1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <utility>
6
7 #include "base/files/file.h"
8 #include "base/files/file_util.h"
9 #include "base/functional/bind.h"
10 #include "base/functional/callback_helpers.h"
11 #include "base/metrics/field_trial.h"
12 #include "base/metrics/field_trial_param_associator.h"
13 #include "base/run_loop.h"
14 #include "base/strings/string_number_conversions.h"
15 #include "base/strings/string_util.h"
16 #include "base/test/metrics/histogram_tester.h"
17 #include "base/test/scoped_feature_list.h"
18 #include "base/threading/platform_thread.h"
19 #include "base/time/time.h"
20 #include "build/build_config.h"
21 #include "net/base/completion_once_callback.h"
22 #include "net/base/io_buffer.h"
23 #include "net/base/net_errors.h"
24 #include "net/base/request_priority.h"
25 #include "net/base/test_completion_callback.h"
26 #include "net/disk_cache/blockfile/backend_impl.h"
27 #include "net/disk_cache/blockfile/entry_impl.h"
28 #include "net/disk_cache/cache_util.h"
29 #include "net/disk_cache/disk_cache_test_base.h"
30 #include "net/disk_cache/disk_cache_test_util.h"
31 #include "net/disk_cache/memory/mem_entry_impl.h"
32 #include "net/disk_cache/simple/simple_backend_impl.h"
33 #include "net/disk_cache/simple/simple_entry_format.h"
34 #include "net/disk_cache/simple/simple_entry_impl.h"
35 #include "net/disk_cache/simple/simple_histogram_enums.h"
36 #include "net/disk_cache/simple/simple_synchronous_entry.h"
37 #include "net/disk_cache/simple/simple_test_util.h"
38 #include "net/disk_cache/simple/simple_util.h"
39 #include "net/test/gtest_util.h"
40 #include "testing/gmock/include/gmock/gmock.h"
41 #include "testing/gtest/include/gtest/gtest.h"
42
43 using net::test::IsError;
44 using net::test::IsOk;
45
46 using base::Time;
47 using disk_cache::EntryResult;
48 using disk_cache::EntryResultCallback;
49 using disk_cache::RangeResult;
50 using disk_cache::ScopedEntryPtr;
51
52 // Tests that can run with different types of caches.
53 class DiskCacheEntryTest : public DiskCacheTestWithCache {
54 public:
55 void InternalSyncIOBackground(disk_cache::Entry* entry);
56 void ExternalSyncIOBackground(disk_cache::Entry* entry);
57
58 protected:
59 void InternalSyncIO();
60 void InternalAsyncIO();
61 void ExternalSyncIO();
62 void ExternalAsyncIO();
63 void ReleaseBuffer(int stream_index);
64 void StreamAccess();
65 void GetKey();
66 void GetTimes(int stream_index);
67 void GrowData(int stream_index);
68 void TruncateData(int stream_index);
69 void ZeroLengthIO(int stream_index);
70 void Buffering();
71 void SizeAtCreate();
72 void SizeChanges(int stream_index);
73 void ReuseEntry(int size, int stream_index);
74 void InvalidData(int stream_index);
75 void ReadWriteDestroyBuffer(int stream_index);
76 void DoomNormalEntry();
77 void DoomEntryNextToOpenEntry();
78 void DoomedEntry(int stream_index);
79 void BasicSparseIO();
80 void HugeSparseIO();
81 void GetAvailableRangeTest();
82 void CouldBeSparse();
83 void UpdateSparseEntry();
84 void DoomSparseEntry();
85 void PartialSparseEntry();
86 void SparseInvalidArg();
87 void SparseClipEnd(int64_t max_index, bool expected_unsupported);
88 bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int data_size);
89 bool SimpleCacheThirdStreamFileExists(const char* key);
90 void SyncDoomEntry(const char* key);
91 void CreateEntryWithHeaderBodyAndSideData(const std::string& key,
92 int data_size);
93 void TruncateFileFromEnd(int file_index,
94 const std::string& key,
95 int data_size,
96 int truncate_size);
97 void UseAfterBackendDestruction();
98 void CloseSparseAfterBackendDestruction();
99 void LastUsedTimePersists();
100 void TruncateBackwards();
101 void ZeroWriteBackwards();
102 void SparseOffset64Bit();
103 };
104
105 // This part of the test runs on the background thread.
InternalSyncIOBackground(disk_cache::Entry * entry)106 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) {
107 const int kSize1 = 10;
108 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
109 CacheTestFillBuffer(buffer1->data(), kSize1, false);
110 EXPECT_EQ(0, entry->ReadData(0, 0, buffer1.get(), kSize1,
111 net::CompletionOnceCallback()));
112 base::strlcpy(buffer1->data(), "the data", kSize1);
113 EXPECT_EQ(10, entry->WriteData(0, 0, buffer1.get(), kSize1,
114 net::CompletionOnceCallback(), false));
115 memset(buffer1->data(), 0, kSize1);
116 EXPECT_EQ(10, entry->ReadData(0, 0, buffer1.get(), kSize1,
117 net::CompletionOnceCallback()));
118 EXPECT_STREQ("the data", buffer1->data());
119
120 const int kSize2 = 5000;
121 const int kSize3 = 10000;
122 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
123 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
124 memset(buffer3->data(), 0, kSize3);
125 CacheTestFillBuffer(buffer2->data(), kSize2, false);
126 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
127 EXPECT_EQ(5000, entry->WriteData(1, 1500, buffer2.get(), kSize2,
128 net::CompletionOnceCallback(), false));
129 memset(buffer2->data(), 0, kSize2);
130 EXPECT_EQ(4989, entry->ReadData(1, 1511, buffer2.get(), kSize2,
131 net::CompletionOnceCallback()));
132 EXPECT_STREQ("big data goes here", buffer2->data());
133 EXPECT_EQ(5000, entry->ReadData(1, 0, buffer2.get(), kSize2,
134 net::CompletionOnceCallback()));
135 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
136 EXPECT_EQ(1500, entry->ReadData(1, 5000, buffer2.get(), kSize2,
137 net::CompletionOnceCallback()));
138
139 EXPECT_EQ(0, entry->ReadData(1, 6500, buffer2.get(), kSize2,
140 net::CompletionOnceCallback()));
141 EXPECT_EQ(6500, entry->ReadData(1, 0, buffer3.get(), kSize3,
142 net::CompletionOnceCallback()));
143 EXPECT_EQ(8192, entry->WriteData(1, 0, buffer3.get(), 8192,
144 net::CompletionOnceCallback(), false));
145 EXPECT_EQ(8192, entry->ReadData(1, 0, buffer3.get(), kSize3,
146 net::CompletionOnceCallback()));
147 EXPECT_EQ(8192, entry->GetDataSize(1));
148
149 // We need to delete the memory buffer on this thread.
150 EXPECT_EQ(0, entry->WriteData(0, 0, nullptr, 0, net::CompletionOnceCallback(),
151 true));
152 EXPECT_EQ(0, entry->WriteData(1, 0, nullptr, 0, net::CompletionOnceCallback(),
153 true));
154 }
155
156 // We need to support synchronous IO even though it is not a supported operation
157 // from the point of view of the disk cache's public interface, because we use
158 // it internally, not just by a few tests, but as part of the implementation
159 // (see sparse_control.cc, for example).
InternalSyncIO()160 void DiskCacheEntryTest::InternalSyncIO() {
161 disk_cache::Entry* entry = nullptr;
162 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
163 ASSERT_TRUE(nullptr != entry);
164
165 // The bulk of the test runs from within the callback, on the cache thread.
166 RunTaskForTest(base::BindOnce(&DiskCacheEntryTest::InternalSyncIOBackground,
167 base::Unretained(this), entry));
168
169 entry->Doom();
170 entry->Close();
171 FlushQueueForTest();
172 EXPECT_EQ(0, cache_->GetEntryCount());
173 }
174
TEST_F(DiskCacheEntryTest,InternalSyncIO)175 TEST_F(DiskCacheEntryTest, InternalSyncIO) {
176 InitCache();
177 InternalSyncIO();
178 }
179
TEST_F(DiskCacheEntryTest,MemoryOnlyInternalSyncIO)180 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
181 SetMemoryOnlyMode();
182 InitCache();
183 InternalSyncIO();
184 }
185
InternalAsyncIO()186 void DiskCacheEntryTest::InternalAsyncIO() {
187 disk_cache::Entry* entry = nullptr;
188 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
189 ASSERT_TRUE(nullptr != entry);
190
191 // Avoid using internal buffers for the test. We have to write something to
192 // the entry and close it so that we flush the internal buffer to disk. After
193 // that, IO operations will be really hitting the disk. We don't care about
194 // the content, so just extending the entry is enough (all extensions zero-
195 // fill any holes).
196 EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, nullptr, 0, false));
197 EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, nullptr, 0, false));
198 entry->Close();
199 ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
200
201 MessageLoopHelper helper;
202 // Let's verify that each IO goes to the right callback object.
203 CallbackTest callback1(&helper, false);
204 CallbackTest callback2(&helper, false);
205 CallbackTest callback3(&helper, false);
206 CallbackTest callback4(&helper, false);
207 CallbackTest callback5(&helper, false);
208 CallbackTest callback6(&helper, false);
209 CallbackTest callback7(&helper, false);
210 CallbackTest callback8(&helper, false);
211 CallbackTest callback9(&helper, false);
212 CallbackTest callback10(&helper, false);
213 CallbackTest callback11(&helper, false);
214 CallbackTest callback12(&helper, false);
215 CallbackTest callback13(&helper, false);
216
217 const int kSize1 = 10;
218 const int kSize2 = 5000;
219 const int kSize3 = 10000;
220 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
221 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
222 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
223 CacheTestFillBuffer(buffer1->data(), kSize1, false);
224 CacheTestFillBuffer(buffer2->data(), kSize2, false);
225 CacheTestFillBuffer(buffer3->data(), kSize3, false);
226
227 EXPECT_EQ(0, entry->ReadData(0, 15 * 1024, buffer1.get(), kSize1,
228 base::BindOnce(&CallbackTest::Run,
229 base::Unretained(&callback1))));
230 base::strlcpy(buffer1->data(), "the data", kSize1);
231 int expected = 0;
232 int ret = entry->WriteData(
233 0, 0, buffer1.get(), kSize1,
234 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)), false);
235 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
236 if (net::ERR_IO_PENDING == ret)
237 expected++;
238
239 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
240 memset(buffer2->data(), 0, kSize2);
241 ret = entry->ReadData(
242 0, 0, buffer2.get(), kSize1,
243 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback3)));
244 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
245 if (net::ERR_IO_PENDING == ret)
246 expected++;
247
248 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
249 EXPECT_STREQ("the data", buffer2->data());
250
251 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
252 ret = entry->WriteData(
253 1, 1500, buffer2.get(), kSize2,
254 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback4)), true);
255 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
256 if (net::ERR_IO_PENDING == ret)
257 expected++;
258
259 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
260 memset(buffer3->data(), 0, kSize3);
261 ret = entry->ReadData(
262 1, 1511, buffer3.get(), kSize2,
263 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback5)));
264 EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
265 if (net::ERR_IO_PENDING == ret)
266 expected++;
267
268 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
269 EXPECT_STREQ("big data goes here", buffer3->data());
270 ret = entry->ReadData(
271 1, 0, buffer2.get(), kSize2,
272 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback6)));
273 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
274 if (net::ERR_IO_PENDING == ret)
275 expected++;
276
277 memset(buffer3->data(), 0, kSize3);
278
279 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
280 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
281 ret = entry->ReadData(
282 1, 5000, buffer2.get(), kSize2,
283 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback7)));
284 EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
285 if (net::ERR_IO_PENDING == ret)
286 expected++;
287
288 ret = entry->ReadData(
289 1, 0, buffer3.get(), kSize3,
290 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback9)));
291 EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
292 if (net::ERR_IO_PENDING == ret)
293 expected++;
294
295 ret = entry->WriteData(
296 1, 0, buffer3.get(), 8192,
297 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback10)), true);
298 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
299 if (net::ERR_IO_PENDING == ret)
300 expected++;
301
302 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
303 ret = entry->ReadData(
304 1, 0, buffer3.get(), kSize3,
305 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback11)));
306 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
307 if (net::ERR_IO_PENDING == ret)
308 expected++;
309
310 EXPECT_EQ(8192, entry->GetDataSize(1));
311
312 ret = entry->ReadData(
313 0, 0, buffer1.get(), kSize1,
314 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback12)));
315 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
316 if (net::ERR_IO_PENDING == ret)
317 expected++;
318
319 ret = entry->ReadData(
320 1, 0, buffer2.get(), kSize2,
321 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback13)));
322 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
323 if (net::ERR_IO_PENDING == ret)
324 expected++;
325
326 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
327
328 EXPECT_FALSE(helper.callback_reused_error());
329
330 entry->Doom();
331 entry->Close();
332 FlushQueueForTest();
333 EXPECT_EQ(0, cache_->GetEntryCount());
334 }
335
TEST_F(DiskCacheEntryTest,InternalAsyncIO)336 TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
337 InitCache();
338 InternalAsyncIO();
339 }
340
TEST_F(DiskCacheEntryTest,MemoryOnlyInternalAsyncIO)341 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
342 SetMemoryOnlyMode();
343 InitCache();
344 InternalAsyncIO();
345 }
346
347 // This part of the test runs on the background thread.
