1 // Copyright 2013 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/strings/safe_sprintf.h"
6
7 #include <errno.h>
8 #include <string.h>
9
10 #include <algorithm>
11 #include <limits>
12
13 #include "base/memory/raw_ptr.h"
14 #include "build/build_config.h"
15
16 #if !defined(NDEBUG)
17 // In debug builds, we use RAW_CHECK() to print useful error messages, if
18 // SafeSPrintf() is called with broken arguments.
19 // As our contract promises that SafeSPrintf() can be called from any
20 // restricted run-time context, it is not actually safe to call logging
21 // functions from it; and we only ever do so for debug builds and hope for the
22 // best. We should _never_ call any logging function other than RAW_CHECK(),
23 // and we should _never_ include any logging code that is active in production
24 // builds. Most notably, we should not include these logging functions in
25 // unofficial release builds, even though those builds would otherwise have
26 // DCHECKS() enabled.
27 // In other words; please do not remove the #ifdef around this #include.
28 // Instead, in production builds we opt for returning a degraded result,
29 // whenever an error is encountered.
30 // E.g. The broken function call
31 // SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
32 // will print something like
33 // errno = 13, (%x)
34 // instead of
35 // errno = 13 (Access denied)
36 // In most of the anticipated use cases, that's probably the preferred
37 // behavior.
38 #include "base/check.h"
39 #define DEBUG_CHECK RAW_CHECK
40 #else
41 #define DEBUG_CHECK(x) do { if (x) { } } while (0)
42 #endif
43
44 namespace base {
45 namespace strings {
46
47 // The code in this file is extremely careful to be async-signal-safe.
48 //
49 // Most obviously, we avoid calling any code that could dynamically allocate
50 // memory. Doing so would almost certainly result in bugs and dead-locks.
51 // We also avoid calling any other STL functions that could have unintended
52 // side-effects involving memory allocation or access to other shared
53 // resources.
54 //
55 // But on top of that, we also avoid calling other library functions, as many
56 // of them have the side-effect of calling getenv() (in order to deal with
57 // localization) or accessing errno. The latter sounds benign, but there are
58 // several execution contexts where it isn't even possible to safely read let
59 // alone write errno.
60 //
61 // The stated design goal of the SafeSPrintf() function is that it can be
62 // called from any context that can safely call C or C++ code (i.e. anything
63 // that doesn't require assembly code).
64 //
65 // For a brief overview of some but not all of the issues with async-signal-
66 // safety, refer to:
67 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
68
69 namespace {
70 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
71
72 const char kUpCaseHexDigits[] = "0123456789ABCDEF";
73 const char kDownCaseHexDigits[] = "0123456789abcdef";
74 }
75
76 #if defined(NDEBUG)
77 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
78 // but C++ doesn't allow us to do that for constants. Instead, we have to
79 // use careful casting and shifting. We later use a static_assert to
80 // verify that this worked correctly.
81 namespace {
82 const size_t kSSizeMax = kSSizeMaxConst;
83 }
84 #else // defined(NDEBUG)
85 // For efficiency, we really need kSSizeMax to be a constant. But for unit
86 // tests, it should be adjustable. This allows us to verify edge cases without
87 // having to fill the entire available address space. As a compromise, we make
88 // kSSizeMax adjustable in debug builds, and then only compile that particular
89 // part of the unit test in debug builds.
90 namespace {
91 static size_t kSSizeMax = kSSizeMaxConst;
92 }
93
94 namespace internal {
SetSafeSPrintfSSizeMaxForTest(size_t max)95 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
96 kSSizeMax = max;
97 }
98
GetSafeSPrintfSSizeMaxForTest()99 size_t GetSafeSPrintfSSizeMaxForTest() {
100 return kSSizeMax;
101 }
102 }
103 #endif // defined(NDEBUG)
104
105 namespace {
106 class Buffer {
107 public:
108 // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
109 // has |size| bytes of writable storage. It is the caller's responsibility
110 // to ensure that the buffer is at least one byte in size, so that it fits
111 // the trailing NUL that will be added by the destructor. The buffer also
112 // must be smaller or equal to kSSizeMax in size.
