xref: /aosp_15_r20/external/cronet/base/time/time.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // `Time` represents an absolute point in coordinated universal time (UTC),
6 // internally represented as microseconds (s/1,000,000) since the Windows epoch
7 // (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
8 // defined in time_PLATFORM.cc. Note that values for `Time` may skew and jump
9 // around as the operating system makes adjustments to synchronize (e.g., with
10 // NTP servers). Thus, client code that uses the `Time` class must account for
11 // this.
12 //
13 // `TimeDelta` represents a duration of time, internally represented in
14 // microseconds.
15 //
16 // `TimeTicks` and `ThreadTicks` represent an abstract time that is most of the
17 // time incrementing, for use in measuring time durations. Internally, they are
18 // represented in microseconds. They cannot be converted to a human-readable
19 // time, but are guaranteed not to decrease (unlike the `Time` class). Note
20 // that `TimeTicks` may "stand still" (e.g., if the computer is suspended), and
21 // `ThreadTicks` will "stand still" whenever the thread has been de-scheduled
22 // by the operating system.
23 //
24 // All time classes are copyable, assignable, and occupy 64 bits per instance.
25 // Prefer to pass them by value, e.g.:
26 //
27 //   void MyFunction(TimeDelta arg);
28 //
29 // All time classes support `operator<<` with logging streams, e.g. `LOG(INFO)`.
30 // For human-readable formatting, use //base/i18n/time_formatting.h.
31 //
32 // Example use cases for different time classes:
33 //
34 //   Time:        Interpreting the wall-clock time provided by a remote system.
35 //                Detecting whether cached resources have expired. Providing the
36 //                user with a display of the current date and time. Determining
37 //                the amount of time between events across re-boots of the
38 //                machine.
39 //
40 //   TimeTicks:   Tracking the amount of time a task runs. Executing delayed
41 //                tasks at the right time. Computing presentation timestamps.
42 //                Synchronizing audio and video using TimeTicks as a common
43 //                reference clock (lip-sync). Measuring network round-trip
44 //                latency.
45 //
46 //   ThreadTicks: Benchmarking how long the current thread has been doing actual
47 //                work.
48 //
49 // Serialization:
50 //
51 // Use the helpers in //base/json/values_util.h when serializing `Time`
52 // or `TimeDelta` to/from `base::Value`.
53 //
54 // Otherwise:
55 //
56 // - Time: use `FromDeltaSinceWindowsEpoch()`/`ToDeltaSinceWindowsEpoch()`.
57 // - TimeDelta: use `base::Microseconds()`/`InMicroseconds()`.
58 //
59 // `TimeTicks` and `ThreadTicks` do not have a stable origin; serialization for
60 // the purpose of persistence is not supported.
61 
62 #ifndef BASE_TIME_TIME_H_
63 #define BASE_TIME_TIME_H_
64 
65 #include <stdint.h>
66 #include <time.h>
67 
68 #include <compare>
69 #include <concepts>
70 #include <iosfwd>
71 #include <limits>
72 #include <ostream>
73 #include <type_traits>
74 
75 #include "base/base_export.h"
76 #include "base/check.h"
77 #include "base/check_op.h"
78 #include "base/compiler_specific.h"
79 #include "base/numerics/clamped_math.h"
80 #include "build/build_config.h"
81 #include "build/chromeos_buildflags.h"
82 
83 #if BUILDFLAG(IS_FUCHSIA)
84 #include <zircon/types.h>
85 #endif
86 
87 #if BUILDFLAG(IS_APPLE)
88 #include <CoreFoundation/CoreFoundation.h>
89 #include <mach/mach_time.h>
90 // Avoid Mac system header macro leak.
91 #undef TYPE_BOOL
92 #endif
93 
94 #if BUILDFLAG(IS_ANDROID)
95 #include <jni.h>
96 #endif
97 
98 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
99 #include <unistd.h>
100 #include <sys/time.h>
101 #endif
102 
103 #if BUILDFLAG(IS_WIN)
104 #include "base/gtest_prod_util.h"
105 #include "base/win/windows_types.h"
106 
107 namespace ABI {
108 namespace Windows {
109 namespace Foundation {
110 struct DateTime;
111 struct TimeSpan;
112 }  // namespace Foundation
113 }  // namespace Windows
114 }  // namespace ABI
115 #endif
116 
117 namespace base {
118 
119 #if BUILDFLAG(IS_WIN)
120 class PlatformThreadHandle;
121 #endif
122 class TimeDelta;
123 
124 template <typename T>
125 constexpr TimeDelta Microseconds(T n);
126 
127 namespace {
128 
129 // TODO: Replace usage of this with std::isnan() once Chromium uses C++23,
130 // where that is constexpr.
isnan(double d)131 constexpr bool isnan(double d) {
132   return d != d;
133 }
134 
135 }
136 
137 // TimeDelta ------------------------------------------------------------------
138 
139 class BASE_EXPORT TimeDelta {
140  public:
141   constexpr TimeDelta() = default;
142 
143 #if BUILDFLAG(IS_WIN)
144   static TimeDelta FromQPCValue(LONGLONG qpc_value);
145   // TODO(crbug.com/989694): Avoid base::TimeDelta factory functions
146   // based on absolute time
147   static TimeDelta FromFileTime(FILETIME ft);
148   static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
149   static TimeDelta FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts);
150 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
151   static TimeDelta FromTimeSpec(const timespec& ts);
152 #endif
153 #if BUILDFLAG(IS_FUCHSIA)
154   static TimeDelta FromZxDuration(zx_duration_t nanos);
155 #endif
156 #if BUILDFLAG(IS_APPLE)
157   static TimeDelta FromMachTime(uint64_t mach_time);
158 #endif  // BUILDFLAG(IS_APPLE)
159 
160   // Converts an integer value representing TimeDelta to a class. This is used
161   // when deserializing a |TimeDelta| structure, using a value known to be
162   // compatible. It is not provided as a constructor because the integer type
163   // may be unclear from the perspective of a caller.
164   //
165   // DEPRECATED - Do not use in new code. http://crbug.com/634507
FromInternalValue(int64_t delta)166   static constexpr TimeDelta FromInternalValue(int64_t delta) {
167     return TimeDelta(delta);
168   }
169 
170   // Returns the maximum time delta, which should be greater than any reasonable
171   // time delta we might compare it to. If converted to double with ToDouble()
172   // it becomes an IEEE double infinity. Use FiniteMax() if you want a very
173   // large number that doesn't do this. TimeDelta math saturates at the end
174   // points so adding to TimeDelta::Max() leaves the value unchanged.
175   // Subtracting should leave the value unchanged but currently changes it
176   // TODO(https://crbug.com/869387).
177   static constexpr TimeDelta Max();
178 
179   // Returns the minimum time delta, which should be less than than any
180   // reasonable time delta we might compare it to. For more details see the
181   // comments for Max().
182   static constexpr TimeDelta Min();
183 
184   // Returns the maximum time delta which is not equivalent to infinity. Only
185   // subtracting a finite time delta from this time delta has a defined result.
186   static constexpr TimeDelta FiniteMax();
187 
188   // Returns the minimum time delta which is not equivalent to -infinity. Only
189   // adding a finite time delta to this time delta has a defined result.
190   static constexpr TimeDelta FiniteMin();
191 
192   // Returns the internal numeric value of the TimeDelta object. Please don't
193   // use this and do arithmetic on it, as it is more error prone than using the
194   // provided operators.