ExternalSyncIOBackground(disk_cache::Entry * entry)348 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) {
349 const int kSize1 = 17000;
350 const int kSize2 = 25000;
351 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
352 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
353 CacheTestFillBuffer(buffer1->data(), kSize1, false);
354 CacheTestFillBuffer(buffer2->data(), kSize2, false);
355 base::strlcpy(buffer1->data(), "the data", kSize1);
356 EXPECT_EQ(17000, entry->WriteData(0, 0, buffer1.get(), kSize1,
357 net::CompletionOnceCallback(), false));
358 memset(buffer1->data(), 0, kSize1);
359 EXPECT_EQ(17000, entry->ReadData(0, 0, buffer1.get(), kSize1,
360 net::CompletionOnceCallback()));
361 EXPECT_STREQ("the data", buffer1->data());
362
363 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
364 EXPECT_EQ(25000, entry->WriteData(1, 10000, buffer2.get(), kSize2,
365 net::CompletionOnceCallback(), false));
366 memset(buffer2->data(), 0, kSize2);
367 EXPECT_EQ(24989, entry->ReadData(1, 10011, buffer2.get(), kSize2,
368 net::CompletionOnceCallback()));
369 EXPECT_STREQ("big data goes here", buffer2->data());
370 EXPECT_EQ(25000, entry->ReadData(1, 0, buffer2.get(), kSize2,
371 net::CompletionOnceCallback()));
372 EXPECT_EQ(5000, entry->ReadData(1, 30000, buffer2.get(), kSize2,
373 net::CompletionOnceCallback()));
374
375 EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2.get(), kSize2,
376 net::CompletionOnceCallback()));
377 EXPECT_EQ(17000, entry->ReadData(1, 0, buffer1.get(), kSize1,
378 net::CompletionOnceCallback()));
379 EXPECT_EQ(17000, entry->WriteData(1, 20000, buffer1.get(), kSize1,
380 net::CompletionOnceCallback(), false));
381 EXPECT_EQ(37000, entry->GetDataSize(1));
382
383 // We need to delete the memory buffer on this thread.
384 EXPECT_EQ(0, entry->WriteData(0, 0, nullptr, 0, net::CompletionOnceCallback(),
385 true));
386 EXPECT_EQ(0, entry->WriteData(1, 0, nullptr, 0, net::CompletionOnceCallback(),
387 true));
388 }
389
ExternalSyncIO()390 void DiskCacheEntryTest::ExternalSyncIO() {
391 disk_cache::Entry* entry;
392 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
393
394 // The bulk of the test runs from within the callback, on the cache thread.
395 RunTaskForTest(base::BindOnce(&DiskCacheEntryTest::ExternalSyncIOBackground,
396 base::Unretained(this), entry));
397
398 entry->Doom();
399 entry->Close();
400 FlushQueueForTest();
401 EXPECT_EQ(0, cache_->GetEntryCount());
402 }
403
TEST_F(DiskCacheEntryTest,ExternalSyncIO)404 TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
405 InitCache();
406 ExternalSyncIO();
407 }
408
TEST_F(DiskCacheEntryTest,ExternalSyncIONoBuffer)409 TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) {
410 InitCache();
411 cache_impl_->SetFlags(disk_cache::kNoBuffering);
412 ExternalSyncIO();
413 }
414
TEST_F(DiskCacheEntryTest,MemoryOnlyExternalSyncIO)415 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
416 SetMemoryOnlyMode();
417 InitCache();
418 ExternalSyncIO();
419 }
420
ExternalAsyncIO()421 void DiskCacheEntryTest::ExternalAsyncIO() {
422 disk_cache::Entry* entry;
423 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
424
425 int expected = 0;
426
427 MessageLoopHelper helper;
428 // Let's verify that each IO goes to the right callback object.
429 CallbackTest callback1(&helper, false);
430 CallbackTest callback2(&helper, false);
431 CallbackTest callback3(&helper, false);
432 CallbackTest callback4(&helper, false);
433 CallbackTest callback5(&helper, false);
434 CallbackTest callback6(&helper, false);
435 CallbackTest callback7(&helper, false);
436 CallbackTest callback8(&helper, false);
437 CallbackTest callback9(&helper, false);
438
439 const int kSize1 = 17000;
440 const int kSize2 = 25000;
441 const int kSize3 = 25000;
442 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
443 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
444 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
445 CacheTestFillBuffer(buffer1->data(), kSize1, false);
446 CacheTestFillBuffer(buffer2->data(), kSize2, false);
447 CacheTestFillBuffer(buffer3->data(), kSize3, false);
448 base::strlcpy(buffer1->data(), "the data", kSize1);
449 int ret = entry->WriteData(
450 0, 0, buffer1.get(), kSize1,
451 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback1)), false);
452 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
453 if (net::ERR_IO_PENDING == ret)
454 expected++;
455
456 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
457
458 memset(buffer2->data(), 0, kSize1);
459 ret = entry->ReadData(
460 0, 0, buffer2.get(), kSize1,
461 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)));
462 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
463 if (net::ERR_IO_PENDING == ret)
464 expected++;
465
466 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
467 EXPECT_STREQ("the data", buffer2->data());
468
469 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
470 ret = entry->WriteData(
471 1, 10000, buffer2.get(), kSize2,
472 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback3)), false);
473 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
474 if (net::ERR_IO_PENDING == ret)
475 expected++;
476
477 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
478
479 memset(buffer3->data(), 0, kSize3);
480 ret = entry->ReadData(
481 1, 10011, buffer3.get(), kSize3,
482 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback4)));
483 EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
484 if (net::ERR_IO_PENDING == ret)
485 expected++;
486
487 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
488 EXPECT_STREQ("big data goes here", buffer3->data());
489 ret = entry->ReadData(
490 1, 0, buffer2.get(), kSize2,
491 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback5)));
492 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
493 if (net::ERR_IO_PENDING == ret)
494 expected++;
495
496 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
497 memset(buffer3->data(), 0, kSize3);
498 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000));
499 ret = entry->ReadData(
500 1, 30000, buffer2.get(), kSize2,
501 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback6)));
502 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
503 if (net::ERR_IO_PENDING == ret)
504 expected++;
505
506 ret = entry->ReadData(
507 1, 35000, buffer2.get(), kSize2,
508 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback7)));
509 EXPECT_TRUE(0 == ret || net::ERR_IO_PENDING == ret);
510 if (net::ERR_IO_PENDING == ret)
511 expected++;
512
513 ret = entry->ReadData(
514 1, 0, buffer1.get(), kSize1,
515 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback8)));
516 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
517 if (net::ERR_IO_PENDING == ret)
518 expected++;
519 ret = entry->WriteData(
520 1, 20000, buffer3.get(), kSize1,
521 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback9)), false);
522 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
523 if (net::ERR_IO_PENDING == ret)
524 expected++;
525
526 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
527 EXPECT_EQ(37000, entry->GetDataSize(1));
528
529 EXPECT_FALSE(helper.callback_reused_error());
530
531 entry->Doom();
532 entry->Close();
533 FlushQueueForTest();
534 EXPECT_EQ(0, cache_->GetEntryCount());
535 }
536
TEST_F(DiskCacheEntryTest,ExternalAsyncIO)537 TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
538 InitCache();
539 ExternalAsyncIO();
540 }
541
542 // TODO(http://crbug.com/497101): This test is flaky.
543 #if BUILDFLAG(IS_IOS)
544 #define MAYBE_ExternalAsyncIONoBuffer DISABLED_ExternalAsyncIONoBuffer
545 #else
546 #define MAYBE_ExternalAsyncIONoBuffer ExternalAsyncIONoBuffer
547 #endif
TEST_F(DiskCacheEntryTest,MAYBE_ExternalAsyncIONoBuffer)548 TEST_F(DiskCacheEntryTest, MAYBE_ExternalAsyncIONoBuffer) {
549 InitCache();
550 cache_impl_->SetFlags(disk_cache::kNoBuffering);
551 ExternalAsyncIO();
552 }
553
TEST_F(DiskCacheEntryTest,MemoryOnlyExternalAsyncIO)554 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
555 SetMemoryOnlyMode();
556 InitCache();
557 ExternalAsyncIO();
558 }
559
560 // Tests that IOBuffers are not referenced after IO completes.
ReleaseBuffer(int stream_index)561 void DiskCacheEntryTest::ReleaseBuffer(int stream_index) {
562 disk_cache::Entry* entry = nullptr;
563 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
564 ASSERT_TRUE(nullptr != entry);
565
566 const int kBufferSize = 1024;
567 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
568 CacheTestFillBuffer(buffer->data(), kBufferSize, false);
569
570 net::ReleaseBufferCompletionCallback cb(buffer.get());
571 int rv = entry->WriteData(
572 stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false);
573 EXPECT_EQ(kBufferSize, cb.GetResult(rv));
574 entry->Close();
575 }
576
TEST_F(DiskCacheEntryTest,ReleaseBuffer)577 TEST_F(DiskCacheEntryTest, ReleaseBuffer) {
578 InitCache();
579 cache_impl_->SetFlags(disk_cache::kNoBuffering);
580 ReleaseBuffer(0);
581 }
582
TEST_F(DiskCacheEntryTest,MemoryOnlyReleaseBuffer)583 TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) {
584 SetMemoryOnlyMode();
585 InitCache();
586 ReleaseBuffer(0);
587 }
588
StreamAccess()589 void DiskCacheEntryTest::StreamAccess() {
590 disk_cache::Entry* entry = nullptr;
591 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
592 ASSERT_TRUE(nullptr != entry);
593
594 const int kBufferSize = 1024;
595 const int kNumStreams = 3;
596 scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams];
597 for (auto& reference_buffer : reference_buffers) {
598 reference_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
599 CacheTestFillBuffer(reference_buffer->data(), kBufferSize, false);
600 }
601 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
602 for (int i = 0; i < kNumStreams; i++) {
603 EXPECT_EQ(
604 kBufferSize,
605 WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false));
606 memset(buffer1->data(), 0, kBufferSize);
607 EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize));
608 EXPECT_EQ(
609 0, memcmp(reference_buffers[i]->data(), buffer1->data(), kBufferSize));
610 }
611 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
612 ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize));
613 entry->Close();
614
615 // Open the entry and read it in chunks, including a read past the end.