Buffer(char * buffer,size_t size)113 Buffer(char* buffer, size_t size)
114 : buffer_(buffer),
115 size_(size - 1), // Account for trailing NUL byte
116 count_(0) {
117 // MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
118 // supports static_cast but doesn't really implement constexpr yet so it doesn't
119 // complain, but clang does.
120 #if __cplusplus >= 201103 && !(defined(__clang__) && BUILDFLAG(IS_WIN))
121 static_assert(kSSizeMaxConst ==
122 static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
123 "kSSizeMaxConst should be the max value of an ssize_t");
124 #endif
125 DEBUG_CHECK(size > 0);
126 DEBUG_CHECK(size <= kSSizeMax);
127 }
128
129 Buffer(const Buffer&) = delete;
130 Buffer& operator=(const Buffer&) = delete;
131
~Buffer()132 ~Buffer() {
133 // The code calling the constructor guaranteed that there was enough space
134 // to store a trailing NUL -- and in debug builds, we are actually
135 // verifying this with DEBUG_CHECK()s in the constructor. So, we can
136 // always unconditionally write the NUL byte in the destructor. We do not
137 // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
138 // including the NUL byte in its return code.
139 *GetInsertionPoint() = '\000';
140 }
141
142 // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
143 // caller can now stop adding more data, as GetCount() has reached its
144 // maximum possible value.
OutOfAddressableSpace() const145 inline bool OutOfAddressableSpace() const {
146 return count_ == static_cast<size_t>(kSSizeMax - 1);
147 }
148
149 // Returns the number of bytes that would have been emitted to |buffer_|
150 // if it was sized sufficiently large. This number can be larger than
151 // |size_|, if the caller provided an insufficiently large output buffer.
152 // But it will never be bigger than |kSSizeMax-1|.
GetCount() const153 inline ssize_t GetCount() const {
154 DEBUG_CHECK(count_ < kSSizeMax);
155 return static_cast<ssize_t>(count_);
156 }
157
158 // Emits one |ch| character into the |buffer_| and updates the |count_| of
159 // characters that are currently supposed to be in the buffer.
160 // Returns "false", iff the buffer was already full.
161 // N.B. |count_| increases even if no characters have been written. This is
162 // needed so that GetCount() can return the number of bytes that should
163 // have been allocated for the |buffer_|.
Out(char ch)164 inline bool Out(char ch) {
165 if (size_ >= 1 && count_ < size_) {
166 buffer_[count_] = ch;
167 return IncrementCountByOne();
168 }
169 // |count_| still needs to be updated, even if the buffer has been
170 // filled completely. This allows SafeSPrintf() to return the number of
171 // bytes that should have been emitted.
172 IncrementCountByOne();
173 return false;
174 }
175
176 // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
177 // |count_| will also be incremented by the number of bytes that were meant
178 // to be emitted. The |pad| character is typically either a ' ' space
179 // or a '0' zero, but other non-NUL values are legal.
180 // Returns "false", iff the |buffer_| filled up (i.e. |count_|
181 // overflowed |size_|) at any time during padding.
Pad(char pad,size_t padding,size_t len)182 inline bool Pad(char pad, size_t padding, size_t len) {
183 DEBUG_CHECK(pad);
184 DEBUG_CHECK(padding <= kSSizeMax);
185 for (; padding > len; --padding) {
186 if (!Out(pad)) {
187 if (--padding) {
188 IncrementCount(padding-len);
189 }
190 return false;
191 }
192 }
193 return true;
194 }
195
196 // POSIX doesn't define any async-signal-safe function for converting
197 // an integer to ASCII. Define our own version.
198 //
199 // This also gives us the ability to make the function a little more
200 // powerful and have it deal with |padding|, with truncation, and with
201 // predicting the length of the untruncated output.
202 //
203 // IToASCII() converts an integer |i| to ASCII.
204 //
205 // Unlike similar functions in the standard C library, it never appends a
206 // NUL character. This is left for the caller to do.
207 //
208 // While the function signature takes a signed int64_t, the code decides at
209 // run-time whether to treat the argument as signed (int64_t) or as unsigned
210 // (uint64_t) based on the value of |sign|.
211 //
212 // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
213 // a |sign|. Otherwise, |i| is treated as unsigned.
214 //
215 // For bases larger than 10, |upcase| decides whether lower-case or upper-
216 // case letters should be used to designate digits greater than 10.