195   // For serializing, use FromInternalValue to reconstitute.
196   //
197   // DEPRECATED - Do not use in new code. http://crbug.com/634507
ToInternalValue()198   constexpr int64_t ToInternalValue() const { return delta_; }
199 
200   // Returns the magnitude (absolute value) of this TimeDelta.
magnitude()201   constexpr TimeDelta magnitude() const { return TimeDelta(delta_.Abs()); }
202 
203   // Returns true if the time delta is a zero, positive or negative time delta.
is_zero()204   constexpr bool is_zero() const { return delta_ == 0; }
is_positive()205   constexpr bool is_positive() const { return delta_ > 0; }
is_negative()206   constexpr bool is_negative() const { return delta_ < 0; }
207 
208   // Returns true if the time delta is the maximum/minimum time delta.
is_max()209   constexpr bool is_max() const { return *this == Max(); }
is_min()210   constexpr bool is_min() const { return *this == Min(); }
is_inf()211   constexpr bool is_inf() const { return is_min() || is_max(); }
212 
213 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
214   struct timespec ToTimeSpec() const;
215 #endif
216 #if BUILDFLAG(IS_FUCHSIA)
217   zx_duration_t ToZxDuration() const;
218 #endif
219 #if BUILDFLAG(IS_WIN)
220   ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
221   ABI::Windows::Foundation::TimeSpan ToWinrtTimeSpan() const;
222 #endif
223 
224   // Returns the frequency in Hertz (cycles per second) that has a period of
225   // *this.
226   constexpr double ToHz() const;
227 
228   // Returns the time delta in some unit. Minimum argument values return as
229   // -inf for doubles and min type values otherwise. Maximum ones are treated as
230   // +inf for doubles and max type values otherwise. Their results will produce
231   // an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
232   // point value. The InXYZ versions return a truncated value (aka rounded
233   // towards zero, std::trunc() behavior). The InXYZFloored() versions round to
234   // lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
235   // up to greater integers (std::ceil() behavior). WARNING: Floating point
236   // arithmetic is such that XXX(t.InXXXF()) may not precisely equal |t|.
237   // Hence, floating point values should not be used for storage.
238   constexpr int InDays() const;
239   constexpr int InDaysFloored() const;
240   constexpr int InHours() const;
241   constexpr int InMinutes() const;
242   constexpr double InSecondsF() const;
243   constexpr int64_t InSeconds() const;
244   constexpr int64_t InSecondsFloored() const;
245   constexpr double InMillisecondsF() const;
246   constexpr int64_t InMilliseconds() const;
247   constexpr int64_t InMillisecondsRoundedUp() const;
InMicroseconds()248   constexpr int64_t InMicroseconds() const { return delta_; }
249   constexpr double InMicrosecondsF() const;
250   constexpr int64_t InNanoseconds() const;
251 
252   // Computations with other deltas.
253   constexpr TimeDelta operator+(TimeDelta other) const;
254   constexpr TimeDelta operator-(TimeDelta other) const;
255 
256   constexpr TimeDelta& operator+=(TimeDelta other) {
257     return *this = (*this + other);
258   }
259   constexpr TimeDelta& operator-=(TimeDelta other) {
260     return *this = (*this - other);
261   }
262   constexpr TimeDelta operator-() const {
263     if (!is_inf())
264       return TimeDelta(-delta_);
265     return (delta_ < 0) ? Max() : Min();
266   }
267 
268   // Computations with numeric types.
269   template <typename T>
270   constexpr TimeDelta operator*(T a) const {
271     return TimeDelta(int64_t{delta_ * a});
272   }
273   template <typename T>
274   constexpr TimeDelta operator/(T a) const {
275     return TimeDelta(int64_t{delta_ / a});
276   }
277   template <typename T>
278   constexpr TimeDelta& operator*=(T a) {
279     return *this = (*this * a);
280   }
281   template <typename T>
282   constexpr TimeDelta& operator/=(T a) {
283     return *this = (*this / a);
284   }
285 
286   // This does floating-point division. For an integer result, either call
287   // IntDiv(), or (possibly clearer) use this operator with
288   // base::Clamp{Ceil,Floor,Round}() or base::saturated_cast() (for truncation).
289   // Note that converting to double here drops precision to 53 bits.
290   constexpr double operator/(TimeDelta a) const {
291     // 0/0 and inf/inf (any combination of positive and negative) are invalid
292     // (they are almost certainly not intentional, and result in NaN, which
293     // turns into 0 if clamped to an integer; this makes introducing subtle bugs
294     // too easy).
295     CHECK(!is_zero() || !a.is_zero());
296     CHECK(!is_inf() || !a.is_inf());
297 
298     return ToDouble() / a.ToDouble();
299   }
IntDiv(TimeDelta a)300   constexpr int64_t IntDiv(TimeDelta a) const {
301     if (!is_inf() && !a.is_zero())
302       return int64_t{delta_ / a.delta_};
303 
304     // For consistency, use the same edge case CHECKs and behavior as the code
305     // above.
306     CHECK(!is_zero() || !a.is_zero());
307     CHECK(!is_inf() || !a.is_inf());
308     return ((delta_ < 0) == (a.delta_ < 0))
309                ? std::numeric_limits<int64_t>::max()
310                : std::numeric_limits<int64_t>::min();
311   }
312 
313   constexpr TimeDelta operator%(TimeDelta a) const {
314     return TimeDelta(
315         (is_inf() || a.is_zero() || a.is_inf()) ? delta_ : (delta_ % a.delta_));
316   }
317   constexpr TimeDelta& operator%=(TimeDelta other) {
318     return *this = (*this % other);
319   }
320 
321   // Comparison operators.
322   friend constexpr bool operator==(TimeDelta, TimeDelta) = default;
323   friend constexpr std::strong_ordering operator<=>(TimeDelta,
324                                                     TimeDelta) = default;
325 
326   // Returns this delta, ceiled/floored/rounded-away-from-zero to the nearest
327   // multiple of |interval|.
328   TimeDelta CeilToMultiple(TimeDelta interval) const;
329   TimeDelta FloorToMultiple(TimeDelta interval) const;
330   TimeDelta RoundToMultiple(TimeDelta interval) const;
331 
332  private:
333   // Constructs a delta given the duration in microseconds. This is private
334   // to avoid confusion by callers with an integer constructor. Use
335   // base::Seconds, base::Milliseconds, etc. instead.
TimeDelta(int64_t delta_us)336   constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
TimeDelta(ClampedNumeric<int64_t> delta_us)337   constexpr explicit TimeDelta(ClampedNumeric<int64_t> delta_us)
338       : delta_(delta_us) {}
339 
340   // Returns a double representation of this TimeDelta's tick count.  In
341   // particular, Max()/Min() are converted to +/-infinity.
ToDouble()342   constexpr double ToDouble() const {
343     if (!is_inf())
344       return static_cast<double>(delta_);
345     return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
346                         : std::numeric_limits<double>::infinity();
347   }
348 
349   // Delta in microseconds.
350   ClampedNumeric<int64_t> delta_ = 0;
351 };
352 
353 constexpr TimeDelta TimeDelta::operator+(TimeDelta other) const {
354   if (!other.is_inf())
355     return TimeDelta(delta_ + other.delta_);
356 
357   // Additions involving two infinities are only valid if signs match.
358   CHECK(!is_inf() || (delta_ == other.delta_));
359   return other;
360 }
361 
362 constexpr TimeDelta TimeDelta::operator-(TimeDelta other) const {
363   if (!other.is_inf())
364     return TimeDelta(delta_ - other.delta_);
365 
366   // Subtractions involving two infinities are only valid if signs differ.