616 ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
617 ASSERT_TRUE(nullptr != entry);
618 const int kReadBufferSize = 600;
619 const int kFinalReadSize = kBufferSize - kReadBufferSize;
620 static_assert(kFinalReadSize < kReadBufferSize,
621 "should be exactly two reads");
622 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kReadBufferSize);
623 for (int i = 0; i < kNumStreams; i++) {
624 memset(buffer2->data(), 0, kReadBufferSize);
625 EXPECT_EQ(kReadBufferSize,
626 ReadData(entry, i, 0, buffer2.get(), kReadBufferSize));
627 EXPECT_EQ(
628 0,
629 memcmp(reference_buffers[i]->data(), buffer2->data(), kReadBufferSize));
630
631 memset(buffer2->data(), 0, kReadBufferSize);
632 EXPECT_EQ(
633 kFinalReadSize,
634 ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize));
635 EXPECT_EQ(0,
636 memcmp(reference_buffers[i]->data() + kReadBufferSize,
637 buffer2->data(),
638 kFinalReadSize));
639 }
640
641 entry->Close();
642 }
643
TEST_F(DiskCacheEntryTest,StreamAccess)644 TEST_F(DiskCacheEntryTest, StreamAccess) {
645 InitCache();
646 StreamAccess();
647 }
648
TEST_F(DiskCacheEntryTest,MemoryOnlyStreamAccess)649 TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
650 SetMemoryOnlyMode();
651 InitCache();
652 StreamAccess();
653 }
654
GetKey()655 void DiskCacheEntryTest::GetKey() {
656 std::string key("the first key");
657 disk_cache::Entry* entry;
658 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
659 EXPECT_EQ(key, entry->GetKey()) << "short key";
660 entry->Close();
661
662 int seed = static_cast<int>(Time::Now().ToInternalValue());
663 srand(seed);
664 char key_buffer[20000];
665
666 CacheTestFillBuffer(key_buffer, 3000, true);
667 key_buffer[1000] = '\0';
668
669 key = key_buffer;
670 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
671 EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key";
672 entry->Close();
673
674 key_buffer[1000] = 'p';
675 key_buffer[3000] = '\0';
676 key = key_buffer;
677 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
678 EXPECT_TRUE(key == entry->GetKey()) << "medium size key";
679 entry->Close();
680
681 CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
682 key_buffer[19999] = '\0';
683
684 key = key_buffer;
685 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
686 EXPECT_TRUE(key == entry->GetKey()) << "long key";
687 entry->Close();
688
689 CacheTestFillBuffer(key_buffer, 0x4000, true);
690 key_buffer[0x4000] = '\0';
691
692 key = key_buffer;
693 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
694 EXPECT_TRUE(key == entry->GetKey()) << "16KB key";
695 entry->Close();
696 }
697
TEST_F(DiskCacheEntryTest,GetKey)698 TEST_F(DiskCacheEntryTest, GetKey) {
699 InitCache();
700 GetKey();
701 }
702
TEST_F(DiskCacheEntryTest,MemoryOnlyGetKey)703 TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
704 SetMemoryOnlyMode();
705 InitCache();
706 GetKey();
707 }
708
GetTimes(int stream_index)709 void DiskCacheEntryTest::GetTimes(int stream_index) {
710 std::string key("the first key");
711 disk_cache::Entry* entry;
712
713 Time t1 = Time::Now();
714 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
715 EXPECT_TRUE(entry->GetLastModified() >= t1);
716 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
717
718 AddDelay();
719 Time t2 = Time::Now();
720 EXPECT_TRUE(t2 > t1);
721 EXPECT_EQ(0, WriteData(entry, stream_index, 200, nullptr, 0, false));
722 if (type_ == net::APP_CACHE) {
723 EXPECT_TRUE(entry->GetLastModified() < t2);
724 } else {
725 EXPECT_TRUE(entry->GetLastModified() >= t2);
726 }
727 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
728
729 AddDelay();
730 Time t3 = Time::Now();
731 EXPECT_TRUE(t3 > t2);
732 const int kSize = 200;
733 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
734 EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize));
735 if (type_ == net::APP_CACHE) {
736 EXPECT_TRUE(entry->GetLastUsed() < t2);
737 EXPECT_TRUE(entry->GetLastModified() < t2);
738 } else if (type_ == net::SHADER_CACHE) {
739 EXPECT_TRUE(entry->GetLastUsed() < t3);
740 EXPECT_TRUE(entry->GetLastModified() < t3);
741 } else {
742 EXPECT_TRUE(entry->GetLastUsed() >= t3);
743 EXPECT_TRUE(entry->GetLastModified() < t3);
744 }
745 entry->Close();
746 }
747
TEST_F(DiskCacheEntryTest,GetTimes)748 TEST_F(DiskCacheEntryTest, GetTimes) {
749 InitCache();
750 GetTimes(0);
751 }
752
TEST_F(DiskCacheEntryTest,MemoryOnlyGetTimes)753 TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) {
754 SetMemoryOnlyMode();
755 InitCache();
756 GetTimes(0);
757 }
758
TEST_F(DiskCacheEntryTest,AppCacheGetTimes)759 TEST_F(DiskCacheEntryTest, AppCacheGetTimes) {
760 SetCacheType(net::APP_CACHE);
761 InitCache();
762 GetTimes(0);
763 }
764
TEST_F(DiskCacheEntryTest,ShaderCacheGetTimes)765 TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) {
766 SetCacheType(net::SHADER_CACHE);
767 InitCache();
768 GetTimes(0);
769 }
770
GrowData(int stream_index)771 void DiskCacheEntryTest::GrowData(int stream_index) {
772 std::string key1("the first key");
773 disk_cache::Entry* entry;
774 ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
775
776 const int kSize = 20000;
777 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
778 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
779 CacheTestFillBuffer(buffer1->data(), kSize, false);
780 memset(buffer2->data(), 0, kSize);
781
782 base::strlcpy(buffer1->data(), "the data", kSize);
783 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
784 EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10));
785 EXPECT_STREQ("the data", buffer2->data());
786 EXPECT_EQ(10, entry->GetDataSize(stream_index));
787
788 EXPECT_EQ(2000,
789 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
790 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
791 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
792 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
793
794 EXPECT_EQ(20000,
795 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
796 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
797 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
798 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
799 entry->Close();
800
801 memset(buffer2->data(), 0, kSize);
802 std::string key2("Second key");
803 ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
804 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
805 EXPECT_EQ(10, entry->GetDataSize(stream_index));
806 entry->Close();
807
808 // Go from an internal address to a bigger block size.
809 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
810 EXPECT_EQ(2000,
811 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
812 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
813 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
814 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
815 entry->Close();
816 memset(buffer2->data(), 0, kSize);
817
818 // Go from an internal address to an external one.
819 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
820 EXPECT_EQ(20000,
821 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
822 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
823 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
824 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
825 entry->Close();
826
827 // Double check the size from disk.
828 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
829 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
830
831 // Now extend the entry without actual data.
832 EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false));
833 entry->Close();
834
835 // And check again from disk.
836 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
837 EXPECT_EQ(45500, entry->GetDataSize(stream_index));
838 entry->Close();
839 }
840
TEST_F(DiskCacheEntryTest,GrowData)841 TEST_F(DiskCacheEntryTest, GrowData) {
842 InitCache();
843 GrowData(0);
844 }
845
TEST_F(DiskCacheEntryTest,GrowDataNoBuffer)846 TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) {
847 InitCache();
848 cache_impl_->SetFlags(disk_cache::kNoBuffering);
849 GrowData(0);
850 }
851
TEST_F(DiskCacheEntryTest,MemoryOnlyGrowData)852 TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
853 SetMemoryOnlyMode();
854 InitCache();
855 GrowData(0);
856 }
857
TruncateData(int stream_index)858 void DiskCacheEntryTest::TruncateData(int stream_index) {
859 std::string key("the first key");
860 disk_cache::Entry* entry;
861 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
862
863 const int kSize1 = 20000;
864 const int kSize2 = 20000;
865 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
866 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
867
868 CacheTestFillBuffer(buffer1->data(), kSize1, false);
869 memset(buffer2->data(), 0, kSize2);
870
871 // Simple truncation:
872 EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false));
873 EXPECT_EQ(200, entry->GetDataSize(stream_index));
874 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false));
875 EXPECT_EQ(200, entry->GetDataSize(stream_index));
876 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true));
877 EXPECT_EQ(100, entry->GetDataSize(stream_index));
878 EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true));
879 EXPECT_EQ(50, entry->GetDataSize(stream_index));
880 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
881 EXPECT_EQ(0, entry->GetDataSize(stream_index));
882 entry->Close();
883 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
884
885 // Go to an external file.
886 EXPECT_EQ(20000,
887 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
888 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
889 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000));
890 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
891 memset(buffer2->data(), 0, kSize2);
892
893 // External file truncation
894 EXPECT_EQ(18000,
895 WriteData(entry, stream_index, 0, buffer1.get(), 18000, false));
896 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
897 EXPECT_EQ(18000,
898 WriteData(entry, stream_index, 0, buffer1.get(), 18000, true));
899 EXPECT_EQ(18000, entry->GetDataSize(stream_index));
900 EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true));
901 EXPECT_EQ(17500, entry->GetDataSize(stream_index));
902
903 // And back to an internal block.
904 EXPECT_EQ(600,
905 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
906 EXPECT_EQ(1600, entry->GetDataSize(stream_index));
907 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600));
908 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
909 EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000));
910 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000))
911 << "Preserves previous data";
912
913 // Go from external file to zero length.
914 EXPECT_EQ(20000,
915 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
916 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
917 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
918 EXPECT_EQ(0, entry->GetDataSize(stream_index));
919
920 entry->Close();
921 }
922
TEST_F(DiskCacheEntryTest,TruncateData)923 TEST_F(DiskCacheEntryTest, TruncateData) {
924 InitCache();
925 TruncateData(0);
926 }
927
TEST_F(DiskCacheEntryTest,TruncateDataNoBuffer)928 TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) {
929 InitCache();
930 cache_impl_->SetFlags(disk_cache::kNoBuffering);
931 TruncateData(0);
932 }
933
TEST_F(DiskCacheEntryTest,MemoryOnlyTruncateData)934 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
935 SetMemoryOnlyMode();
936 InitCache();
937 TruncateData(0);
938 }
939
ZeroLengthIO(int stream_index)940 void DiskCacheEntryTest::ZeroLengthIO(int stream_index) {
941 std::string key("the first key");
942 disk_cache::Entry* entry;
943 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
944
945 EXPECT_EQ(0, ReadData(entry, stream_index, 0, nullptr, 0));
946 EXPECT_EQ(0, WriteData(entry, stream_index, 0, nullptr, 0, false));
947
948 // This write should extend the entry.