217 //
218 // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
219 // be positive and will always be applied to the left of the output.
220 //
221 // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
222 // the left of |padding|, if |pad| is '0'; and to the right of |padding|
223 // if |pad| is ' '.
224 //
225 // Returns "false", if the |buffer_| overflowed at any time.
226 bool IToASCII(bool sign,
227 bool upcase,
228 int64_t i,
229 size_t base,
230 char pad,
231 size_t padding,
232 const char* prefix);
233
234 private:
235 // Increments |count_| by |inc| unless this would cause |count_| to
236 // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
237 // it then clamps |count_| to |kSSizeMax-1|.
IncrementCount(size_t inc)238 inline bool IncrementCount(size_t inc) {
239 // "inc" is either 1 or a "padding" value. Padding is clamped at
240 // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
241 // the range 1..kSSizeMax-1.
242 // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
243 // integer overflows.
244 DEBUG_CHECK(inc <= kSSizeMax - 1);
245 if (count_ > kSSizeMax - 1 - inc) {
246 count_ = kSSizeMax - 1;
247 return false;
248 }
249 count_ += inc;
250 return true;
251 }
252
253 // Convenience method for the common case of incrementing |count_| by one.
IncrementCountByOne()254 inline bool IncrementCountByOne() {
255 return IncrementCount(1);
256 }
257
258 // Return the current insertion point into the buffer. This is typically
259 // at |buffer_| + |count_|, but could be before that if truncation
260 // happened. It always points to one byte past the last byte that was
261 // successfully placed into the |buffer_|.
GetInsertionPoint() const262 inline char* GetInsertionPoint() const {
263 size_t idx = count_;
264 if (idx > size_) {
265 idx = size_;
266 }
267 return buffer_ + idx;
268 }
269
270 // User-provided buffer that will receive the fully formatted output string.
271 raw_ptr<char, AllowPtrArithmetic> buffer_;
272
273 // Number of bytes that are available in the buffer excluding the trailing
274 // NUL byte that will be added by the destructor.
275 const size_t size_;
276
277 // Number of bytes that would have been emitted to the buffer, if the buffer
278 // was sufficiently big. This number always excludes the trailing NUL byte
279 // and it is guaranteed to never grow bigger than kSSizeMax-1.
280 size_t count_;
281 };
282
IToASCII(bool sign,bool upcase,int64_t i,size_t base,char pad,size_t padding,const char * prefix)283 bool Buffer::IToASCII(bool sign,
284 bool upcase,
285 int64_t i,
286 size_t base,
287 char pad,
288 size_t padding,
289 const char* prefix) {
290 // Sanity check for parameters. None of these should ever fail, but see
291 // above for the rationale why we can't call CHECK().
292 DEBUG_CHECK(base >= 2);
293 DEBUG_CHECK(base <= 16);
294 DEBUG_CHECK(!sign || base == 10);
295 DEBUG_CHECK(pad == '0' || pad == ' ');
296 DEBUG_CHECK(padding <= kSSizeMax);
297 DEBUG_CHECK(!(sign && prefix && *prefix));
298
299 // Handle negative numbers, if the caller indicated that |i| should be
300 // treated as a signed number; otherwise treat |i| as unsigned (even if the
301 // MSB is set!)
302 // Details are tricky, because of limited data-types, but equivalent pseudo-
303 // code would look like:
304 // if (sign && i < 0)
305 // prefix = "-";
306 // num = abs(i);
307 size_t minint = 0;
308 uint64_t num;
309 if (sign && i < 0) {
310 prefix = "-";
311
312 // Turn our number positive.
313 if (i == std::numeric_limits<int64_t>::min()) {
314 // The most negative integer needs special treatment.
315 minint = 1;
316 num = static_cast<uint64_t>(-(i + 1));
317 } else {
318 // "Normal" negative numbers are easy.
319 num = static_cast<uint64_t>(-i);
320 }
321 } else {
322 num = static_cast<uint64_t>(i);
323 }
324
325 // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
326 // make the prefix accessible in reverse order, so that we can later output
327 // it right between padding and the number.
328 // We cannot choose the easier approach of just reversing the number, as that
329 // fails in situations where we need to truncate numbers that have padding
330 // and/or prefixes.