367   CHECK_NE(int64_t{delta_}, int64_t{other.delta_});
368   return (other.delta_ < 0) ? Max() : Min();
369 }
370 
371 template <typename T>
372 constexpr TimeDelta operator*(T a, TimeDelta td) {
373   return td * a;
374 }
375 
376 // For logging use only.
377 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
378 
379 // TimeBase--------------------------------------------------------------------
380 
381 // Do not reference the time_internal::TimeBase template class directly.  Please
382 // use one of the time subclasses instead, and only reference the public
383 // TimeBase members via those classes.
384 namespace time_internal {
385 
386 // Provides value storage and comparison/math operations common to all time
387 // classes. Each subclass provides for strong type-checking to ensure
388 // semantically meaningful comparison/math of time values from the same clock
389 // source or timeline.
390 template<class TimeClass>
391 class TimeBase {
392  public:
393   static constexpr int64_t kHoursPerDay = 24;
394   static constexpr int64_t kSecondsPerMinute = 60;
395   static constexpr int64_t kMinutesPerHour = 60;
396   static constexpr int64_t kSecondsPerHour =
397       kSecondsPerMinute * kMinutesPerHour;
398   static constexpr int64_t kMillisecondsPerSecond = 1000;
399   static constexpr int64_t kMillisecondsPerDay =
400       kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
401   static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
402   static constexpr int64_t kMicrosecondsPerSecond =
403       kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
404   static constexpr int64_t kMicrosecondsPerMinute =
405       kMicrosecondsPerSecond * kSecondsPerMinute;
406   static constexpr int64_t kMicrosecondsPerHour =
407       kMicrosecondsPerMinute * kMinutesPerHour;
408   static constexpr int64_t kMicrosecondsPerDay =
409       kMicrosecondsPerHour * kHoursPerDay;
410   static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
411   static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
412   static constexpr int64_t kNanosecondsPerSecond =
413       kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
414 
415   // TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
416   //
417   // Warning: Be careful when writing code that performs math on time values,
418   // since it's possible to produce a valid "zero" result that should not be
419   // interpreted as a "null" value. If you find yourself using this method or
420   // the zero-arg default constructor, please consider using an optional to
421   // express the null state.
422   //
423   // Returns true if this object has not been initialized (probably).
is_null()424   constexpr bool is_null() const { return us_ == 0; }
425 
426   // Returns true if this object represents the maximum/minimum time.
is_max()427   constexpr bool is_max() const { return *this == Max(); }
is_min()428   constexpr bool is_min() const { return *this == Min(); }
is_inf()429   constexpr bool is_inf() const { return is_min() || is_max(); }
430 
431   // Returns the maximum/minimum times, which should be greater/less than than
432   // any reasonable time with which we might compare it.
Max()433   static constexpr TimeClass Max() {
434     return TimeClass(std::numeric_limits<int64_t>::max());
435   }
436 
Min()437   static constexpr TimeClass Min() {
438     return TimeClass(std::numeric_limits<int64_t>::min());
439   }
440 
441   // For legacy serialization only. When serializing to `base::Value`, prefer
442   // the helpers from //base/json/values_util.h instead. Otherwise, use
443   // `Time::ToDeltaSinceWindowsEpoch()` for `Time` and
444   // `TimeDelta::InMicroseconds()` for `TimeDelta`. See http://crbug.com/634507.
ToInternalValue()445   constexpr int64_t ToInternalValue() const { return us_; }
446 
447   // The amount of time since the origin (or "zero") point. This is a syntactic
448   // convenience to aid in code readability, mainly for debugging/testing use
449   // cases.
450   //
451   // Warning: While the Time subclass has a fixed origin point, the origin for
452   // the other subclasses can vary each time the application is restarted.
453   constexpr TimeDelta since_origin() const;
454 
455   // Compute the difference between two times.
456 #if !defined(__aarch64__) && BUILDFLAG(IS_ANDROID)
457   NOINLINE  // https://crbug.com/1369775
458 #endif
459   constexpr TimeDelta operator-(const TimeBase<TimeClass>& other) const;
460 
461   // Return a new time modified by some delta.
462   constexpr TimeClass operator+(TimeDelta delta) const;
463   constexpr TimeClass operator-(TimeDelta delta) const;
464 
465   // Modify by some time delta.
466   constexpr TimeClass& operator+=(TimeDelta delta) {
467     return static_cast<TimeClass&>(*this = (*this + delta));
468   }
469   constexpr TimeClass& operator-=(TimeDelta delta) {
470     return static_cast<TimeClass&>(*this = (*this - delta));
471   }
472 
473   // Comparison operators
474   friend constexpr bool operator==(const TimeBase&, const TimeBase&) = default;
475   friend constexpr std::strong_ordering operator<=>(const TimeBase&,
476                                                     const TimeBase&) = default;
477 
478  protected:
TimeBase(int64_t us)479   constexpr explicit TimeBase(int64_t us) : us_(us) {}
480 
481   // Time value in a microsecond timebase.
482   ClampedNumeric<int64_t> us_;
483 };
484 
485 #if BUILDFLAG(IS_WIN)
486 #if defined(ARCH_CPU_ARM64)
487 // TSCTicksPerSecond is not supported on Windows on Arm systems because the
488 // cycle-counting methods use the actual CPU cycle count, and not a consistent
489 // incrementing counter.
490 #else
491 // Returns true if the CPU support constant rate TSC.
492 [[nodiscard]] BASE_EXPORT bool HasConstantRateTSC();
493 
494 // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
495 // been measured yet. Needs to be guarded with a call to HasConstantRateTSC().
496 [[nodiscard]] BASE_EXPORT double TSCTicksPerSecond();
497 #endif
498 #endif  // BUILDFLAG(IS_WIN)
499 
500 }  // namespace time_internal
501 
502 template <class TimeClass>
503 inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
504   return t + delta;
505 }
506 
507 // Time -----------------------------------------------------------------------
508 
509 // Represents a wall clock time in UTC. Values are not guaranteed to be
510 // monotonically non-decreasing and are subject to large amounts of skew.
511 // Time is stored internally as microseconds since the Windows epoch (1601).
512 class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
513  public:
514   // Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
515   // (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
516   // following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
517   // of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
518   // 1800, and 1900.
519   static constexpr int64_t kTimeTToMicrosecondsOffset =
520       INT64_C(11644473600000000);
521 
522 #if BUILDFLAG(IS_WIN)
523   // To avoid overflow in QPC to Microseconds calculations, since we multiply
524   // by kMicrosecondsPerSecond, then the QPC value should not exceed
525   // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
526   static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
527 #endif
528 
529 // kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
530 // for values passed to FromUTCExploded() and FromLocalExploded(). Those
531 // functions will return false if passed values outside these limits. The limits
532 // are inclusive, meaning that the API should support all dates within a given
533 // limit year.
534 //
535 // WARNING: These are not the same limits for the inverse functionality,
536 // UTCExplode() and LocalExplode(). See method comments for further details.
537 #if BUILDFLAG(IS_WIN)
538   static constexpr int kExplodedMinYear = 1601;
539   static constexpr int kExplodedMaxYear = 30827;
540 #elif BUILDFLAG(IS_IOS) && !__LP64__
541   static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
542   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
543 #elif BUILDFLAG(IS_APPLE)
544   static constexpr int kExplodedMinYear = 1902;
545   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
546 #elif BUILDFLAG(IS_ANDROID)
547   // Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
548   // versions like KitKat (ARM but not x86 emulator) can't handle some early
549   // dates (e.g. before 1170). So we set min conservatively here.