949 EXPECT_EQ(0, WriteData(entry, stream_index, 1000, nullptr, 0, false));
950 EXPECT_EQ(0, ReadData(entry, stream_index, 500, nullptr, 0));
951 EXPECT_EQ(0, ReadData(entry, stream_index, 2000, nullptr, 0));
952 EXPECT_EQ(1000, entry->GetDataSize(stream_index));
953
954 EXPECT_EQ(0, WriteData(entry, stream_index, 100000, nullptr, 0, true));
955 EXPECT_EQ(0, ReadData(entry, stream_index, 50000, nullptr, 0));
956 EXPECT_EQ(100000, entry->GetDataSize(stream_index));
957
958 // Let's verify the actual content.
959 const int kSize = 20;
960 const char zeros[kSize] = {};
961 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
962
963 CacheTestFillBuffer(buffer->data(), kSize, false);
964 EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize));
965 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
966
967 CacheTestFillBuffer(buffer->data(), kSize, false);
968 EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize));
969 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
970
971 CacheTestFillBuffer(buffer->data(), kSize, false);
972 EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize));
973 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
974
975 entry->Close();
976 }
977
TEST_F(DiskCacheEntryTest,ZeroLengthIO)978 TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
979 InitCache();
980 ZeroLengthIO(0);
981 }
982
TEST_F(DiskCacheEntryTest,ZeroLengthIONoBuffer)983 TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) {
984 InitCache();
985 cache_impl_->SetFlags(disk_cache::kNoBuffering);
986 ZeroLengthIO(0);
987 }
988
TEST_F(DiskCacheEntryTest,MemoryOnlyZeroLengthIO)989 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
990 SetMemoryOnlyMode();
991 InitCache();
992 ZeroLengthIO(0);
993 }
994
995 // Tests that we handle the content correctly when buffering, a feature of the
996 // standard cache that permits fast responses to certain reads.
Buffering()997 void DiskCacheEntryTest::Buffering() {
998 std::string key("the first key");
999 disk_cache::Entry* entry;
1000 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1001
1002 const int kSize = 200;
1003 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1004 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1005 CacheTestFillBuffer(buffer1->data(), kSize, true);
1006 CacheTestFillBuffer(buffer2->data(), kSize, true);
1007
1008 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
1009 entry->Close();
1010
1011 // Write a little more and read what we wrote before.
1012 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1013 EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false));
1014 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1015 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1016
1017 // Now go to an external file.
1018 EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false));
1019 entry->Close();
1020
1021 // Write something else and verify old data.
1022 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1023 EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false));
1024 CacheTestFillBuffer(buffer2->data(), kSize, true);
1025 EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize));
1026 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1027 CacheTestFillBuffer(buffer2->data(), kSize, true);
1028 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1029 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1030 CacheTestFillBuffer(buffer2->data(), kSize, true);
1031 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1032 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1033
1034 // Extend the file some more.
1035 EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false));
1036 entry->Close();
1037
1038 // And now make sure that we can deal with data in both places (ram/disk).
1039 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1040 EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false));
1041
1042 // We should not overwrite the data at 18000 with this.
1043 EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false));
1044 CacheTestFillBuffer(buffer2->data(), kSize, true);
1045 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1046 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1047 CacheTestFillBuffer(buffer2->data(), kSize, true);
1048 EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize));
1049 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1050
1051 EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false));
1052 CacheTestFillBuffer(buffer2->data(), kSize, true);
1053 EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize));
1054 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1055
1056 CacheTestFillBuffer(buffer2->data(), kSize, true);
1057 EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize));
1058 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1059
1060 // Extend the file again and read before without closing the entry.
1061 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false));
1062 EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false));
1063 CacheTestFillBuffer(buffer2->data(), kSize, true);
1064 EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize));
1065 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1066 CacheTestFillBuffer(buffer2->data(), kSize, true);
1067 EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize));
1068 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1069
1070 entry->Close();
1071 }
1072
TEST_F(DiskCacheEntryTest,Buffering)1073 TEST_F(DiskCacheEntryTest, Buffering) {
1074 InitCache();
1075 Buffering();
1076 }
1077
TEST_F(DiskCacheEntryTest,BufferingNoBuffer)1078 TEST_F(DiskCacheEntryTest, BufferingNoBuffer) {
1079 InitCache();
1080 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1081 Buffering();
1082 }
1083
1084 // Checks that entries are zero length when created.
SizeAtCreate()1085 void DiskCacheEntryTest::SizeAtCreate() {
1086 const char key[] = "the first key";
1087 disk_cache::Entry* entry;
1088 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1089
1090 const int kNumStreams = 3;
1091 for (int i = 0; i < kNumStreams; ++i)
1092 EXPECT_EQ(0, entry->GetDataSize(i));
1093 entry->Close();
1094 }
1095
TEST_F(DiskCacheEntryTest,SizeAtCreate)1096 TEST_F(DiskCacheEntryTest, SizeAtCreate) {
1097 InitCache();
1098 SizeAtCreate();
1099 }
1100
TEST_F(DiskCacheEntryTest,MemoryOnlySizeAtCreate)1101 TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) {
1102 SetMemoryOnlyMode();
1103 InitCache();
1104 SizeAtCreate();
1105 }
1106
1107 // Some extra tests to make sure that buffering works properly when changing
1108 // the entry size.
SizeChanges(int stream_index)1109 void DiskCacheEntryTest::SizeChanges(int stream_index) {
1110 std::string key("the first key");
1111 disk_cache::Entry* entry;
1112 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1113
1114 const int kSize = 200;
1115 const char zeros[kSize] = {};
1116 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1117 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1118 CacheTestFillBuffer(buffer1->data(), kSize, true);
1119 CacheTestFillBuffer(buffer2->data(), kSize, true);
1120
1121 EXPECT_EQ(kSize,
1122 WriteData(entry, stream_index, 0, buffer1.get(), kSize, true));
1123 EXPECT_EQ(kSize,
1124 WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true));
1125 EXPECT_EQ(kSize,
1126 WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true));
1127 entry->Close();
1128
1129 // Extend the file and read between the old size and the new write.
1130 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1131 EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index));
1132 EXPECT_EQ(kSize,
1133 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
1134 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1135 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize));
1136 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize));
1137
1138 // Read at the end of the old file size.
1139 EXPECT_EQ(
1140 kSize,
1141 ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize));
1142 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35));
1143
1144 // Read slightly before the last write.
1145 CacheTestFillBuffer(buffer2->data(), kSize, true);
1146 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize));
1147 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1148 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1149
1150 // Extend the entry a little more.
1151 EXPECT_EQ(kSize,
1152 WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true));
1153 EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index));
1154 CacheTestFillBuffer(buffer2->data(), kSize, true);
1155 EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize));
1156 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1157 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1158
1159 // And now reduce the size.
1160 EXPECT_EQ(kSize,
1161 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
1162 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1163 EXPECT_EQ(
1164 28,
1165 ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize));
1166 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28));
1167
1168 // Reduce the size with a buffer that is not extending the size.
1169 EXPECT_EQ(kSize,
1170 WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false));
1171 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1172 EXPECT_EQ(kSize,
1173 WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true));
1174 EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index));
1175 EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize));
1176 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1177 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1178
1179 // And now reduce the size below the old size.
1180 EXPECT_EQ(kSize,
1181 WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true));
1182 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
1183 EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize));
1184 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1185 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1186
1187 // Verify that the actual file is truncated.
1188 entry->Close();
1189 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1190 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
1191
1192 // Extend the newly opened file with a zero length write, expect zero fill.
1193 EXPECT_EQ(
1194 0,
1195 WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false));
1196 EXPECT_EQ(kSize,
1197 ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize));
1198 EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize));
1199
1200 entry->Close();
1201 }
1202
TEST_F(DiskCacheEntryTest,SizeChanges)1203 TEST_F(DiskCacheEntryTest, SizeChanges) {
1204 InitCache();
1205 SizeChanges(1);
1206 }
1207
TEST_F(DiskCacheEntryTest,SizeChangesNoBuffer)1208 TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) {
1209 InitCache();
1210 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1211 SizeChanges(1);
1212 }
1213
1214 // Write more than the total cache capacity but to a single entry. |size| is the
1215 // amount of bytes to write each time.
ReuseEntry(int size,int stream_index)1216 void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) {
1217 std::string key1("the first key");
1218 disk_cache::Entry* entry;
1219 ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
1220
1221 entry->Close();
1222 std::string key2("the second key");
1223 ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
1224
1225 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(size);
1226 CacheTestFillBuffer(buffer->data(), size, false);
1227
1228 for (int i = 0; i < 15; i++) {
1229 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true));
1230 EXPECT_EQ(size,
1231 WriteData(entry, stream_index, 0, buffer.get(), size, false));
1232 entry->Close();
1233 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
1234 }
1235
1236 entry->Close();
1237 ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry";
1238 entry->Close();
1239 }
1240
TEST_F(DiskCacheEntryTest,ReuseExternalEntry)1241 TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
1242 SetMaxSize(200 * 1024);
1243 InitCache();
1244 ReuseEntry(20 * 1024, 0);
1245 }
1246
TEST_F(DiskCacheEntryTest,MemoryOnlyReuseExternalEntry)1247 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
1248 SetMemoryOnlyMode();
1249 SetMaxSize(200 * 1024);
1250 InitCache();
1251 ReuseEntry(20 * 1024, 0);
1252 }
1253
TEST_F(DiskCacheEntryTest,ReuseInternalEntry)1254 TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
1255 SetMaxSize(100 * 1024);
1256 InitCache();
1257 ReuseEntry(10 * 1024, 0);
1258 }
1259
TEST_F(DiskCacheEntryTest,MemoryOnlyReuseInternalEntry)1260 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
1261 SetMemoryOnlyMode();
1262 SetMaxSize(100 * 1024);
1263 InitCache();
1264 ReuseEntry(10 * 1024, 0);
1265 }
1266
1267 // Reading somewhere that was not written should return zeros.
InvalidData(int stream_index)1268 void DiskCacheEntryTest::InvalidData(int stream_index) {
1269 std::string key("the first key");
1270 disk_cache::Entry* entry;
1271 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1272
1273 const int kSize1 = 20000;
1274 const int kSize2 = 20000;
1275 const int kSize3 = 20000;
1276 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
1277 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
1278 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
1279
1280 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1281 memset(buffer2->data(), 0, kSize2);
1282
1283 // Simple data grow:
1284 EXPECT_EQ(200,
1285 WriteData(entry, stream_index, 400, buffer1.get(), 200, false));
1286 EXPECT_EQ(600, entry->GetDataSize(stream_index));
1287 EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100));
1288 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1289 entry->Close();
1290 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1291
1292 // The entry is now on disk. Load it and extend it.
1293 EXPECT_EQ(200,
1294 WriteData(entry, stream_index, 800, buffer1.get(), 200, false));
1295 EXPECT_EQ(1000, entry->GetDataSize(stream_index));
1296 EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100));
1297 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1298 entry->Close();
1299 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1300
1301 // This time using truncate.
1302 EXPECT_EQ(200,
1303 WriteData(entry, stream_index, 1800, buffer1.get(), 200, true));
1304 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
1305 EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100));
1306 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1307
1308 // Go to an external file.
