECK RAW_CHECK
40 #else
41 #define DEBUG_CHECK(x) do { if (x) { } } while (0)
42 #endif
43 
44 namespace base {
45 namespace strings {
46 
47 // The code in this file is extremely careful to be async-signal-safe.
48 //
49 // Most obviously, we avoid calling any code that could dynamically allocate
50 // memory. Doing so would almost certainly result in bugs and dead-locks.
51 // We also avoid calling any other STL functions that could have unintended
52 // side-effects involving memory allocation or access to other shared
53 // resources.
54 //
55 // But on top of that, we also avoid calling other library functions, as many
56 // of them have the side-effect of calling getenv() (in order to deal with
57 // localization) or accessing errno. The latter sounds benign, but there are
58 // several execution contexts where it isn't even possible to safely read let
59 // alone write errno.
60 //
61 // The stated design goal of the SafeSPrintf() function is that it can be
62 // called from any context that can safely call C or C++ code (i.e. anything
63 // that doesn't require assembly code).
64 //
65 // For a brief overview of some but not all of the issues with async-signal-
66 // safety, refer to:
67 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
68 
69 namespace {
70 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
71 
72 const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
73 const char kDownCaseHexDigits[] = "0123456789abcdef";
74 }
75 
76 #if defined(NDEBUG)
77 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
78 // but C++ doesn't allow us to do that for constants. Instead, we have to
79 // use careful casting and shifting. We later use a static_assert to
80 // verify that this worked correctly.
81 namespace {
82 const size_t kSSizeMax = kSSizeMaxConst;
83 }
84 #else  // defined(NDEBUG)
85 // For efficiency, we really need kSSizeMax to be a constant. But for unit
86 // tests, it should be adjustable. This allows us to verify edge cases without
87 // having to fill the entire available address space. As a compromise, we make
88 // kSSizeMax adjustable in debug builds, and then only compile that particular
89 // part of the unit test in debug builds.
90 namespace {
91 static size_t kSSizeMax = kSSizeMaxConst;
92 }
93 
94 namespace internal {
SetSafeSPrintfSSizeMaxForTest(size_t max)95 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
96   kSSizeMax = max;
97 }
98 
GetSafeSPrintfSSizeMaxForTest()99 size_t GetSafeSPrintfSSizeMaxForTest() {
100   return kSSizeMax;
101 }
102 }
103 #endif  // defined(NDEBUG)
104 
105 namespace {
106 class Buffer {
107  public:
108   // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
109   // has |size| bytes of writable storage. It is the caller's responsibility
110   // to ensure that the buffer is at least one byte in size, so that it fits
111   // the trailing NUL that will be added by the destructor. The buffer also
112   // must be smaller or equal to kSSizeMax in size.
Buffer(char * buffer,size_t size)113   Buffer(char* buffer, size_t size)
114       : buffer_(buffer),
115         size_(size - 1),  // Account for trailing NUL byte
116         count_(0) {
117 // MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
118 // supports static_cast but doesn't really implement constexpr yet so it doesn't
119 // complain, but clang does.
120 #if __cplusplus >= 201103 && !(defined(__clang__) && BUILDFLAG(IS_WIN))
121     static_assert(kSSizeMaxConst ==
122                       static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
123                   "kSSizeMaxConst should be the max value of an ssize_t");
124 #endif
125     DEBUG_CHECK(size > 0);
126     DEBUG_CHECK(size <= kSSizeMax);
127   }
128 
129   Buffer(const Buffer&) = delete;
130   Buffer& operator=(const Buffer&) = delete;
131 
~Buffer()132   ~Buffer() {
133     // The code calling the constructor guaranteed that there was enough space
134     // to store a trailing NUL -- and in debug builds, we are actually
135     // verifying this with DEBUG_CHECK()s in the constructor. So, we can
136     // always unconditionally write the NUL byte in the destructor.  We do not
137     // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
138     // including the NUL byte in its return code.
139     *GetInsertionPoint() = '\000';
140   }
141 
142   // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
143   // caller can now stop adding more data, as GetCount() has reached its
144   // maximum possible value.