550   static constexpr int kExplodedMinYear = 1902;
551   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
552 #else
553   static constexpr int kExplodedMinYear =
554       (sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
555   static constexpr int kExplodedMaxYear =
556       (sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
557 #endif
558 
559   // Represents an exploded time. This is kind of like the Win32 SYSTEMTIME
560   // structure or the Unix "struct tm" with a few additions and changes to
561   // prevent errors.
562   //
563   // This structure always represents dates in the Gregorian calendar and always
564   // encodes day_of_week as Sunday==0, Monday==1, .., Saturday==6. This means
565   // that base::Time::LocalExplode and base::Time::FromLocalExploded only
566   // respect the current local time zone in the conversion and do *not* use a
567   // calendar or day-of-week encoding from the current locale.
568   //
569   // NOTE: Generally, you should prefer the functions in
570   // base/i18n/time_formatting.h (in particular,
571   // `UnlocalizedTimeFormatWithPattern()`) over trying to create a formatted
572   // time string from this object.
573   struct BASE_EXPORT Exploded {
574     int year;          // Four digit year "2007"
575     int month;         // 1-based month (values 1 = January, etc.)
576     int day_of_week;   // 0-based day of week (0 = Sunday, etc.)
577     int day_of_month;  // 1-based day of month (1-31)
578     int hour;          // Hour within the current day (0-23)
579     int minute;        // Minute within the current hour (0-59)
580     int second;        // Second within the current minute (0-59 plus leap
581                        //   seconds which may take it up to 60).
582     int millisecond;   // Milliseconds within the current second (0-999)
583 
584     // A cursory test for whether the data members are within their
585     // respective ranges. A 'true' return value does not guarantee the
586     // Exploded value can be successfully converted to a Time value.
587     bool HasValidValues() const;
588   };
589 
590   // TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
591   //
592   // Warning: Be careful when writing code that performs math on time values,
593   // since it's possible to produce a valid "zero" result that should not be
594   // interpreted as a "null" value. If you find yourself using this constructor
595   // or the is_null() method, please consider using an optional to express the
596   // null state.
597   //
598   // Contains the NULL time. Use Time::Now() to get the current time.
Time()599   constexpr Time() : TimeBase(0) {}
600 
601   // Returns the time for epoch in Unix-like system (Jan 1, 1970).
UnixEpoch()602   static constexpr Time UnixEpoch() { return Time(kTimeTToMicrosecondsOffset); }
603 
604   // Returns the current time. Watch out, the system might adjust its clock
605   // in which case time will actually go backwards. We don't guarantee that
606   // times are increasing, or that two calls to Now() won't be the same.
607   static Time Now();
608 
609   // Returns the current time. Same as Now() except that this function always
610   // uses system time so that there are no discrepancies between the returned
611   // time and system time even on virtual environments including our test bot.
612   // For timing sensitive unittests, this function should be used.
613   static Time NowFromSystemTime();
614 
615   // Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
616   // 00:00:00 UTC).
617   //
618   // For serialization, when handling `base::Value`, prefer the helpers in
619   // //base/json/values_util.h instead. Otherwise, use these methods for
620   // opaque serialization and deserialization, e.g.
621   //
622   //   // Serialization:
623   //   base::Time last_updated = ...;
624   //   SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
625   //
626   //   // Deserialization:
627   //   base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
628   //       base::Microseconds(LoadFromDatabase()));
629   //
630   // Do not use `FromInternalValue()` or `ToInternalValue()` for this purpose.
FromDeltaSinceWindowsEpoch(TimeDelta delta)631   static constexpr Time FromDeltaSinceWindowsEpoch(TimeDelta delta) {
632     return Time(delta.InMicroseconds());
633   }
634 
ToDeltaSinceWindowsEpoch()635   constexpr TimeDelta ToDeltaSinceWindowsEpoch() const {
636     return Microseconds(us_);
637   }
638 
639   // Converts to/from time_t in UTC and a Time class.
640   static constexpr Time FromTimeT(time_t tt);
641   constexpr time_t ToTimeT() const;
642 
643   // Converts time to/from a number of seconds since the Unix epoch (Jan 1,
644   // 1970).
645   //
646   // TODO(crbug.com/1495550): Add integral versions and use them.
647   // TODO(crbug.com/1495554): Add ...PreservingNull() versions; see comments in
648   // the implementation of FromSecondsSinceUnixEpoch().
649   static constexpr Time FromSecondsSinceUnixEpoch(double dt);
650   constexpr double InSecondsFSinceUnixEpoch() const;
651 
652 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
653   // Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
654   // earlier versions) will have the |ts|'s tv_nsec component zeroed out,
655   // having a 1 second resolution, which agrees with
656   // https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
657   static constexpr Time FromTimeSpec(const timespec& ts);
658 #endif
659 
660   // Converts to/from a number of milliseconds since the Unix epoch.
661   // TODO(crbug.com/1495554): Add ...PreservingNull() versions; see comments in
662   // the implementation of FromMillisecondsSinceUnixEpoch().
663   static constexpr Time FromMillisecondsSinceUnixEpoch(int64_t dt);
664   static constexpr Time FromMillisecondsSinceUnixEpoch(double dt);
665   // Explicitly forward calls with smaller integral types to the int64_t
666   // version; otherwise such calls would need to manually cast their args to
667   // int64_t, since the compiler isn't sure whether to promote to int64_t or
668   // double.
669   template <typename T>
670     requires(std::integral<T> && !std::same_as<T, int64_t> &&
671              (sizeof(T) < sizeof(int64_t) ||
672               (sizeof(T) == sizeof(int64_t) && std::is_signed_v<T>)))
FromMillisecondsSinceUnixEpoch(T ms_since_epoch)673   static constexpr Time FromMillisecondsSinceUnixEpoch(T ms_since_epoch) {
674     return FromMillisecondsSinceUnixEpoch(int64_t{ms_since_epoch});
675   }
676   constexpr int64_t InMillisecondsSinceUnixEpoch() const;
677   // Don't use InMillisecondsFSinceUnixEpoch() in new code, since it contains a
678   // subtle hack (only exactly 1601-01-01 00:00 UTC is represented as 1970-01-01
679   // 00:00 UTC), and that is not appropriate for general use. Try to use
680   // InMillisecondsFSinceUnixEpochIgnoringNull() unless you have a very good
681   // reason to use InMillisecondsFSinceUnixEpoch().
682   //
683   // TODO(crbug.com/1495554): Rename the no-suffix version to
684   // "...PreservingNull()" and remove the suffix from the other version, to
685   // guide people to the preferable API.
686   constexpr double InMillisecondsFSinceUnixEpoch() const;
687   constexpr double InMillisecondsFSinceUnixEpochIgnoringNull() const;
688 
689 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
690   static Time FromTimeVal(struct timeval t);
691   struct timeval ToTimeVal() const;
692 #endif
693 
694 #if BUILDFLAG(IS_FUCHSIA)
695   static Time FromZxTime(zx_time_t time);
696   zx_time_t ToZxTime() const;
697 #endif
698 
699 #if BUILDFLAG(IS_APPLE)
700   static Time FromCFAbsoluteTime(CFAbsoluteTime t);
701   CFAbsoluteTime ToCFAbsoluteTime() const;
702 #if defined(__OBJC__)
703   static Time FromNSDate(NSDate* date);
704   NSDate* ToNSDate() const;
705 #endif
706 #endif
707 
708 #if BUILDFLAG(IS_WIN)
709   static Time FromFileTime(FILETIME ft);
710   FILETIME ToFileTime() const;
711 
712   // The minimum time of a low resolution timer.  This is basically a windows
713   // constant of ~15.6ms.  While it does vary on some older OS versions, we'll
714   // treat it as static across all windows versions.