1309 EXPECT_EQ(200,
1310 WriteData(entry, stream_index, 19800, buffer1.get(), 200, false));
1311 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
1312 EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000));
1313 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
1314
1315 // And back to an internal block.
1316 EXPECT_EQ(600,
1317 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
1318 EXPECT_EQ(1600, entry->GetDataSize(stream_index));
1319 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600));
1320 EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
1321
1322 // Extend it again.
1323 EXPECT_EQ(600,
1324 WriteData(entry, stream_index, 2000, buffer1.get(), 600, false));
1325 EXPECT_EQ(2600, entry->GetDataSize(stream_index));
1326 EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200));
1327 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1328
1329 // And again (with truncation flag).
1330 EXPECT_EQ(600,
1331 WriteData(entry, stream_index, 3000, buffer1.get(), 600, true));
1332 EXPECT_EQ(3600, entry->GetDataSize(stream_index));
1333 EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200));
1334 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1335
1336 entry->Close();
1337 }
1338
TEST_F(DiskCacheEntryTest,InvalidData)1339 TEST_F(DiskCacheEntryTest, InvalidData) {
1340 InitCache();
1341 InvalidData(0);
1342 }
1343
TEST_F(DiskCacheEntryTest,InvalidDataNoBuffer)1344 TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) {
1345 InitCache();
1346 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1347 InvalidData(0);
1348 }
1349
TEST_F(DiskCacheEntryTest,MemoryOnlyInvalidData)1350 TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
1351 SetMemoryOnlyMode();
1352 InitCache();
1353 InvalidData(0);
1354 }
1355
1356 // Tests that the cache preserves the buffer of an IO operation.
ReadWriteDestroyBuffer(int stream_index)1357 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) {
1358 std::string key("the first key");
1359 disk_cache::Entry* entry;
1360 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1361
1362 const int kSize = 200;
1363 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1364 CacheTestFillBuffer(buffer->data(), kSize, false);
1365
1366 net::TestCompletionCallback cb;
1367 EXPECT_EQ(net::ERR_IO_PENDING,
1368 entry->WriteData(
1369 stream_index, 0, buffer.get(), kSize, cb.callback(), false));
1370
1371 // Release our reference to the buffer.
1372 buffer = nullptr;
1373 EXPECT_EQ(kSize, cb.WaitForResult());
1374
1375 // And now test with a Read().
1376 buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1377 CacheTestFillBuffer(buffer->data(), kSize, false);
1378
1379 EXPECT_EQ(
1380 net::ERR_IO_PENDING,
1381 entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback()));
1382 buffer = nullptr;
1383 EXPECT_EQ(kSize, cb.WaitForResult());
1384
1385 entry->Close();
1386 }
1387
TEST_F(DiskCacheEntryTest,ReadWriteDestroyBuffer)1388 TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) {
1389 InitCache();
1390 ReadWriteDestroyBuffer(0);
1391 }
1392
DoomNormalEntry()1393 void DiskCacheEntryTest::DoomNormalEntry() {
1394 std::string key("the first key");
1395 disk_cache::Entry* entry;
1396 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1397 entry->Doom();
1398 entry->Close();
1399
1400 const int kSize = 20000;
1401 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1402 CacheTestFillBuffer(buffer->data(), kSize, true);
1403 buffer->data()[19999] = '\0';
1404
1405 key = buffer->data();
1406 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1407 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1408 EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false));
1409 entry->Doom();
1410 entry->Close();
1411
1412 FlushQueueForTest();
1413 EXPECT_EQ(0, cache_->GetEntryCount());
1414 }
1415
TEST_F(DiskCacheEntryTest,DoomEntry)1416 TEST_F(DiskCacheEntryTest, DoomEntry) {
1417 InitCache();
1418 DoomNormalEntry();
1419 }
1420
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomEntry)1421 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
1422 SetMemoryOnlyMode();
1423 InitCache();
1424 DoomNormalEntry();
1425 }
1426
1427 // Tests dooming an entry that's linked to an open entry.
DoomEntryNextToOpenEntry()1428 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1429 disk_cache::Entry* entry1;
1430 disk_cache::Entry* entry2;
1431 ASSERT_THAT(CreateEntry("fixed", &entry1), IsOk());
1432 entry1->Close();
1433 ASSERT_THAT(CreateEntry("foo", &entry1), IsOk());
1434 entry1->Close();
1435 ASSERT_THAT(CreateEntry("bar", &entry1), IsOk());
1436 entry1->Close();
1437
1438 ASSERT_THAT(OpenEntry("foo", &entry1), IsOk());
1439 ASSERT_THAT(OpenEntry("bar", &entry2), IsOk());
1440 entry2->Doom();
1441 entry2->Close();
1442
1443 ASSERT_THAT(OpenEntry("foo", &entry2), IsOk());
1444 entry2->Doom();
1445 entry2->Close();
1446 entry1->Close();
1447
1448 ASSERT_THAT(OpenEntry("fixed", &entry1), IsOk());
1449 entry1->Close();
1450 }
1451
TEST_F(DiskCacheEntryTest,DoomEntryNextToOpenEntry)1452 TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) {
1453 InitCache();
1454 DoomEntryNextToOpenEntry();
1455 }
1456
TEST_F(DiskCacheEntryTest,NewEvictionDoomEntryNextToOpenEntry)1457 TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) {
1458 SetNewEviction();
1459 InitCache();
1460 DoomEntryNextToOpenEntry();
1461 }
1462
TEST_F(DiskCacheEntryTest,AppCacheDoomEntryNextToOpenEntry)1463 TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) {
1464 SetCacheType(net::APP_CACHE);
1465 InitCache();
1466 DoomEntryNextToOpenEntry();
1467 }
1468
1469 // Verify that basic operations work as expected with doomed entries.
DoomedEntry(int stream_index)1470 void DiskCacheEntryTest::DoomedEntry(int stream_index) {
1471 std::string key("the first key");
1472 disk_cache::Entry* entry;
1473 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1474 entry->Doom();
1475
1476 FlushQueueForTest();
1477 EXPECT_EQ(0, cache_->GetEntryCount());
1478 Time initial = Time::Now();
1479 AddDelay();
1480
1481 const int kSize1 = 2000;
1482 const int kSize2 = 2000;
1483 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
1484 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
1485 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1486 memset(buffer2->data(), 0, kSize2);
1487
1488 EXPECT_EQ(2000,
1489 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
1490 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
1491 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
1492 EXPECT_EQ(key, entry->GetKey());
1493 EXPECT_TRUE(initial < entry->GetLastModified());
1494 EXPECT_TRUE(initial < entry->GetLastUsed());
1495
1496 entry->Close();
1497 }
1498
TEST_F(DiskCacheEntryTest,DoomedEntry)1499 TEST_F(DiskCacheEntryTest, DoomedEntry) {
1500 InitCache();
1501 DoomedEntry(0);
1502 }
1503
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomedEntry)1504 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
1505 SetMemoryOnlyMode();
1506 InitCache();
1507 DoomedEntry(0);
1508 }
1509
1510 // Tests that we discard entries if the data is missing.
TEST_F(DiskCacheEntryTest,MissingData)1511 TEST_F(DiskCacheEntryTest, MissingData) {
1512 InitCache();
1513
1514 std::string key("the first key");
1515 disk_cache::Entry* entry;
1516 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1517
1518 // Write to an external file.
1519 const int kSize = 20000;
1520 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1521 CacheTestFillBuffer(buffer->data(), kSize, false);
1522 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1523 entry->Close();
1524 FlushQueueForTest();
1525
1526 disk_cache::Addr address(0x80000001);
1527 base::FilePath name = cache_impl_->GetFileName(address);
1528 EXPECT_TRUE(base::DeleteFile(name));
1529
1530 // Attempt to read the data.
1531 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1532 EXPECT_EQ(net::ERR_FILE_NOT_FOUND,
1533 ReadData(entry, 0, 0, buffer.get(), kSize));
1534 entry->Close();
1535
1536 // The entry should be gone.
1537 ASSERT_NE(net::OK, OpenEntry(key, &entry));
1538 }
1539
1540 // Test that child entries in a memory cache backend are not visible from
1541 // enumerations.
TEST_F(DiskCacheEntryTest,MemoryOnlyEnumerationWithSparseEntries)1542 TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
1543 SetMemoryOnlyMode();
1544 InitCache();
1545
1546 const int kSize = 4096;
1547 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1548 CacheTestFillBuffer(buf->data(), kSize, false);
1549
1550 std::string key("the first key");
1551 disk_cache::Entry* parent_entry;
1552 ASSERT_THAT(CreateEntry(key, &parent_entry), IsOk());
1553
1554 // Writes to the parent entry.
1555 EXPECT_EQ(kSize, parent_entry->WriteSparseData(
1556 0, buf.get(), kSize, net::CompletionOnceCallback()));
1557
1558 // This write creates a child entry and writes to it.
1559 EXPECT_EQ(kSize, parent_entry->WriteSparseData(
1560 8192, buf.get(), kSize, net::CompletionOnceCallback()));
1561
1562 parent_entry->Close();
1563
1564 // Perform the enumerations.
1565 std::unique_ptr<TestIterator> iter = CreateIterator();
1566 disk_cache::Entry* entry = nullptr;
1567 int count = 0;
1568 while (iter->OpenNextEntry(&entry) == net::OK) {
1569 ASSERT_TRUE(entry != nullptr);
1570 ++count;
1571 disk_cache::MemEntryImpl* mem_entry =
1572 reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
1573 EXPECT_EQ(disk_cache::MemEntryImpl::EntryType::kParent, mem_entry->type());
1574 mem_entry->Close();
1575 }
1576 EXPECT_EQ(1, count);
1577 }
1578
1579 // Writes |buf_1| to offset and reads it back as |buf_2|.
VerifySparseIO(disk_cache::Entry * entry,int64_t offset,net::IOBuffer * buf_1,int size,net::IOBuffer * buf_2)1580 void VerifySparseIO(disk_cache::Entry* entry,
1581 int64_t offset,
1582 net::IOBuffer* buf_1,
1583 int size,
1584 net::IOBuffer* buf_2) {
1585 net::TestCompletionCallback cb;
1586
1587 memset(buf_2->data(), 0, size);
1588 int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1589 EXPECT_EQ(0, cb.GetResult(ret));
1590
1591 ret = entry->WriteSparseData(offset, buf_1, size, cb.callback());
1592 EXPECT_EQ(size, cb.GetResult(ret));
1593
1594 ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1595 EXPECT_EQ(size, cb.GetResult(ret));
1596
1597 EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
1598 }
1599
1600 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1601 // same as the content of the provided |buffer|.
VerifyContentSparseIO(disk_cache::Entry * entry,int64_t offset,char * buffer,int size)1602 void VerifyContentSparseIO(disk_cache::Entry* entry,
1603 int64_t offset,
1604 char* buffer,
1605 int size) {
1606 net::TestCompletionCallback cb;
1607
1608 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(size);
1609 memset(buf_1->data(), 0, size);
1610 int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback());
1611 EXPECT_EQ(size, cb.GetResult(ret));
1612 EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
1613 }
1614
BasicSparseIO()1615 void DiskCacheEntryTest::BasicSparseIO() {
1616 std::string key("the first key");
1617 disk_cache::Entry* entry;
1618 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1619
1620 const int kSize = 2048;
1621 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1622 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1623 CacheTestFillBuffer(buf_1->data(), kSize, false);
1624
1625 // Write at offset 0.