OutOfAddressableSpace() const145   inline bool OutOfAddressableSpace() const {
146     return count_ == static_cast<size_t>(kSSizeMax - 1);
147   }
148 
149   // Returns the number of bytes that would have been emitted to |buffer_|
150   // if it was sized sufficiently large. This number can be larger than
151   // |size_|, if the caller provided an insufficiently large output buffer.
152   // But it will never be bigger than |kSSizeMax-1|.
GetCount() const153   inline ssize_t GetCount() const {
154     DEBUG_CHECK(count_ < kSSizeMax);
155     return static_cast<ssize_t>(count_);
156   }
157 
158   // Emits one |ch| character into the |buffer_| and updates the |count_| of
159   // characters that are currently supposed to be in the buffer.
160   // Returns "false", iff the buffer was already full.
161   // N.B. |count_| increases even if no characters have been written. This is
162   // needed so that GetCount() can return the number of bytes that should
163   // have been allocated for the |buffer_|.
Out(char ch)164   inline bool Out(char ch) {
165     if (size_ >= 1 && count_ < size_) {
166       buffer_[count_] = ch;
167       return IncrementCountByOne();
168     }
169     // |count_| still needs to be updated, even if the buffer has been
170     // filled completely. This allows SafeSPrintf() to return the number of
171     // bytes that should have been emitted.
172     IncrementCountByOne();
173     return false;
174   }
175 
176   // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
177   // |count_| will also be incremented by the number of bytes that were meant
178   // to be emitted. The |pad| character is typically either a ' ' space
179   // or a '0' zero, but other non-NUL values are legal.
180   // Returns "false", iff the |buffer_| filled up (i.e. |count_|
181   // overflowed |size_|) at any time during padding.
Pad(char pad,size_t padding,size_t len)182   inline bool Pad(char pad, size_t padding, size_t len) {
183     DEBUG_CHECK(pad);
184     DEBUG_CHECK(padding <= kSSizeMax);
185     for (; padding > len; --padding) {
186       if (!Out(pad)) {
187         if (--padding) {
188           IncrementCount(padding-len);
189         }
190         return false;
191       }
192     }
193     return true;
194   }
195 
196   // POSIX doesn't define any async-signal-safe function for converting
197   // an integer to ASCII. Define our own version.
198   //
199   // This also gives us the ability to make the function a little more
200   // powerful and have it deal with |padding|, with truncation, and with
201   // predicting the length of the untruncated output.
202   //
203   // IToASCII() converts an integer |i| to ASCII.
204   //
205   // Unlike similar functions in the standard C library, it never appends a
206   // NUL character. This is left for the caller to do.
207   //
208   // While the function signature takes a signed int64_t, the code decides at
209   // run-time whether to treat the argument as signed (int64_t) or as unsigned
210   // (uint64_t) based on the value of |sign|.
211   //
212   // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
213   // a |sign|. Otherwise, |i| is treated as unsigned.
214   //
215   // For bases larger than 10, |upcase| decides whether lower-case or upper-
216   // case letters should be used to designate digits greater than 10.
217   //
218   // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
219   // be positive and will always be applied to the left of the output.
220   //
221   // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
222   // the left of |padding|, if |pad| is '0'; and to the right of |padding|
223   // if |pad| is ' '.
224   //
225   // Returns "false", if the |buffer_| overflowed at any time.
226   bool IToASCII(bool sign,
227                 bool upcase,
228                 int64_t i,
229                 size_t base,
230                 char pad,
231                 size_t padding,
232                 const char* prefix);
233 
234  private:
235   // Increments |count_| by |inc| unless this would cause |count_| to
236   // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
237   // it then clamps |count_| to |kSSizeMax-1|.
IncrementCount(size_t inc)238   inline bool IncrementCount(size_t inc) {
239     // "inc" is either 1 or a "padding" value. Padding is clamped at
240     // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
241     // the range 1..kSSizeMax-1.
242     // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
243     // integer overflows.