715   static const int kMinLowResolutionThresholdMs = 16;
716 
717   // Enable or disable Windows high resolution timer.
718   static void EnableHighResolutionTimer(bool enable);
719 
720   // Activates or deactivates the high resolution timer based on the |activate|
721   // flag.  If the HighResolutionTimer is not Enabled (see
722   // EnableHighResolutionTimer), this function will return false.  Otherwise
723   // returns true.  Each successful activate call must be paired with a
724   // subsequent deactivate call.
725   // All callers to activate the high resolution timer must eventually call
726   // this function to deactivate the high resolution timer.
727   static bool ActivateHighResolutionTimer(bool activate);
728 
729   // Returns true if the high resolution timer is both enabled and activated.
730   // This is provided for testing only, and is not tracked in a thread-safe
731   // way.
732   static bool IsHighResolutionTimerInUse();
733 
734   // The following two functions are used to report the fraction of elapsed time
735   // that the high resolution timer is activated.
736   // ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
737   // measurement interval and GetHighResolutionTimerUsage() returns the
738   // percentage of time since the reset that the high resolution timer was
739   // activated.
740   // ResetHighResolutionTimerUsage() must be called at least once before calling
741   // GetHighResolutionTimerUsage(); otherwise the usage result would be
742   // undefined.
743   static void ResetHighResolutionTimerUsage();
744   static double GetHighResolutionTimerUsage();
745 #endif  // BUILDFLAG(IS_WIN)
746 
747   // Converts an exploded structure representing either the local time or UTC
748   // into a Time class. Returns false on a failure when, for example, a day of
749   // month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
750   // FromLocalExploded respects the current time zone but does not attempt to
751   // use the calendar or day-of-week encoding from the current locale - see the
752   // comments on Exploded for more information.
FromUTCExploded(const Exploded & exploded,Time * time)753   [[nodiscard]] static bool FromUTCExploded(const Exploded& exploded,
754                                             Time* time) {
755     return FromExploded(false, exploded, time);
756   }
FromLocalExploded(const Exploded & exploded,Time * time)757   [[nodiscard]] static bool FromLocalExploded(const Exploded& exploded,
758                                               Time* time) {
759     return FromExploded(true, exploded, time);
760   }
761 
762   // Converts a string representation of time to a Time object.
763   // An example of a time string which is converted is as below:-
764   // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
765   // in the input string, FromString assumes local time and FromUTCString
766   // assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
767   // specified in RFC822) is treated as if the timezone is not specified.
768   //
769   // WARNING: the underlying converter is very permissive. For example: it is
770   // not checked whether a given day of the week matches the date; Feb 29
771   // silently becomes Mar 1 in non-leap years; under certain conditions, whole
772   // English sentences may be parsed successfully and yield unexpected results.
773   //
774   // TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
775   // a new time converter class.
FromString(const char * time_string,Time * parsed_time)776   [[nodiscard]] static bool FromString(const char* time_string,
777                                        Time* parsed_time) {
778     return FromStringInternal(time_string, true, parsed_time);
779   }
FromUTCString(const char * time_string,Time * parsed_time)780   [[nodiscard]] static bool FromUTCString(const char* time_string,
781                                           Time* parsed_time) {
782     return FromStringInternal(time_string, false, parsed_time);
783   }
784 
785   // Fills the given |exploded| structure with either the local time or UTC from
786   // this Time instance. If the conversion cannot be made, the output will be
787   // assigned invalid values. Use Exploded::HasValidValues() to confirm a
788   // successful conversion.
789   //
790   // Y10K compliance: This method will successfully convert all Times that
791   // represent dates on/after the start of the year 1601 and on/before the start
792   // of the year 30828. Some platforms might convert over a wider input range.
793   // LocalExplode respects the current time zone but does not attempt to use the
794   // calendar or day-of-week encoding from the current locale - see the comments
795   // on Exploded for more information.
UTCExplode(Exploded * exploded)796   void UTCExplode(Exploded* exploded) const { Explode(false, exploded); }
LocalExplode(Exploded * exploded)797   void LocalExplode(Exploded* exploded) const { Explode(true, exploded); }
798 
799   // The following two functions round down the time to the nearest day in
800   // either UTC or local time. It will represent midnight on that day.
UTCMidnight()801   Time UTCMidnight() const { return Midnight(false); }
LocalMidnight()802   Time LocalMidnight() const { return Midnight(true); }
803 
804   // For legacy deserialization only. Converts an integer value representing
805   // Time to a class. This may be used when deserializing a |Time| structure,
806   // using a value known to be compatible. It is not provided as a constructor
807   // because the integer type may be unclear from the perspective of a caller.
808   //
809   // DEPRECATED - Do not use in new code. When deserializing from `base::Value`,
810   // prefer the helpers from //base/json/values_util.h instead.
811   // Otherwise, use `Time::FromDeltaSinceWindowsEpoch()` for `Time` and
812   // `Microseconds()` for `TimeDelta`. http://crbug.com/634507
FromInternalValue(int64_t us)813   static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
814 
815  private:
816   friend class time_internal::TimeBase<Time>;
817 
Time(int64_t microseconds_since_win_epoch)818   constexpr explicit Time(int64_t microseconds_since_win_epoch)
819       : TimeBase(microseconds_since_win_epoch) {}
820 
821   // Explodes the given time to either local time |is_local = true| or UTC
822   // |is_local = false|.
823   void Explode(bool is_local, Exploded* exploded) const;
824 
825   // Unexplodes a given time assuming the source is either local time
826   // |is_local = true| or UTC |is_local = false|. Function returns false on
827   // failure and sets |time| to Time(0). Otherwise returns true and sets |time|
828   // to non-exploded time.
829   [[nodiscard]] static bool FromExploded(bool is_local,
830                                          const Exploded& exploded,
831                                          Time* time);
832 
833   // Some platforms use the ICU library to provide To/FromExploded, when their
834   // native library implementations are insufficient in some way.
835   static void ExplodeUsingIcu(int64_t millis_since_unix_epoch,
836                               bool is_local,
837                               Exploded* exploded);
838   [[nodiscard]] static bool FromExplodedUsingIcu(
839       bool is_local,
840       const Exploded& exploded,
841       int64_t* millis_since_unix_epoch);
842 
843   // Rounds down the time to the nearest day in either local time
844   // |is_local = true| or UTC |is_local = false|.
845   Time Midnight(bool is_local) const;
846 
847   // Converts a string representation of time to a Time object.
848   // An example of a time string which is converted is as below:-
849   // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
850   // in the input string, local time |is_local = true| or
851   // UTC |is_local = false| is assumed. A timezone that cannot be parsed
852   // (e.g. "UTC" which is not specified in RFC822) is treated as if the
853   // timezone is not specified.
854   [[nodiscard]] static bool FromStringInternal(const char* time_string,
855                                                bool is_local,
856                                                Time* parsed_time);
857 
858   // Comparison does not consider |day_of_week| when doing the operation.