1626 VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get());
1627
1628 // Write at offset 0x400000 (4 MB).
1629 VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get());
1630
1631 // Write at offset 0x800000000 (32 GB).
1632 VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get());
1633
1634 entry->Close();
1635
1636 // Check everything again.
1637 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1638 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
1639 VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize);
1640 VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize);
1641 entry->Close();
1642 }
1643
TEST_F(DiskCacheEntryTest,BasicSparseIO)1644 TEST_F(DiskCacheEntryTest, BasicSparseIO) {
1645 InitCache();
1646 BasicSparseIO();
1647 }
1648
TEST_F(DiskCacheEntryTest,MemoryOnlyBasicSparseIO)1649 TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) {
1650 SetMemoryOnlyMode();
1651 InitCache();
1652 BasicSparseIO();
1653 }
1654
HugeSparseIO()1655 void DiskCacheEntryTest::HugeSparseIO() {
1656 std::string key("the first key");
1657 disk_cache::Entry* entry;
1658 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1659
1660 // Write 1.2 MB so that we cover multiple entries.
1661 const int kSize = 1200 * 1024;
1662 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1663 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1664 CacheTestFillBuffer(buf_1->data(), kSize, false);
1665
1666 // Write at offset 0x20F0000 (33 MB - 64 KB).
1667 VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get());
1668 entry->Close();
1669
1670 // Check it again.
1671 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1672 VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize);
1673 entry->Close();
1674 }
1675
TEST_F(DiskCacheEntryTest,HugeSparseIO)1676 TEST_F(DiskCacheEntryTest, HugeSparseIO) {
1677 InitCache();
1678 HugeSparseIO();
1679 }
1680
TEST_F(DiskCacheEntryTest,MemoryOnlyHugeSparseIO)1681 TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) {
1682 SetMemoryOnlyMode();
1683 InitCache();
1684 HugeSparseIO();
1685 }
1686
GetAvailableRangeTest()1687 void DiskCacheEntryTest::GetAvailableRangeTest() {
1688 std::string key("the first key");
1689 disk_cache::Entry* entry;
1690 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1691
1692 const int kSize = 16 * 1024;
1693 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1694 CacheTestFillBuffer(buf->data(), kSize, false);
1695
1696 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1697 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1698 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize));
1699
1700 // We stop at the first empty block.
1701 TestRangeResultCompletionCallback cb;
1702 RangeResult result = cb.GetResult(
1703 entry->GetAvailableRange(0x20F0000, kSize * 2, cb.callback()));
1704 EXPECT_EQ(net::OK, result.net_error);
1705 EXPECT_EQ(kSize, result.available_len);
1706 EXPECT_EQ(0x20F0000, result.start);
1707
1708 result = cb.GetResult(entry->GetAvailableRange(0, kSize, cb.callback()));
1709 EXPECT_EQ(net::OK, result.net_error);
1710 EXPECT_EQ(0, result.available_len);
1711
1712 result = cb.GetResult(
1713 entry->GetAvailableRange(0x20F0000 - kSize, kSize, cb.callback()));
1714 EXPECT_EQ(net::OK, result.net_error);
1715 EXPECT_EQ(0, result.available_len);
1716
1717 result = cb.GetResult(entry->GetAvailableRange(0, 0x2100000, cb.callback()));
1718 EXPECT_EQ(net::OK, result.net_error);
1719 EXPECT_EQ(kSize, result.available_len);
1720 EXPECT_EQ(0x20F0000, result.start);
1721
1722 // We should be able to Read based on the results of GetAvailableRange.
1723 net::TestCompletionCallback read_cb;
1724 result =
1725 cb.GetResult(entry->GetAvailableRange(0x2100000, kSize, cb.callback()));
1726 EXPECT_EQ(net::OK, result.net_error);
1727 EXPECT_EQ(0, result.available_len);
1728 int rv =
1729 entry->ReadSparseData(result.start, buf.get(), kSize, read_cb.callback());
1730 EXPECT_EQ(0, read_cb.GetResult(rv));
1731
1732 result =
1733 cb.GetResult(entry->GetAvailableRange(0x20F2000, kSize, cb.callback()));
1734 EXPECT_EQ(net::OK, result.net_error);
1735 EXPECT_EQ(0x2000, result.available_len);
1736 EXPECT_EQ(0x20F2000, result.start);
1737 EXPECT_EQ(0x2000, ReadSparseData(entry, result.start, buf.get(), kSize));
1738
1739 // Make sure that we respect the |len| argument.
1740 result = cb.GetResult(
1741 entry->GetAvailableRange(0x20F0001 - kSize, kSize, cb.callback()));
1742 EXPECT_EQ(net::OK, result.net_error);
1743 EXPECT_EQ(1, result.available_len);
1744 EXPECT_EQ(0x20F0000, result.start);
1745
1746 // Use very small ranges. Write at offset 50.
1747 const int kTinyLen = 10;
1748 EXPECT_EQ(kTinyLen, WriteSparseData(entry, 50, buf.get(), kTinyLen));
1749
1750 result = cb.GetResult(
1751 entry->GetAvailableRange(kTinyLen * 2, kTinyLen, cb.callback()));
1752 EXPECT_EQ(net::OK, result.net_error);
1753 EXPECT_EQ(0, result.available_len);
1754 EXPECT_EQ(kTinyLen * 2, result.start);
1755
1756 // Get a huge range with maximum boundary
1757 result = cb.GetResult(entry->GetAvailableRange(
1758 0x2100000, std::numeric_limits<int32_t>::max(), cb.callback()));
1759 EXPECT_EQ(net::OK, result.net_error);
1760 EXPECT_EQ(0, result.available_len);
1761
1762 entry->Close();
1763 }
1764
TEST_F(DiskCacheEntryTest,GetAvailableRange)1765 TEST_F(DiskCacheEntryTest, GetAvailableRange) {
1766 InitCache();
1767 GetAvailableRangeTest();
1768 }
1769
TEST_F(DiskCacheEntryTest,MemoryOnlyGetAvailableRange)1770 TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
1771 SetMemoryOnlyMode();
1772 InitCache();
1773 GetAvailableRangeTest();
1774 }
1775
TEST_F(DiskCacheEntryTest,GetAvailableRangeBlockFileDiscontinuous)1776 TEST_F(DiskCacheEntryTest, GetAvailableRangeBlockFileDiscontinuous) {
1777 // crbug.com/791056 --- blockfile problem when there is a sub-KiB write before
1778 // a bunch of full 1KiB blocks, and a GetAvailableRange is issued to which
1779 // both are a potentially relevant.
1780 InitCache();
1781
1782 std::string key("the first key");
1783 disk_cache::Entry* entry;
1784 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1785
1786 auto buf_2k = base::MakeRefCounted<net::IOBufferWithSize>(2 * 1024);
1787 CacheTestFillBuffer(buf_2k->data(), 2 * 1024, false);
1788
1789 const int kSmallSize = 612; // sub-1k
1790 auto buf_small = base::MakeRefCounted<net::IOBufferWithSize>(kSmallSize);
1791 CacheTestFillBuffer(buf_small->data(), kSmallSize, false);
1792
1793 // Sets some bits for blocks representing 1K ranges [1024, 3072),
1794 // which will be relevant for the next GetAvailableRange call.
1795 EXPECT_EQ(2 * 1024, WriteSparseData(entry, /* offset = */ 1024, buf_2k.get(),
1796 /* size = */ 2 * 1024));
1797
1798 // Now record a partial write from start of the first kb.
1799 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0,
1800 buf_small.get(), kSmallSize));
1801
1802 // Try to query a range starting from that block 0.
1803 // The cache tracks: [0, 612) [1024, 3072).
1804 // The request is for: [812, 2059) so response should be [1024, 2059), which
1805 // has length = 1035. Previously this return a negative number for rv.
1806 TestRangeResultCompletionCallback cb;
1807 RangeResult result =
1808 cb.GetResult(entry->GetAvailableRange(812, 1247, cb.callback()));
1809 EXPECT_EQ(net::OK, result.net_error);
1810 EXPECT_EQ(1035, result.available_len);
1811 EXPECT_EQ(1024, result.start);
1812
1813 // Now query [512, 1536). This matches both [512, 612) and [1024, 1536),
1814 // so this should return [512, 612).
1815 result = cb.GetResult(entry->GetAvailableRange(512, 1024, cb.callback()));
1816 EXPECT_EQ(net::OK, result.net_error);
1817 EXPECT_EQ(100, result.available_len);
1818 EXPECT_EQ(512, result.start);
1819
1820 // Now query next portion, [612, 1636). This now just should produce
1821 // [1024, 1636)
1822 result = cb.GetResult(entry->GetAvailableRange(612, 1024, cb.callback()));
1823 EXPECT_EQ(net::OK, result.net_error);
1824 EXPECT_EQ(612, result.available_len);
1825 EXPECT_EQ(1024, result.start);
1826
1827 // Do a continuous small write, this one at [3072, 3684).
1828 // This means the cache tracks [1024, 3072) via bitmaps and [3072, 3684)
1829 // as the last write.
1830 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 3072,
1831 buf_small.get(), kSmallSize));
1832
1833 // Query [2048, 4096). Should get [2048, 3684)
1834 result = cb.GetResult(entry->GetAvailableRange(2048, 2048, cb.callback()));
1835 EXPECT_EQ(net::OK, result.net_error);
1836 EXPECT_EQ(1636, result.available_len);
1837 EXPECT_EQ(2048, result.start);
1838
1839 // Now write at [4096, 4708). Since only one sub-kb thing is tracked, this
1840 // now tracks [1024, 3072) via bitmaps and [4096, 4708) as the last write.
1841 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 4096,
1842 buf_small.get(), kSmallSize));
1843
1844 // Query [2048, 4096). Should get [2048, 3072)
1845 result = cb.GetResult(entry->GetAvailableRange(2048, 2048, cb.callback()));
1846 EXPECT_EQ(net::OK, result.net_error);
1847 EXPECT_EQ(1024, result.available_len);
1848 EXPECT_EQ(2048, result.start);
1849
1850 // Query 2K more after that: [3072, 5120). Should get [4096, 4708)
1851 result = cb.GetResult(entry->GetAvailableRange(3072, 2048, cb.callback()));
1852 EXPECT_EQ(net::OK, result.net_error);
1853 EXPECT_EQ(612, result.available_len);
1854 EXPECT_EQ(4096, result.start);
1855
1856 // Also double-check that offsets within later children are correctly
1857 // computed.
1858 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0x200400,
1859 buf_small.get(), kSmallSize));
1860 result =
1861 cb.GetResult(entry->GetAvailableRange(0x100000, 0x200000, cb.callback()));
1862 EXPECT_EQ(net::OK, result.net_error);
1863 EXPECT_EQ(kSmallSize, result.available_len);
1864 EXPECT_EQ(0x200400, result.start);
1865
1866 entry->Close();
1867 }
1868
1869 // Tests that non-sequential writes that are not aligned with the minimum sparse
1870 // data granularity (1024 bytes) do in fact result in dropped data.
TEST_F(DiskCacheEntryTest,SparseWriteDropped)1871 TEST_F(DiskCacheEntryTest, SparseWriteDropped) {
1872 InitCache();
1873 std::string key("the first key");
1874 disk_cache::Entry* entry;
1875 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1876
1877 const int kSize = 180;
1878 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1879 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1880 CacheTestFillBuffer(buf_1->data(), kSize, false);
1881
1882 // Do small writes (180 bytes) that get increasingly close to a 1024-byte
1883 // boundary. All data should be dropped until a boundary is crossed, at which
1884 // point the data after the boundary is saved (at least for a while).