331 const char* reverse_prefix = nullptr;
332 if (prefix && *prefix) {
333 if (pad == '0') {
334 while (*prefix) {
335 if (padding) {
336 --padding;
337 }
338 Out(*prefix++);
339 }
340 prefix = nullptr;
341 } else {
342 for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
343 }
344 }
345 } else
346 prefix = nullptr;
347 const size_t prefix_length = static_cast<size_t>(reverse_prefix - prefix);
348
349 // Loop until we have converted the entire number. Output at least one
350 // character (i.e. '0').
351 size_t start = count_;
352 size_t discarded = 0;
353 bool started = false;
354 do {
355 // Make sure there is still enough space left in our output buffer.
356 if (count_ >= size_) {
357 if (start < size_) {
358 // It is rare that we need to output a partial number. But if asked
359 // to do so, we will still make sure we output the correct number of
360 // leading digits.
361 // Since we are generating the digits in reverse order, we actually
362 // have to discard digits in the order that we have already emitted
363 // them. This is essentially equivalent to:
364 // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
365 for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
366 move < end;
367 ++move) {
368 *move = move[1];
369 }
370 ++discarded;
371 --count_;
372 } else if (count_ - size_ > 1) {
373 // Need to increment either |count_| or |discarded| to make progress.
374 // The latter is more efficient, as it eventually triggers fast
375 // handling of padding. But we have to ensure we don't accidentally
376 // change the overall state (i.e. switch the state-machine from
377 // discarding to non-discarding). |count_| needs to always stay
378 // bigger than |size_|.
379 --count_;
380 ++discarded;
381 }
382 }
383
384 // Output the next digit and (if necessary) compensate for the most
385 // negative integer needing special treatment. This works because,
386 // no matter the bit width of the integer, the lowest-most decimal
387 // integer always ends in 2, 4, 6, or 8.
388 if (!num && started) {
389 if (reverse_prefix > prefix) {
390 Out(*--reverse_prefix);
391 } else {
392 Out(pad);
393 }
394 } else {
395 started = true;
396 Out((upcase ? kUpCaseHexDigits
397 : kDownCaseHexDigits)[num % base + minint]);
398 }
399
400 minint = 0;
401 num /= base;
402
403 // Add padding, if requested.
404 if (padding > 0) {
405 --padding;
406
407 // Performance optimization for when we are asked to output excessive
408 // padding, but our output buffer is limited in size. Even if we output
409 // a 64bit number in binary, we would never write more than 64 plus
410 // prefix non-padding characters. So, once this limit has been passed,
411 // any further state change can be computed arithmetically; we know that
412 // by this time, our entire final output consists of padding characters
413 // that have all already been output.
414 if (discarded > 8*sizeof(num) + prefix_length) {
415 IncrementCount(padding);
416 padding = 0;
417 }
418 }
419 } while (num || padding || (reverse_prefix > prefix));
420
421 if (start < size_) {
422 // Conversion to ASCII actually resulted in the digits being in reverse
423 // order. We can't easily generate them in forward order, as we can't tell
424 // the number of characters needed until we are done converting.
425 // So, now, we reverse the string (except for the possible '-' sign).
426 char* front = buffer_ + start;
427 char* back = GetInsertionPoint();
428 while (--back > front) {
429 char ch = *back;
430 *back = *front;
431 *front++ = ch;
432 }
433 }
434 IncrementCount(discarded);
435 return !discarded;
436 }
437
438 } // anonymous namespace
439
440 namespace internal {
441
SafeSNPrintf(char * buf,size_t sz,const char * fmt,const Arg * args,const size_t max_args)442 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
443 const size_t max_args) {
444 // Make sure that at least one NUL byte can be written, and that the buffer
445 // never overflows kSSizeMax. Not only does that use up most or all of the
446 // address space, it also would result in a return code that cannot be
447 // represented.
448 if (static_cast<ssize_t>(sz) < 1)
449 return -1;
450 sz = std::min(sz, kSSizeMax);
451
452 // Iterate over format string and interpret '%' arguments as they are
453 // encountered.
454 Buffer buffer(buf, sz);
455 size_t padding;
456 char pad;
457 for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
458 if (*fmt++ == '%') {
459 padding = 0;
460 pad = ' ';
461 char ch = *fmt++;
462 format_character_found:
463 switch (ch) {
464 case '0': case '1': case '2': case '3': case '4':
465 case '5': case '6': case '7': case '8': case '9':
466 // Found a width parameter. Convert to an integer value and store in
467 // "padding". If the leading digit is a zero, change the padding
468 // character from a space ' ' to a zero '0'.