859   [[nodiscard]] static bool ExplodedMostlyEquals(const Exploded& lhs,
860                                                  const Exploded& rhs);
861 
862   // Converts the provided time in milliseconds since the Unix epoch (1970) to a
863   // Time object, avoiding overflows.
864   [[nodiscard]] static bool FromMillisecondsSinceUnixEpoch(
865       int64_t unix_milliseconds,
866       Time* time);
867 
868   // Returns the milliseconds since the Unix epoch (1970), rounding the
869   // microseconds towards -infinity.
870   int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
871 };
872 
873 // Factory methods that return a TimeDelta of the given unit.
874 // WARNING: Floating point arithmetic is such that XXX(t.InXXXF()) may not
875 // precisely equal |t|. Hence, floating point values should not be used for
876 // storage.
877 
878 template <typename T>
Days(T n)879 constexpr TimeDelta Days(T n) {
880   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
881                                       Time::kMicrosecondsPerDay);
882 }
883 template <typename T>
Hours(T n)884 constexpr TimeDelta Hours(T n) {
885   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
886                                       Time::kMicrosecondsPerHour);
887 }
888 template <typename T>
Minutes(T n)889 constexpr TimeDelta Minutes(T n) {
890   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
891                                       Time::kMicrosecondsPerMinute);
892 }
893 template <typename T>
Seconds(T n)894 constexpr TimeDelta Seconds(T n) {
895   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
896                                       Time::kMicrosecondsPerSecond);
897 }
898 template <typename T>
Milliseconds(T n)899 constexpr TimeDelta Milliseconds(T n) {
900   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
901                                       Time::kMicrosecondsPerMillisecond);
902 }
903 template <typename T>
Microseconds(T n)904 constexpr TimeDelta Microseconds(T n) {
905   return TimeDelta::FromInternalValue(MakeClampedNum(n));
906 }
907 template <typename T>
Nanoseconds(T n)908 constexpr TimeDelta Nanoseconds(T n) {
909   return TimeDelta::FromInternalValue(MakeClampedNum(n) /
910                                       Time::kNanosecondsPerMicrosecond);
911 }
912 template <typename T>
Hertz(T n)913 constexpr TimeDelta Hertz(T n) {
914   return n ? TimeDelta::FromInternalValue(Time::kMicrosecondsPerSecond /
915                                           MakeClampedNum(n))
916            : TimeDelta::Max();
917 }
918 
919 // TimeDelta functions that must appear below the declarations of Time/TimeDelta
920 
ToHz()921 constexpr double TimeDelta::ToHz() const {
922   return Seconds(1) / *this;
923 }
924 
InDays()925 constexpr int TimeDelta::InDays() const {
926   if (!is_inf()) {
927     return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
928   }
929   return (delta_ < 0) ? std::numeric_limits<int>::min()
930                       : std::numeric_limits<int>::max();
931 }
932 
InDaysFloored()933 constexpr int TimeDelta::InDaysFloored() const {
934   if (!is_inf()) {
935     const int result = delta_ / Time::kMicrosecondsPerDay;
936     // Convert |result| from truncating to flooring.
937     return (result * Time::kMicrosecondsPerDay > delta_) ? (result - 1)
938                                                          : result;
939   }
940   return (delta_ < 0) ? std::numeric_limits<int>::min()
941                       : std::numeric_limits<int>::max();
942 }
943 
InHours()944 constexpr int TimeDelta::InHours() const {
945   // saturated_cast<> is necessary since very large (but still less than
946   // min/max) deltas would result in overflow.
947   return saturated_cast<int>(delta_ / Time::kMicrosecondsPerHour);
948 }
949 
InMinutes()950 constexpr int TimeDelta::InMinutes() const {
951   // saturated_cast<> is necessary since very large (but still less than
952   // min/max) deltas would result in overflow.
953   return saturated_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
954 }
955 
InSecondsF()956 constexpr double TimeDelta::InSecondsF() const {
957   if (!is_inf())
958     return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
959   return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
960                       : std::numeric_limits<double>::infinity();
961 }
962 
InSeconds()963 constexpr int64_t TimeDelta::InSeconds() const {
964   return is_inf() ? delta_ : (delta_ / Time::kMicrosecondsPerSecond);
965 }
966 
InSecondsFloored()967 constexpr int64_t TimeDelta::InSecondsFloored() const {
968   if (!is_inf()) {
969     const int64_t result = delta_ / Time::kMicrosecondsPerSecond;
970     // Convert |result| from truncating to flooring.
971     return (result * Time::kMicrosecondsPerSecond > delta_) ? (result - 1)
972                                                             : result;
973   }
974   return delta_;
975 }
976 
InMillisecondsF()977 constexpr double TimeDelta::InMillisecondsF() const {
978   if (!is_inf()) {
979     return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
980   }
981   return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
982                       : std::numeric_limits<double>::infinity();
983 }
984 
InMilliseconds()985 constexpr int64_t TimeDelta::InMilliseconds() const {
986   if (!is_inf()) {
987     return delta_ / Time::kMicrosecondsPerMillisecond;
988   }
989   return (delta_ < 0) ? std::numeric_limits<int64_t>::min()
990                       : std::numeric_limits<int64_t>::max();
991 }
992 
InMillisecondsRoundedUp()993 constexpr int64_t TimeDelta::InMillisecondsRoundedUp() const {
994   if (!is_inf()) {
995     const int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
996     // Convert |result| from truncating to ceiling.
997     return (delta_ > result * Time::kMicrosecondsPerMillisecond) ? (result + 1)
998                                                                  : result;
999   }
1000   return delta_;
1001 }
1002 
InMicrosecondsF()1003 constexpr double TimeDelta::InMicrosecondsF() const {
1004   if (!is_inf()) {
1005     return static_cast<double>(delta_);
1006   }
1007   return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
1008                       : std::numeric_limits<double>::infinity();
1009 }
1010 
InNanoseconds()1011 constexpr int64_t TimeDelta::InNanoseconds() const {
1012   return base::ClampMul(delta_, Time::kNanosecondsPerMicrosecond);
1013 }
1014 
1015 // static
Max()1016 constexpr TimeDelta TimeDelta::Max() {
1017   return TimeDelta(std::numeric_limits<int64_t>::max());
1018 }
1019 
1020 // static
Min()1021 constexpr TimeDelta TimeDelta::Min() {
1022   return TimeDelta(std::numeric_limits<int64_t>::min());
1023 }
1024 
1025 // static
FiniteMax()1026 constexpr TimeDelta TimeDelta::FiniteMax() {
1027   return TimeDelta(std::numeric_limits<int64_t>::max() - 1);
1028 }
1029 
1030 // static
FiniteMin()1031 constexpr TimeDelta TimeDelta::FiniteMin() {
1032   return TimeDelta(std::numeric_limits<int64_t>::min() + 1);
1033 }
1034 
1035 // TimeBase functions that must appear below the declarations of Time/TimeDelta
1036 namespace time_internal {
1037 
1038 template <class TimeClass>
since_origin()1039 constexpr TimeDelta TimeBase<TimeClass>::since_origin() const {
1040   return Microseconds(us_);
1041 }
1042 
1043 template <class TimeClass>
1044 constexpr TimeDelta TimeBase<TimeClass>::operator-(
1045     const TimeBase<TimeClass>& other) const {
1046   return Microseconds(us_ - other.us_);
1047 }
1048 
1049 template <class TimeClass>
1050 constexpr TimeClass TimeBase<TimeClass>::operator+(TimeDelta delta) const {
1051   return TimeClass((Microseconds(us_) + delta).InMicroseconds());
1052 }
1053 
1054 template <class TimeClass>
1055 constexpr TimeClass TimeBase<TimeClass>::operator-(TimeDelta delta) const {
1056   return TimeClass((Microseconds(us_) - delta).InMicroseconds());
1057 }
1058 
1059 }  // namespace time_internal
1060 
1061 // Time functions that must appear below the declarations of Time/TimeDelta
1062 
1063 // static
FromTimeT(time_t tt)1064 constexpr Time Time::FromTimeT(time_t tt) {
1065   if (tt == 0)
1066     return Time();  // Preserve 0 so we can tell it doesn't exist.