1885 int offset = 1024 - 500;
1886 int rv = 0;
1887 net::TestCompletionCallback cb;
1888 TestRangeResultCompletionCallback range_cb;
1889 RangeResult result;
1890 for (int i = 0; i < 5; i++) {
1891 // Check result of last GetAvailableRange.
1892 EXPECT_EQ(0, result.available_len);
1893
1894 rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
1895 EXPECT_EQ(kSize, cb.GetResult(rv));
1896
1897 result = range_cb.GetResult(
1898 entry->GetAvailableRange(offset - 100, kSize, range_cb.callback()));
1899 EXPECT_EQ(net::OK, result.net_error);
1900 EXPECT_EQ(0, result.available_len);
1901
1902 result = range_cb.GetResult(
1903 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1904 if (!result.available_len) {
1905 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
1906 EXPECT_EQ(0, cb.GetResult(rv));
1907 }
1908 offset += 1024 * i + 100;
1909 }
1910
1911 // The last write started 100 bytes below a bundary, so there should be 80
1912 // bytes after the boundary.
1913 EXPECT_EQ(80, result.available_len);
1914 EXPECT_EQ(1024 * 7, result.start);
1915 rv = entry->ReadSparseData(result.start, buf_2.get(), kSize, cb.callback());
1916 EXPECT_EQ(80, cb.GetResult(rv));
1917 EXPECT_EQ(0, memcmp(buf_1.get()->data() + 100, buf_2.get()->data(), 80));
1918
1919 // And even that part is dropped when another write changes the offset.
1920 offset = result.start;
1921 rv = entry->WriteSparseData(0, buf_1.get(), kSize, cb.callback());
1922 EXPECT_EQ(kSize, cb.GetResult(rv));
1923
1924 result = range_cb.GetResult(
1925 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1926 EXPECT_EQ(net::OK, result.net_error);
1927 EXPECT_EQ(0, result.available_len);
1928 entry->Close();
1929 }
1930
1931 // Tests that small sequential writes are not dropped.
TEST_F(DiskCacheEntryTest,SparseSquentialWriteNotDropped)1932 TEST_F(DiskCacheEntryTest, SparseSquentialWriteNotDropped) {
1933 InitCache();
1934 std::string key("the first key");
1935 disk_cache::Entry* entry;
1936 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1937
1938 const int kSize = 180;
1939 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1940 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1941 CacheTestFillBuffer(buf_1->data(), kSize, false);
1942
1943 // Any starting offset is fine as long as it is 1024-bytes aligned.
1944 int rv = 0;
1945 RangeResult result;
1946 net::TestCompletionCallback cb;
1947 TestRangeResultCompletionCallback range_cb;
1948 int64_t offset = 1024 * 11;
1949 for (; offset < 20000; offset += kSize) {
1950 rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
1951 EXPECT_EQ(kSize, cb.GetResult(rv));
1952
1953 result = range_cb.GetResult(
1954 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1955 EXPECT_EQ(net::OK, result.net_error);
1956 EXPECT_EQ(kSize, result.available_len);
1957 EXPECT_EQ(offset, result.start);
1958
1959 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
1960 EXPECT_EQ(kSize, cb.GetResult(rv));
1961 EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
1962 }
1963
1964 entry->Close();
1965 FlushQueueForTest();
1966
1967 // Verify again the last write made.
1968 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1969 offset -= kSize;
1970 result = range_cb.GetResult(
1971 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1972 EXPECT_EQ(net::OK, result.net_error);
1973 EXPECT_EQ(kSize, result.available_len);
1974 EXPECT_EQ(offset, result.start);
1975
1976 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
1977 EXPECT_EQ(kSize, cb.GetResult(rv));
1978 EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
1979
1980 entry->Close();
1981 }
1982
CouldBeSparse()1983 void DiskCacheEntryTest::CouldBeSparse() {
1984 std::string key("the first key");
1985 disk_cache::Entry* entry;
1986 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1987
1988 const int kSize = 16 * 1024;
1989 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1990 CacheTestFillBuffer(buf->data(), kSize, false);
1991
1992 // Write at offset 0x20F0000 (33 MB - 64 KB).
1993 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1994
1995 EXPECT_TRUE(entry->CouldBeSparse());
1996 entry->Close();
1997
1998 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1999 EXPECT_TRUE(entry->CouldBeSparse());
2000 entry->Close();
2001
2002 // Now verify a regular entry.
2003 key.assign("another key");
2004 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2005 EXPECT_FALSE(entry->CouldBeSparse());
2006
2007 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false));
2008 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false));
2009 EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false));
2010
2011 EXPECT_FALSE(entry->CouldBeSparse());
2012 entry->Close();
2013
2014 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2015 EXPECT_FALSE(entry->CouldBeSparse());
2016 entry->Close();
2017 }
2018
TEST_F(DiskCacheEntryTest,CouldBeSparse)2019 TEST_F(DiskCacheEntryTest, CouldBeSparse) {
2020 InitCache();
2021 CouldBeSparse();
2022 }
2023
TEST_F(DiskCacheEntryTest,MemoryCouldBeSparse)2024 TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) {
2025 SetMemoryOnlyMode();
2026 InitCache();
2027 CouldBeSparse();
2028 }
2029
TEST_F(DiskCacheEntryTest,MemoryOnlyMisalignedSparseIO)2030 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
2031 SetMemoryOnlyMode();
2032 InitCache();
2033
2034 const int kSize = 8192;
2035 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2036 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2037 CacheTestFillBuffer(buf_1->data(), kSize, false);
2038
2039 std::string key("the first key");
2040 disk_cache::Entry* entry;
2041 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2042
2043 // This loop writes back to back starting from offset 0 and 9000.
2044 for (int i = 0; i < kSize; i += 1024) {
2045 auto buf_3 =
2046 base::MakeRefCounted<net::WrappedIOBuffer>(buf_1->span().subspan(i));
2047 VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get());
2048 VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get());
2049 }
2050
2051 // Make sure we have data written.
2052 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
2053 VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize);
2054
2055 // This tests a large write that spans 3 entries from a misaligned offset.
2056 VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get());
2057
2058 entry->Close();
2059 }
2060
TEST_F(DiskCacheEntryTest,MemoryOnlyMisalignedGetAvailableRange)2061 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
2062 SetMemoryOnlyMode();
2063 InitCache();
2064
2065 const int kSize = 8192;
2066 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2067 CacheTestFillBuffer(buf->data(), kSize, false);
2068
2069 disk_cache::Entry* entry;
2070 std::string key("the first key");
2071 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2072
2073 // Writes in the middle of an entry.
2074 EXPECT_EQ(1024, entry->WriteSparseData(0, buf.get(), 1024,
2075 net::CompletionOnceCallback()));
2076 EXPECT_EQ(1024, entry->WriteSparseData(5120, buf.get(), 1024,
2077 net::CompletionOnceCallback()));
2078 EXPECT_EQ(1024, entry->WriteSparseData(10000, buf.get(), 1024,
2079 net::CompletionOnceCallback()));
2080
2081 // Writes in the middle of an entry and spans 2 child entries.
2082 EXPECT_EQ(8192, entry->WriteSparseData(50000, buf.get(), 8192,
2083 net::CompletionOnceCallback()));
2084
2085 TestRangeResultCompletionCallback cb;
2086 // Test that we stop at a discontinuous child at the second block.
2087 RangeResult result =
2088 cb.GetResult(entry->GetAvailableRange(0, 10000, cb.callback()));
2089 EXPECT_EQ(net::OK, result.net_error);
2090 EXPECT_EQ(1024, result.available_len);
2091 EXPECT_EQ(0, result.start);
2092
2093 // Test that number of bytes is reported correctly when we start from the
2094 // middle of a filled region.
2095 result = cb.GetResult(entry->GetAvailableRange(512, 10000, cb.callback()));
2096 EXPECT_EQ(net::OK, result.net_error);
2097 EXPECT_EQ(512, result.available_len);
2098 EXPECT_EQ(512, result.start);
2099
2100 // Test that we found bytes in the child of next block.
2101 result = cb.GetResult(entry->GetAvailableRange(1024, 10000, cb.callback()));
2102 EXPECT_EQ(net::OK, result.net_error);
2103 EXPECT_EQ(1024, result.available_len);
2104 EXPECT_EQ(5120, result.start);
2105
2106 // Test that the desired length is respected. It starts within a filled
2107 // region.
2108 result = cb.GetResult(entry->GetAvailableRange(5500, 512, cb.callback()));
2109 EXPECT_EQ(net::OK, result.net_error);
2110 EXPECT_EQ(512, result.available_len);
2111 EXPECT_EQ(5500, result.start);
2112
2113 // Test that the desired length is respected. It starts before a filled
2114 // region.
2115 result = cb.GetResult(entry->GetAvailableRange(5000, 620, cb.callback()));
2116 EXPECT_EQ(net::OK, result.net_error);
2117 EXPECT_EQ(500, result.available_len);
2118 EXPECT_EQ(5120, result.start);
2119
2120 // Test that multiple blocks are scanned.
2121 result = cb.GetResult(entry->GetAvailableRange(40000, 20000, cb.callback()));
2122 EXPECT_EQ(net::OK, result.net_error);
2123 EXPECT_EQ(8192, result.available_len);
2124 EXPECT_EQ(50000, result.start);
2125
2126 entry->Close();
2127 }
2128
UpdateSparseEntry()2129 void DiskCacheEntryTest::UpdateSparseEntry() {
2130 std::string key("the first key");
2131 disk_cache::Entry* entry1;
2132 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
2133
2134 const int kSize = 2048;
2135 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2136 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2137 CacheTestFillBuffer(buf_1->data(), kSize, false);
2138
2139 // Write at offset 0.
2140 VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get());
2141 entry1->Close();
2142
2143 // Write at offset 2048.
2144 ASSERT_THAT(OpenEntry(key, &entry1), IsOk());
2145 VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get());
2146
2147 disk_cache::Entry* entry2;
2148 ASSERT_THAT(CreateEntry("the second key", &entry2), IsOk());
2149
2150 entry1->Close();
2151 entry2->Close();
2152 FlushQueueForTest();
2153 if (memory_only_ || simple_cache_mode_)
2154 EXPECT_EQ(2, cache_->GetEntryCount());
2155 else
2156 EXPECT_EQ(3, cache_->GetEntryCount());
2157 }
2158
TEST_F(DiskCacheEntryTest,UpdateSparseEntry)2159 TEST_F(DiskCacheEntryTest, UpdateSparseEntry) {
2160 InitCache();
2161 UpdateSparseEntry();
2162 }
2163
TEST_F(DiskCacheEntryTest,MemoryOnlyUpdateSparseEntry)2164 TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) {
2165 SetMemoryOnlyMode();
2166 InitCache();
2167 UpdateSparseEntry();
2168 }
2169
DoomSparseEntry()2170 void DiskCacheEntryTest::DoomSparseEntry() {
2171 std::string key1("the first key");
2172 std::string key2("the second key");
2173 disk_cache::Entry *entry1, *entry2;
2174 ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
2175 ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
2176
2177 const int kSize = 4 * 1024;
2178 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2179 CacheTestFillBuffer(buf->data(), kSize, false);
2180
2181 int64_t offset = 1024;
2182 // Write to a bunch of ranges.