469 pad = ch == '0' ? '0' : ' ';
470 for (;;) {
471 const size_t digit = static_cast<size_t>(ch - '0');
472 // The maximum allowed padding fills all the available address
473 // space and leaves just enough space to insert the trailing NUL.
474 const size_t max_padding = kSSizeMax - 1;
475 if (padding > max_padding / 10 ||
476 10 * padding > max_padding - digit) {
477 DEBUG_CHECK(padding <= max_padding / 10 &&
478 10 * padding <= max_padding - digit);
479 // Integer overflow detected. Skip the rest of the width until
480 // we find the format character, then do the normal error handling.
481 padding_overflow:
482 padding = max_padding;
483 while ((ch = *fmt++) >= '0' && ch <= '9') {
484 }
485 if (cur_arg < max_args) {
486 ++cur_arg;
487 }
488 goto fail_to_expand;
489 }
490 padding = 10 * padding + digit;
491 if (padding > max_padding) {
492 // This doesn't happen for "sane" values of kSSizeMax. But once
493 // kSSizeMax gets smaller than about 10, our earlier range checks
494 // are incomplete. Unittests do trigger this artificial corner
495 // case.
496 DEBUG_CHECK(padding <= max_padding);
497 goto padding_overflow;
498 }
499 ch = *fmt++;
500 if (ch < '0' || ch > '9') {
501 // Reached the end of the width parameter. This is where the format
502 // character is found.
503 goto format_character_found;
504 }
505 }
506 case 'c': { // Output an ASCII character.
507 // Check that there are arguments left to be inserted.
508 if (cur_arg >= max_args) {
509 DEBUG_CHECK(cur_arg < max_args);
510 goto fail_to_expand;
511 }
512
513 // Check that the argument has the expected type.
514 const Arg& arg = args[cur_arg++];
515 if (arg.type != Arg::INT && arg.type != Arg::UINT) {
516 DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
517 goto fail_to_expand;
518 }
519
520 // Apply padding, if needed.
521 buffer.Pad(' ', padding, 1);
522
523 // Convert the argument to an ASCII character and output it.
524 char as_char = static_cast<char>(arg.integer.i);
525 if (!as_char) {
526 goto end_of_output_buffer;
527 }
528 buffer.Out(as_char);
529 break; }
530 case 'd': // Output a possibly signed decimal value.
531 case 'o': // Output an unsigned octal value.
532 case 'x': // Output an unsigned hexadecimal value.
533 case 'X':
534 case 'p': { // Output a pointer value.
535 // Check that there are arguments left to be inserted.
536 if (cur_arg >= max_args) {
537 DEBUG_CHECK(cur_arg < max_args);
538 goto fail_to_expand;
539 }
540
541 const Arg& arg = args[cur_arg++];
542 int64_t i;
543 const char* prefix = nullptr;
544 if (ch != 'p') {
545 // Check that the argument has the expected type.
546 if (arg.type != Arg::INT && arg.type != Arg::UINT) {
547 DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
548 goto fail_to_expand;
549 }
550 i = arg.integer.i;
551
552 if (ch != 'd') {
553 // The Arg() constructor automatically performed sign expansion on
554 // signed parameters. This is great when outputting a %d decimal
555 // number, but can result in unexpected leading 0xFF bytes when
556 // outputting a %x hexadecimal number. Mask bits, if necessary.
557 // We have to do this here, instead of in the Arg() constructor, as
558 // the Arg() constructor cannot tell whether we will output a %d
559 // or a %x. Only the latter should experience masking.
560 if (arg.integer.width < sizeof(int64_t)) {
561 i &= (1LL << (8*arg.integer.width)) - 1;
562 }
563 }
564 } else {
565 // Pointer values require an actual pointer or a string.