1067   return (tt == std::numeric_limits<time_t>::max())
1068              ? Max()
1069              : (UnixEpoch() + Seconds(tt));
1070 }
1071 
ToTimeT()1072 constexpr time_t Time::ToTimeT() const {
1073   if (is_null()) {
1074     return 0;  // Preserve 0 so we can tell it doesn't exist.
1075   }
1076   if (!is_inf()) {
1077     return saturated_cast<time_t>((*this - UnixEpoch()).InSecondsFloored());
1078   }
1079   return (us_ < 0) ? std::numeric_limits<time_t>::min()
1080                    : std::numeric_limits<time_t>::max();
1081 }
1082 
1083 // static
FromSecondsSinceUnixEpoch(double dt)1084 constexpr Time Time::FromSecondsSinceUnixEpoch(double dt) {
1085   // Preserve 0.
1086   //
1087   // TODO(crbug.com/1495554): This is an unfortunate artifact of WebKit using 0
1088   // to mean "no time". Add a "...PreservingNull()" version that does this,
1089   // convert the minimum necessary set of callers to use it, and remove the zero
1090   // check here.
1091   return (dt == 0 || isnan(dt)) ? Time() : (UnixEpoch() + Seconds(dt));
1092 }
1093 
InSecondsFSinceUnixEpoch()1094 constexpr double Time::InSecondsFSinceUnixEpoch() const {
1095   // Preserve 0.
1096   if (is_null()) {
1097     return 0;
1098   }
1099   if (!is_inf()) {
1100     return (*this - UnixEpoch()).InSecondsF();
1101   }
1102   return (us_ < 0) ? -std::numeric_limits<double>::infinity()
1103                    : std::numeric_limits<double>::infinity();
1104 }
1105 
1106 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
1107 // static
FromTimeSpec(const timespec & ts)1108 constexpr Time Time::FromTimeSpec(const timespec& ts) {
1109   return FromSecondsSinceUnixEpoch(ts.tv_sec + static_cast<double>(ts.tv_nsec) /
1110                                                    kNanosecondsPerSecond);
1111 }
1112 #endif
1113 
1114 // static
FromMillisecondsSinceUnixEpoch(int64_t dt)1115 constexpr Time Time::FromMillisecondsSinceUnixEpoch(int64_t dt) {
1116   // TODO(crbug.com/1495554): The lack of zero-preservation here doesn't match
1117   // InMillisecondsSinceUnixEpoch(), which is dangerous since it means
1118   // round-trips are not necessarily idempotent. Add "...PreservingNull()"
1119   // versions that explicitly check for zeros, convert the minimum necessary set
1120   // of callers to use them, and remove the null-check in
1121   // InMillisecondsSinceUnixEpoch().
1122   return UnixEpoch() + Milliseconds(dt);
1123 }
1124 
1125 // static
FromMillisecondsSinceUnixEpoch(double dt)1126 constexpr Time Time::FromMillisecondsSinceUnixEpoch(double dt) {
1127   return isnan(dt) ? Time() : (UnixEpoch() + Milliseconds(dt));
1128 }
1129 
InMillisecondsSinceUnixEpoch()1130 constexpr int64_t Time::InMillisecondsSinceUnixEpoch() const {
1131   // Preserve 0.
1132   if (is_null()) {
1133     return 0;
1134   }
1135   if (!is_inf()) {
1136     return (*this - UnixEpoch()).InMilliseconds();
1137   }
1138   return (us_ < 0) ? std::numeric_limits<int64_t>::min()
1139                    : std::numeric_limits<int64_t>::max();
1140 }
1141 
InMillisecondsFSinceUnixEpoch()1142 constexpr double Time::InMillisecondsFSinceUnixEpoch() const {
1143   // Preserve 0.
1144   return is_null() ? 0 : InMillisecondsFSinceUnixEpochIgnoringNull();
1145 }
1146 
InMillisecondsFSinceUnixEpochIgnoringNull()1147 constexpr double Time::InMillisecondsFSinceUnixEpochIgnoringNull() const {
1148   // Preserve max and min without offset to prevent over/underflow.
1149   if (!is_inf()) {
1150     return (*this - UnixEpoch()).InMillisecondsF();
1151   }
1152   return (us_ < 0) ? -std::numeric_limits<double>::infinity()
1153                    : std::numeric_limits<double>::infinity();
1154 }
1155 
1156 // For logging use only.
1157 BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
1158 
1159 // TimeTicks ------------------------------------------------------------------
1160 
1161 // Represents monotonically non-decreasing clock time.
1162 class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
1163  public:
1164   // The underlying clock used to generate new TimeTicks.
1165   enum class Clock {
1166     FUCHSIA_ZX_CLOCK_MONOTONIC,
1167     LINUX_CLOCK_MONOTONIC,
1168     IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
1169     MAC_MACH_ABSOLUTE_TIME,
1170     WIN_QPC,
1171     WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
1172   };
1173 
TimeTicks()1174   constexpr TimeTicks() : TimeBase(0) {}
1175 
1176   // Platform-dependent tick count representing "right now." When
1177   // IsHighResolution() returns false, the resolution of the clock could be
1178   // as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
1179   // microsecond.
1180   static TimeTicks Now();
1181 
1182   // Returns true if the high resolution clock is working on this system and
1183   // Now() will return high resolution values. Note that, on systems where the
1184   // high resolution clock works but is deemed inefficient, the low resolution
1185   // clock will be used instead.
1186   [[nodiscard]] static bool IsHighResolution();
1187 
1188   // Returns true if TimeTicks is consistent across processes, meaning that
1189   // timestamps taken on different processes can be safely compared with one
1190   // another. (Note that, even on platforms where this returns true, time values
1191   // from different threads that are within one tick of each other must be
1192   // considered to have an ambiguous ordering.)
1193   [[nodiscard]] static bool IsConsistentAcrossProcesses();
1194 
1195 #if BUILDFLAG(IS_FUCHSIA)
1196   // Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
1197   static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
1198   zx_time_t ToZxTime() const;
1199 #endif
1200 
1201 #if BUILDFLAG(IS_WIN)
1202   // Translates an absolute QPC timestamp into a TimeTicks value. The returned
1203   // value has the same origin as Now(). Do NOT attempt to use this if
1204   // IsHighResolution() returns false.
1205   static TimeTicks FromQPCValue(LONGLONG qpc_value);
1206 #endif
1207 
1208 #if BUILDFLAG(IS_APPLE)
1209   static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
1210 
1211   // Sets the current Mach timebase to `timebase`. Returns the old timebase.