244     DEBUG_CHECK(inc <= kSSizeMax - 1);
245     if (count_ > kSSizeMax - 1 - inc) {
246       count_ = kSSizeMax - 1;
247       return false;
248     }
249     count_ += inc;
250     return true;
251   }
252 
253   // Convenience method for the common case of incrementing |count_| by one.
IncrementCountByOne()254   inline bool IncrementCountByOne() {
255     return IncrementCount(1);
256   }
257 
258   // Return the current insertion point into the buffer. This is typically
259   // at |buffer_| + |count_|, but could be before that if truncation
260   // happened. It always points to one byte past the last byte that was
261   // successfully placed into the |buffer_|.
GetInsertionPoint() const262   inline char* GetInsertionPoint() const {
263     size_t idx = count_;
264     if (idx > size_) {
265       idx = size_;
266     }
267     return buffer_ + idx;
268   }
269 
270   // User-provided buffer that will receive the fully formatted output string.
271   raw_ptr<char, AllowPtrArithmetic> buffer_;
272 
273   // Number of bytes that are available in the buffer excluding the trailing
274   // NUL byte that will be added by the destructor.
275   const size_t size_;
276 
277   // Number of bytes that would have been emitted to the buffer, if the buffer
278   // was sufficiently big. This number always excludes the trailing NUL byte
279   // and it is guaranteed to never grow bigger than kSSizeMax-1.
280   size_t count_;
281 };
282 
IToASCII(bool sign,bool upcase,int64_t i,size_t base,char pad,size_t padding,const char * prefix)283 bool Buffer::IToASCII(bool sign,
284                       bool upcase,
285                       int64_t i,
286                       size_t base,
287                       char pad,
288                       size_t padding,
289                       const char* prefix) {
290   // Sanity check for parameters. None of these should ever fail, but see
291   // above for the rationale why we can't call CHECK().
292   DEBUG_CHECK(base >= 2);
293   DEBUG_CHECK(base <= 16);
294   DEBUG_CHECK(!sign || base == 10);
295   DEBUG_CHECK(pad == '0' || pad == ' ');
296   DEBUG_CHECK(padding <= kSSizeMax);
297   DEBUG_CHECK(!(sign && prefix && *prefix));
298 
299   // Handle negative numbers, if the caller indicated that |i| should be
300   // treated as a signed number; otherwise treat |i| as unsigned (even if the
301   // MSB is set!)
302   // Details are tricky, because of limited data-types, but equivalent pseudo-
303   // code would look like:
304   //   if (sign && i < 0)
305   //     prefix = "-";
306   //   num = abs(i);
307   size_t minint = 0;
308   uint64_t num;
309   if (sign && i < 0) {
310     prefix = "-";
311 
312     // Turn our number positive.
313     if (i == std::numeric_limits<int64_t>::min()) {
314       // The most negative integer needs special treatment.
315       minint = 1;
316       num = static_cast<uint64_t>(-(i + 1));
317     } else {
318       // "Normal" negative numbers are easy.
319       num = static_cast<uint64_t>(-i);
320     }
321   } else {
322     num = static_cast<uint64_t>(i);
323   }
324 
325   // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
326   // make the prefix accessible in reverse order, so that we can later output
327   // it right between padding and the number.
328   // We cannot choose the easier approach of just reversing the number, as that
329   // fails in situations where we need to truncate numbers that have padding
330   // and/or prefixes.
331   const char* reverse_prefix = nullptr;
332   if (prefix && *prefix) {
333     if (pad == '0') {
334       while (*prefix) {
335         if (padding) {
336           --padding;
337         }
338         Out(*prefix++);
339       }
340       prefix = nullptr;
341     } else {
342       for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
343       }
344     }
345   } else
346     prefix = nullptr;
347   const size_t prefix_length = static_cast<size_t>(reverse_prefix - prefix);
348 
349   // Loop until we have converted the entire number. Output at least one
350   // character (i.e. '0').
351   size_t start = count_;
352   size_t discarded = 0;
353   bool started = false;
354   do {
355     // Make sure there is still enough space left in our output buffer.
356     if (count_ >= size_) {
357       if (start < size_) {
358         // It is rare that we need to output a partial number. But if asked
359         // to do so, we will still make sure we output the correct number of
360         // leading digits.