566 if (arg.type == Arg::POINTER) {
567 i = static_cast<int64_t>(reinterpret_cast<uintptr_t>(arg.ptr));
568 } else if (arg.type == Arg::STRING) {
569 i = static_cast<int64_t>(reinterpret_cast<uintptr_t>(arg.str));
570 } else if (arg.type == Arg::INT &&
571 arg.integer.width == sizeof(NULL) &&
572 arg.integer.i == 0) { // Allow C++'s version of NULL
573 i = 0;
574 } else {
575 DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
576 goto fail_to_expand;
577 }
578
579 // Pointers always include the "0x" prefix.
580 prefix = "0x";
581 }
582
583 // Use IToASCII() to convert to ASCII representation. For decimal
584 // numbers, optionally print a sign. For hexadecimal numbers,
585 // distinguish between upper and lower case. %p addresses are always
586 // printed as upcase. Supports base 8, 10, and 16. Prints padding
587 // and/or prefixes, if so requested.
588 buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
589 ch != 'x', i,
590 ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
591 pad, padding, prefix);
592 break; }
593 case 's': {
594 // Check that there are arguments left to be inserted.
595 if (cur_arg >= max_args) {
596 DEBUG_CHECK(cur_arg < max_args);
597 goto fail_to_expand;
598 }
599
600 // Check that the argument has the expected type.
601 const Arg& arg = args[cur_arg++];
602 const char *s;
603 if (arg.type == Arg::STRING) {
604 s = arg.str ? arg.str : "<NULL>";
605 } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
606 arg.integer.i == 0) { // Allow C++'s version of NULL
607 s = "<NULL>";
608 } else {
609 DEBUG_CHECK(arg.type == Arg::STRING);
610 goto fail_to_expand;
611 }
612
613 // Apply padding, if needed. This requires us to first check the
614 // length of the string that we are outputting.
615 if (padding) {
616 size_t len = 0;
617 for (const char* src = s; *src++; ) {
618 ++len;
619 }
620 buffer.Pad(' ', padding, len);
621 }
622
623 // Printing a string involves nothing more than copying it into the
624 // output buffer and making sure we don't output more bytes than
625 // available space; Out() takes care of doing that.
626 for (const char* src = s; *src; ) {
627 buffer.Out(*src++);
628 }
629 break; }
630 case '%':
631 // Quoted percent '%' character.
632 goto copy_verbatim;
633 fail_to_expand:
634 // C++ gives us tools to do type checking -- something that snprintf()
635 // could never really do. So, whenever we see arguments that don't
636 // match up with the format string, we refuse to output them. But
637 // since we have to be extremely conservative about being async-
638 // signal-safe, we are limited in the type of error handling that we
639 // can do in production builds (in debug builds we can use
640 // DEBUG_CHECK() and hope for the best). So, all we do is pass the
641 // format string unchanged. That should eventually get the user's
642 // attention; and in the meantime, it hopefully doesn't lose too much
643 // data.
644 default:
645 // Unknown or unsupported format character. Just copy verbatim to
646 // output.
647 buffer.Out('%');
648 DEBUG_CHECK(ch);
649 if (!ch) {
650 goto end_of_format_string;
651 }
652 buffer.Out(ch);
653 break;
654 }
655 } else {
656 copy_verbatim:
657 buffer.Out(fmt[-1]);
658 }
659 }
660 end_of_format_string:
661 end_of_output_buffer:
662 return buffer.GetCount();
663 }
664
665 } // namespace internal
666
SafeSNPrintf(char * buf,size_t sz,const char * fmt)667 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
668 // Make sure that at least one NUL byte can be written, and that the buffer
669 // never overflows kSSizeMax. Not only does that use up most or all of the
670 // address space, it also would result in a return code that cannot be
671 // represented.
672 if (static_cast<ssize_t>(sz) < 1)
673 return -1;
674 sz = std::min(sz, kSSizeMax);
675
676 Buffer buffer(buf, sz);
677
678 // In the slow-path, we deal with errors by copying the contents of
679 // "fmt" unexpanded. This means, if there are no arguments passed, the
680 // SafeSPrintf() function always degenerates to a version of strncpy() that
681 // de-duplicates '%' characters.
682 const char* src = fmt;
683 for (; *src; ++src) {
684 buffer.Out(*src);
685 DEBUG_CHECK(src[0] != '%' || src[1] == '%');
686 if (src[0] == '%' && src[1] == '%') {
687 ++src;
688 }
689 }
690 return buffer.GetCount();
691 }
692
693 } // namespace strings
694 } // namespace base
695