1212   static mach_timebase_info_data_t SetMachTimebaseInfoForTesting(
1213       mach_timebase_info_data_t timebase);
1214 
1215 #endif  // BUILDFLAG(IS_APPLE)
1216 
1217 #if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS)
1218   // Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
1219   // Note: this conversion may be non-monotonic in relation to previously
1220   // obtained TimeTicks::Now() values because of the truncation (to
1221   // milliseconds) performed by uptimeMillis().
1222   static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
1223 
1224 #endif  // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
1225 
1226 #if BUILDFLAG(IS_ANDROID)
1227   // Converts to TimeTicks the value obtained from System.nanoTime(). This
1228   // conversion will be monotonic in relation to previously obtained
1229   // TimeTicks::Now() values as the clocks are based on the same posix monotonic
1230   // clock, with nanoTime() potentially providing higher resolution.
1231   static TimeTicks FromJavaNanoTime(int64_t nano_time_value);
1232 
1233   // Truncates the TimeTicks value to the precision of SystemClock#uptimeMillis.
1234   // Note that the clocks already share the same monotonic clock source.
1235   jlong ToUptimeMillis() const;
1236 
1237   // Returns the TimeTicks value as microseconds in the timebase of
1238   // SystemClock#uptimeMillis.
1239   // Note that the clocks already share the same monotonic clock source.
1240   //
1241   // System.nanoTime() may be used to get sub-millisecond precision in Java code
1242   // and may be compared against this value as the two share the same clock
1243   // source (though be sure to convert nanos to micros).
1244   jlong ToUptimeMicros() const;
1245 
1246 #endif  // BUILDFLAG(IS_ANDROID)
1247 
1248   // Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
1249   // Time and TimeTicks respond differently to user-set time and NTP
1250   // adjustments, this number is only an estimate. Nevertheless, this can be
1251   // useful when you need to relate the value of TimeTicks to a real time and
1252   // date. Note: Upon first invocation, this function takes a snapshot of the
1253   // realtime clock to establish a reference point.  This function will return
1254   // the same value for the duration of the application, but will be different
1255   // in future application runs.
1256   static TimeTicks UnixEpoch();
1257 
1258   static void SetSharedUnixEpoch(TimeTicks);
1259 
1260   // Returns |this| snapped to the next tick, given a |tick_phase| and
1261   // repeating |tick_interval| in both directions. |this| may be before,
1262   // after, or equal to the |tick_phase|.
1263   TimeTicks SnappedToNextTick(TimeTicks tick_phase,
1264                               TimeDelta tick_interval) const;
1265 
1266   // Returns an enum indicating the underlying clock being used to generate
1267   // TimeTicks timestamps. This function should only be used for debugging and
1268   // logging purposes.
1269   static Clock GetClock();
1270 
1271   // Converts an integer value representing TimeTicks to a class. This may be
1272   // used when deserializing a |TimeTicks| structure, using a value known to be
1273   // compatible. It is not provided as a constructor because the integer type
1274   // may be unclear from the perspective of a caller.
1275   //
1276   // DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
1277   // prefer TimeTicks + TimeDelta(); however, be aware that the origin is not
1278   // fixed and may vary. Serializing for persistence is strongly discouraged.
1279   // http://crbug.com/634507
FromInternalValue(int64_t us)1280   static constexpr TimeTicks FromInternalValue(int64_t us) {
1281     return TimeTicks(us);
1282   }
1283 
1284  protected:
1285 #if BUILDFLAG(IS_WIN)
1286   typedef DWORD (*TickFunctionType)(void);
1287   static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
1288 #endif
1289 
1290  private:
1291   friend class time_internal::TimeBase<TimeTicks>;
1292 
1293   // Please use Now() to create a new object. This is for internal use
1294   // and testing.
TimeTicks(int64_t us)1295   constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
1296 };
1297 
1298 // For logging use only.
1299 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
1300 
1301 // LiveTicks ------------------------------------------------------------------
1302 
1303 // Behaves similarly to `TimeTicks` (a monotonically non-decreasing clock time)
1304 // with the main difference being that `LiveTicks` is guaranteed not to advance
1305 // while the system is suspended.
1306 class BASE_EXPORT LiveTicks : public time_internal::TimeBase<LiveTicks> {
1307  public:
LiveTicks()1308   constexpr LiveTicks() : TimeBase(0) {}
1309   static LiveTicks Now();
1310 
1311  private:
1312   friend class time_internal::TimeBase<LiveTicks>;
1313 
1314   // Please use Now() to create a new object. This is for internal use
1315   // and testing.
LiveTicks(int64_t us)1316   constexpr explicit LiveTicks(int64_t us) : TimeBase(us) {}
1317 };
1318 
1319 // ThreadTicks ----------------------------------------------------------------
1320 
1321 // Represents a clock, specific to a particular thread, than runs only while the
1322 // thread is running.
1323 class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
1324  public:
ThreadTicks()1325   constexpr ThreadTicks() : TimeBase(0) {}
1326 
1327   // Returns true if ThreadTicks::Now() is supported on this system.
IsSupported()1328   [[nodiscard]] static bool IsSupported() {
1329 #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
1330     BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA)
1331     return true;
1332 #elif BUILDFLAG(IS_WIN)
1333     return IsSupportedWin();
1334 #else
1335     return false;
1336 #endif
1337   }
1338 
1339   // Waits until the initialization is completed. Needs to be guarded with a
1340   // call to IsSupported().
WaitUntilInitialized()1341   static void WaitUntilInitialized() {
1342 #if BUILDFLAG(IS_WIN)
1343     WaitUntilInitializedWin();
1344 #endif
1345   }
1346 
1347   // Returns thread-specific CPU-time on systems that support this feature.
1348   // Needs to be guarded with a call to IsSupported(). Use this timer
1349   // to (approximately) measure how much time the calling thread spent doing
1350   // actual work vs. being de-scheduled. May return bogus results if the thread
1351   // migrates to another CPU between two calls. Returns an empty ThreadTicks
1352   // object until the initialization is completed. If a clock reading is
1353   // absolutely needed, call WaitUntilInitialized() before this method.
1354   static ThreadTicks Now();
1355 
1356 #if BUILDFLAG(IS_WIN)
1357   // Similar to Now() above except this returns thread-specific CPU time for an
1358   // arbitrary thread. All comments for Now() method above apply apply to this
1359   // method as well.
1360   static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
1361 #endif
1362 
1363   // Converts an integer value representing ThreadTicks to a class. This may be
1364   // used when deserializing a |ThreadTicks| structure, using a value known to
1365   // be compatible. It is not provided as a constructor because the integer type
1366   // may be unclear from the perspective of a caller.
1367   //
1368   // DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
1369   // prefer ThreadTicks + TimeDelta(); however, be aware that the origin is not
1370   // fixed and may vary. Serializing for persistence is strongly
1371   // discouraged. http://crbug.com/634507
FromInternalValue(int64_t us)1372   static constexpr ThreadTicks FromInternalValue(int64_t us) {
1373     return ThreadTicks(us);
1374   }
1375 
1376  private:
1377   friend class time_internal::TimeBase<ThreadTicks>;
1378 
1379   // Please use Now() or GetForThread() to create a new object. This is for
1380   // internal use and testing.
ThreadTicks(int64_t us)1381   constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
1382 
1383 #if BUILDFLAG(IS_WIN)
1384   [[nodiscard]] static bool IsSupportedWin();
1385   static void WaitUntilInitializedWin();
1386 #endif
1387 };
1388 
1389 // For logging use only.
1390 BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
1391 
1392 }  // namespace base
1393 
1394 #endif  // BASE_TIME_TIME_H_
1395