361         // Since we are generating the digits in reverse order, we actually
362         // have to discard digits in the order that we have already emitted
363         // them. This is essentially equivalent to:
364         //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
365         for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
366              move < end;
367              ++move) {
368           *move = move[1];
369         }
370         ++discarded;
371         --count_;
372       } else if (count_ - size_ > 1) {
373         // Need to increment either |count_| or |discarded| to make progress.
374         // The latter is more efficient, as it eventually triggers fast
375         // handling of padding. But we have to ensure we don't accidentally
376         // change the overall state (i.e. switch the state-machine from
377         // discarding to non-discarding). |count_| needs to always stay
378         // bigger than |size_|.
379         --count_;
380         ++discarded;
381       }
382     }
383 
384     // Output the next digit and (if necessary) compensate for the most
385     // negative integer needing special treatment. This works because,
386     // no matter the bit width of the integer, the lowest-most decimal
387     // integer always ends in 2, 4, 6, or 8.
388     if (!num && started) {
389       if (reverse_prefix > prefix) {
390         Out(*--reverse_prefix);
391       } else {
392         Out(pad);
393       }
394     } else {
395       started = true;
396       Out((upcase ? kUpCaseHexDigits
397                   : kDownCaseHexDigits)[num % base + minint]);
398     }
399 
400     minint = 0;
401     num /= base;
402 
403     // Add padding, if requested.
404     if (padding > 0) {
405       --padding;
406 
407       // Performance optimization for when we are asked to output excessive
408       // padding, but our output buffer is limited in size.  Even if we output
409       // a 64bit number in binary, we would never write more than 64 plus
410       // prefix non-padding characters. So, once this limit has been passed,
411       // any further state change can be computed arithmetically; we know that
412       // by this time, our entire final output consists of padding characters
413       // that have all already been output.
414       if (discarded > 8*sizeof(num) + prefix_length) {
415         IncrementCount(padding);
416         padding = 0;
417       }
418     }
419   } while (num || padding || (reverse_prefix > prefix));
420 
421   if (start < size_) {
422     // Conversion to ASCII actually resulted in the digits being in reverse
423     // order. We can't easily generate them in forward order, as we can't tell
424     // the number of characters needed until we are done converting.
425     // So, now, we reverse the string (except for the possible '-' sign).
426     char* front = buffer_ + start;
427     char* back = GetInsertionPoint();
428     while (--back > front) {
429       char ch = *back;
430       *back = *front;
431       *front++ = ch;
432     }
433   }
434   IncrementCount(discarded);
435   return !discarded;
436 }
437 
438 }  // anonymous namespace
439 
440 namespace internal {
441 
SafeSNPrintf(char * buf,size_t sz,const char * fmt,const Arg * args,const size_t max_args)442 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
443                      const size_t max_args) {
444   // Make sure that at least one NUL byte can be written, and that the buffer
445   // never overflows kSSizeMax. Not only does that use up most or all of the
446   // address space, it also would result in a return code that cannot be
447   // represented.
448   if (static_cast<ssize_t>(sz) < 1)
449     return -1;
450   sz = std::min(sz, kSSizeMax);
451 
452   // Iterate over format string and interpret '%' arguments as they are
453   // encountered.
454   Buffer buffer(buf, sz);
455   size_t padding;
456   char pad;
457   for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
458     if (*fmt++ == '%') {
459       padding = 0;
460       pad = ' ';
461       char ch = *fmt++;
462     format_character_found:
463       switch (ch) {
464       case '0': case '1': case '2': case '3': case '4':
465       case '5': case '6': case '7': case '8': case '9':
466         // Found a width parameter. Convert to an integer value and store in
467         // "padding". If the leading digit is a zero, change the padding
468         // character from a space ' ' to a zero '0'.
469         pad = ch == '0' ? '0' : ' ';
470         for (;;) {
471           const size_t digit = static_cast<size_t>(ch - '0');
472           // The maximum allowed padding fills all the available address
473           // space and leaves just enough space to insert the trailing NUL.
474           const size_t max_padding = kSSizeMax - 1;
475           if (padding > max_padding / 10 ||
476               10 * padding > max_padding - digit) {
477             DEBUG_CHECK(padding <= max_padding / 10 &&
478                         10 * padding <= max_padding - digit);
479             // Integer overflow detected. Skip the rest of the width until
480             // we find the format character, then do the normal error handling.
481           padding_overflow:
482             padding = max_padding;
483             while ((ch = *fmt++) >= '0' && ch <= '9') {
484             }
485             if (cur_arg < max_args) {
486               ++cur_arg;
487             }
488             goto fail_to_expand;
489           }
490           padding = 10 * padding + digit;
491           if (padding > max_padding) {
492             // This doesn't happen for "sane" values of kSSizeMax. But once
493             // kSSizeMax gets smaller than about 10, our earlier range checks
494             // are incomplete. Unittests do trigger this artificial corner
495             // case.
496             DEBUG_CHECK(padding <= max_padding);
497             goto padding_overflow;
498           }
499           ch = *fmt++;
500           if (ch < '0' || ch > '9') {
501             // Reached the end of the width parameter. This is where the format
502             // character is found.
503             goto format_character_found;
504           }
505         }
506       case 'c': {  // Output an ASCII character.
507         // Check that there are arguments left to be inserted.
508         if (cur_arg >= max_args) {
509           DEBUG_CHECK(cur_arg < max_args);
510           goto fail_to_expand;
511         }
512 
513         // Check that the argument has the expected type.
514         const Arg& arg = args[cur_arg++];
515         if (arg.type != Arg::INT && arg.type != Arg::UINT) {
516           DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
517           goto fail_to_expand;
518         }
519 
520         // Apply padding, if needed.
521         buffer.Pad(' ', padding, 1);
522 
523         // Convert the argument to an ASCII character and output it.
524         char as_char = static_cast<char>(arg.integer.i);
525         if (!as_char) {
526           goto end_of_output_buffer;
527         }
528         buffer.Out(as_char);
529         break; }
530       case 'd':    // Output a possibly signed decimal value.
531       case 'o':    // Output an unsigned octal value.
532       case 'x':    // Output an unsigned hexadecimal value.
533       case 'X':
534       case 'p': {  // Output a pointer value.
535         // Check that there are arguments left to be inserted.
536         if (cur_arg >= max_args) {
537           DEBUG_CHECK(cur_arg < max_args);
538           goto fail_to_expand;
539         }
540 
541         const Arg& arg = args[cur_arg++];
542         int64_t i;
543         const char* prefix = nullptr;
544         if (ch != 'p') {
545           // Check that the argument has the expected type.
546           if (arg.type != Arg::INT && arg.type != Arg::UINT) {
547             DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
548             goto fail_to_expand;
549           }
550           i = arg.integer.i;
551 
552           if (ch != 'd') {
553             // The Arg() constructor automatically performed sign expansion on
554             // signed parameters. This is great when outputting a %d decimal
555             // number, but can result in unexpected leading 0xFF bytes when
556             // outputting a %x hexadecimal number. Mask bits, if necessary.
557             // We have to do this here, instead of in the Arg() constructor, as
558             // the Arg() constructor cannot tell whether we will output a %d
559             // or a %x. Only the latter should experience masking.
560             if (arg.integer.width < sizeof(int64_t)) {
561               i &= (1LL << (8*arg.integer.width)) - 1;
562             }
563           }
564         } else {
565           // Pointer values require an actual pointer or a string.
566           if (arg.type == Arg::POINTER) {
567             i = static_cast<int64_t>(reinterpret_cast<uintptr_t>(arg.ptr));
568           } else if (arg.type == Arg::STRING) {
569             i = static_cast<int64_t>(reinterpret_cast<uintptr_t>(arg.str));
570           } else if (arg.type == Arg::INT &&
571                      arg.integer.width == sizeof(NULL) &&
572                      arg.integer.i == 0) {  // Allow C++'s version of NULL
573             i = 0;
574           } else {
575             DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
576             goto fail_to_expand;
577           }
578 
579           // Pointers always include the "0x" prefix.
580           prefix = "0x";
581         }
582 
583         // Use IToASCII() to convert to ASCII representation. For decimal
584         // numbers, optionally print a sign. For hexadecimal numbers,
585         // distinguish between upper and lower case. %p addresses are always
586         // printed as upcase. Supports base 8, 10, and 16. Prints padding
587         // and/or prefixes, if so requested.
588         buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
589                         ch != 'x', i,
590                         ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
591                         pad, padding, prefix);
592         break; }
593       case 's': {
594         // Check that there are arguments left to be inserted.
595         if (cur_arg >= max_args) {
596           DEBUG_CHECK(cur_arg < max_args);
597           goto fail_to_expand;
598         }
599 
600         // Check that the argument has the expected type.
601         const Arg& arg = args[cur_arg++];
602         const char *s;
603         if (arg.type == Arg::STRING) {
604           s = arg.str ? arg.str : "<NULL>";
605         } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
606                    arg.integer.i == 0) {  // Allow C++'s version of NULL
607           s = "<NULL>";
608         } else {
609           DEBUG_CHECK(arg.type == Arg::STRING);
610           goto fail_to_expand;
611         }
612 
613         // Apply padding, if needed. This requires us to first check the
614         // length of the string that we are outputting.
615         if (padding) {
616           size_t len = 0;
617           for (const char* src = s; *src++; ) {
618             ++len;
619           }
620           buffer.Pad(' ', padding, len);
621         }
622 
623         // Printing a string involves nothing more than copying it into the
624         // output buffer and making sure we don't output more bytes than
625         // available space; Out() takes care of doing that.
626         for (const char* src = s; *src; ) {
627           buffer.Out(*src++);
628         }
629         break; }
630       case '%':
631         // Quoted percent '%' character.
632         goto copy_verbatim;
633       fail_to_expand:
634         // C++ gives us tools to do type checking -- something that snprintf()
635         // could never really do. So, whenever we see arguments that don't
636         // match up with the format string, we refuse to output them. But
637         // since we have to be extremely conservative about being async-
638         // signal-safe, we are limited in the type of error handling that we
639         // can do in production builds (in debug builds we can use
640         // DEBUG_CHECK() and hope for the best). So, all we do is pass the
641         // format string unchanged. That should eventually get the user's
642         // attention; and in the meantime, it hopefully doesn't lose too much
643         // data.
644       default:
645         // Unknown or unsupported format character. Just copy verbatim to
646         // output.
647         buffer.Out('%');
648         DEBUG_CHECK(ch);
649         if (!ch) {
650           goto end_of_format_string;
651         }
652         buffer.Out(ch);
653         break;
654       }
655     } else {
656   copy_verbatim:
657     buffer.Out(fmt[-1]);
658     }
659   }
660  end_of_format_string:
661  end_of_output_buffer:
662   return buffer.GetCount();
663 }
664 
665 }  // namespace internal
666 
SafeSNPrintf(char * buf,size_t sz,const char * fmt)667 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
668   // Make sure that at least one NUL byte can be written, and that the buffer
669   // never overflows kSSizeMax. Not only does that use up most or all of the
670   // address space, it also would result in a return code that cannot be
671   // represented.
672   if (static_cast<ssize_t>(sz) < 1)
673     return -1;
674   sz = std::min(sz, kSSizeMax);
675 
676   Buffer buffer(buf, sz);
677 
678   // In the slow-path, we deal with errors by copying the contents of
679   // "fmt" unexpanded. This means, if there are no arguments passed, the
680   // SafeSPrintf() function always degenerates to a version of strncpy() that
681   // de-duplicates '%' characters.
682   const char* src = fmt;
683   for (; *src; ++src) {
684     buffer.Out(*src);
685     DEBUG_CHECK(src[0] != '%' || src[1] == '%');
686     if (src[0] == '%' && src[1] == '%') {
687       ++src;
688     }
689   }
690   return buffer.GetCount();
691 }
692 
693 }  // namespace strings
694 }  // namespace base
695