2183 for (int i = 0; i < 12; i++) {
2184 EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize));
2185 // Keep the second map under the default size.
2186 if (i < 9)
2187 EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize));
2188
2189 offset *= 4;
2190 }
2191
2192 if (memory_only_ || simple_cache_mode_)
2193 EXPECT_EQ(2, cache_->GetEntryCount());
2194 else
2195 EXPECT_EQ(15, cache_->GetEntryCount());
2196
2197 // Doom the first entry while it's still open.
2198 entry1->Doom();
2199 entry1->Close();
2200 entry2->Close();
2201
2202 // Doom the second entry after it's fully saved.
2203 EXPECT_THAT(DoomEntry(key2), IsOk());
2204
2205 // Make sure we do all needed work. This may fail for entry2 if between Close
2206 // and DoomEntry the system decides to remove all traces of the file from the
2207 // system cache so we don't see that there is pending IO.
2208 base::RunLoop().RunUntilIdle();
2209
2210 if (memory_only_) {
2211 EXPECT_EQ(0, cache_->GetEntryCount());
2212 } else {
2213 if (5 == cache_->GetEntryCount()) {
2214 // Most likely we are waiting for the result of reading the sparse info
2215 // (it's always async on Posix so it is easy to miss). Unfortunately we
2216 // don't have any signal to watch for so we can only wait.
2217 base::PlatformThread::Sleep(base::Milliseconds(500));
2218 base::RunLoop().RunUntilIdle();
2219 }
2220 EXPECT_EQ(0, cache_->GetEntryCount());
2221 }
2222 }
2223
TEST_F(DiskCacheEntryTest,DoomSparseEntry)2224 TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
2225 UseCurrentThread();
2226 InitCache();
2227 DoomSparseEntry();
2228 }
2229
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomSparseEntry)2230 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
2231 SetMemoryOnlyMode();
2232 InitCache();
2233 DoomSparseEntry();
2234 }
2235
2236 // A TestCompletionCallback wrapper that deletes the cache from within the
2237 // callback. The way TestCompletionCallback works means that all tasks (even
2238 // new ones) are executed by the message loop before returning to the caller so
2239 // the only way to simulate a race is to execute what we want on the callback.
2240 class SparseTestCompletionCallback: public net::TestCompletionCallback {
2241 public:
SparseTestCompletionCallback(std::unique_ptr<disk_cache::Backend> cache)2242 explicit SparseTestCompletionCallback(
2243 std::unique_ptr<disk_cache::Backend> cache)
2244 : cache_(std::move(cache)) {}
2245
2246 SparseTestCompletionCallback(const SparseTestCompletionCallback&) = delete;
2247 SparseTestCompletionCallback& operator=(const SparseTestCompletionCallback&) =
2248 delete;
2249
2250 private:
SetResult(int result)2251 void SetResult(int result) override {
2252 cache_.reset();
2253 TestCompletionCallback::SetResult(result);
2254 }
2255
2256 std::unique_ptr<disk_cache::Backend> cache_;
2257 };
2258
2259 // Tests that we don't crash when the backend is deleted while we are working
2260 // deleting the sub-entries of a sparse entry.
TEST_F(DiskCacheEntryTest,DoomSparseEntry2)2261 TEST_F(DiskCacheEntryTest, DoomSparseEntry2) {
2262 UseCurrentThread();
2263 InitCache();
2264 std::string key("the key");
2265 disk_cache::Entry* entry;
2266 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2267
2268 const int kSize = 4 * 1024;
2269 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2270 CacheTestFillBuffer(buf->data(), kSize, false);
2271
2272 int64_t offset = 1024;
2273 // Write to a bunch of ranges.
2274 for (int i = 0; i < 12; i++) {
2275 EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf.get(), kSize,
2276 net::CompletionOnceCallback()));
2277 offset *= 4;
2278 }
2279 EXPECT_EQ(9, cache_->GetEntryCount());
2280
2281 entry->Close();
2282 disk_cache::Backend* cache = cache_.get();
2283 SparseTestCompletionCallback cb(TakeCache());
2284 int rv = cache->DoomEntry(key, net::HIGHEST, cb.callback());
2285 EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
2286 EXPECT_THAT(cb.WaitForResult(), IsOk());
2287 }
2288
PartialSparseEntry()2289 void DiskCacheEntryTest::PartialSparseEntry() {
2290 std::string key("the first key");
2291 disk_cache::Entry* entry;
2292 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2293
2294 // We should be able to deal with IO that is not aligned to the block size
2295 // of a sparse entry, at least to write a big range without leaving holes.
2296 const int kSize = 4 * 1024;
2297 const int kSmallSize = 128;
2298 auto buf1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2299 CacheTestFillBuffer(buf1->data(), kSize, false);
2300
2301 // The first write is just to extend the entry. The third write occupies
2302 // a 1KB block partially, it may not be written internally depending on the
2303 // implementation.
2304 EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize));
2305 EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize));
2306 EXPECT_EQ(kSmallSize,
2307 WriteSparseData(entry, 1080321, buf1.get(), kSmallSize));
2308 entry->Close();
2309 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2310
2311 auto buf2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2312 memset(buf2->data(), 0, kSize);
2313 EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize));
2314
2315 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2316 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2317 EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize));
2318
2319 // This read should not change anything.
2320 if (memory_only_ || simple_cache_mode_)
2321 EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize));
2322 else
2323 EXPECT_EQ(0, ReadSparseData(entry, 24000, buf2.get(), kSize));
2324
2325 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2326 EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize));
2327
2328 TestRangeResultCompletionCallback cb;
2329 RangeResult result;
2330 if (memory_only_ || simple_cache_mode_) {
2331 result = cb.GetResult(entry->GetAvailableRange(0, 600, cb.callback()));
2332 EXPECT_EQ(net::OK, result.net_error);
2333 EXPECT_EQ(100, result.available_len);
2334 EXPECT_EQ(500, result.start);
2335 } else {
2336 result = cb.GetResult(entry->GetAvailableRange(0, 2048, cb.callback()));
2337 EXPECT_EQ(net::OK, result.net_error);
2338 EXPECT_EQ(1024, result.available_len);
2339 EXPECT_EQ(1024, result.start);
2340 }
2341 result = cb.GetResult(entry->GetAvailableRange(kSize, kSize, cb.callback()));
2342 EXPECT_EQ(net::OK, result.net_error);
2343 EXPECT_EQ(500, result.available_len);
2344 EXPECT_EQ(kSize, result.start);
2345 result =
2346 cb.GetResult(entry->GetAvailableRange(20 * 1024, 10000, cb.callback()));
2347 EXPECT_EQ(net::OK, result.net_error);
2348 if (memory_only_ || simple_cache_mode_)
2349 EXPECT_EQ(3616, result.available_len);
2350 else
2351 EXPECT_EQ(3072, result.available_len);
2352
2353 EXPECT_EQ(20 * 1024, result.start);
2354
2355 // 1. Query before a filled 1KB block.
2356 // 2. Query within a filled 1KB block.
2357 // 3. Query beyond a filled 1KB block.
2358 if (memory_only_ || simple_cache_mode_) {
2359 result =
2360 cb.GetResult(entry->GetAvailableRange(19400, kSize, cb.callback()));
2361 EXPECT_EQ(net::OK, result.net_error);
2362 EXPECT_EQ(3496, result.available_len);
2363 EXPECT_EQ(20000, result.start);
2364 } else {
2365 result =
2366 cb.GetResult(entry->GetAvailableRange(19400, kSize, cb.callback()));
2367 EXPECT_EQ(net::OK, result.net_error);
2368 EXPECT_EQ(3016, result.available_len);
2369 EXPECT_EQ(20480, result.start);
2370 }
2371 result = cb.GetResult(entry->GetAvailableRange(3073, kSize, cb.callback()));
2372 EXPECT_EQ(net::OK, result.net_error);
2373 EXPECT_EQ(1523, result.available_len);
2374 EXPECT_EQ(3073, result.start);
2375 result = cb.GetResult(entry->GetAvailableRange(4600, kSize, cb.callback()));
2376 EXPECT_EQ(net::OK, result.net_error);
2377 EXPECT_EQ(0, result.available_len);
2378 EXPECT_EQ(4600, result.start);
2379
2380 // Now make another write and verify that there is no hole in between.
2381 EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize));
2382 result = cb.GetResult(entry->GetAvailableRange(1024, 10000, cb.callback()));
2383 EXPECT_EQ(net::OK, result.net_error);
2384 EXPECT_EQ(7 * 1024 + 500, result.available_len);
2385 EXPECT_EQ(1024, result.start);
2386 EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize));
2387 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2388 EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
2389
2390 entry->Close();
2391 }
2392
TEST_F(DiskCacheEntryTest,PartialSparseEntry)2393 TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
2394 InitCache();
2395 PartialSparseEntry();
2396 }
2397
TEST_F(DiskCacheEntryTest,MemoryPartialSparseEntry)2398 TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
2399 SetMemoryOnlyMode();
2400 InitCache();
2401 PartialSparseEntry();
2402 }
2403
SparseInvalidArg()2404 void DiskCacheEntryTest::SparseInvalidArg() {
2405 std::string key("key");
2406 disk_cache::Entry* entry = nullptr;
2407 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2408
2409 const int kSize = 2048;
2410 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2411 CacheTestFillBuffer(buf->data(), kSize, false);
2412
2413 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2414 WriteSparseData(entry, -1, buf.get(), kSize));
2415 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2416 WriteSparseData(entry, 0, buf.get(), -1));
2417
2418 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2419 ReadSparseData(entry, -1, buf.get(), kSize));
2420 EXPECT_EQ(net::ERR_INVALID_ARGUMENT, ReadSparseData(entry, 0, buf.get(), -1));
2421
2422 int64_t start_out;
2423 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2424 GetAvailableRange(entry, -1, kSize, &start_out));
2425 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2426 GetAvailableRange(entry, 0, -1, &start_out));
2427
2428 int rv = WriteSparseData(
2429 entry, std::numeric_limits<int64_t>::max() - kSize + 1, buf.get(), kSize);
2430 // Blockfile rejects anything over 64GiB with
2431 // net::ERR_CACHE_OPERATION_NOT_SUPPORTED, which is also OK here, as it's not
2432 // an overflow or something else nonsensical.
2433 EXPECT_TRUE(rv == net::ERR_INVALID_ARGUMENT ||
2434 rv == net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
2435
2436 entry->Close();
2437 }
2438
TEST_F(DiskCacheEntryTest,SparseInvalidArg)2439 TEST_F(DiskCacheEntryTest, SparseInvalidArg) {
2440 InitCache();
2441 SparseInvalidArg();
2442 }
2443
TEST_F(DiskCacheEntryTest,MemoryOnlySparseInvalidArg)2444 TEST_F(DiskCacheEntryTest, MemoryOnlySparseInvalidArg) {
2445 SetMemoryOnlyMode();
2446 InitCache();
2447 SparseInvalidArg();
2448 }
2449
TEST_F(DiskCacheEntryTest,SimpleSparseInvalidArg)2450 TEST_F(DiskCacheEntryTest, SimpleSparseInvalidArg) {
2451 SetSimpleCacheMode();
2452 InitCache();
2453 SparseInvalidArg();
2454 }
2455
SparseClipEnd(int64_t max_index,bool expect_unsupported)2456 void DiskCacheEntryTest::SparseClipEnd(int64_t max_index,
2457 bool expect_unsupported) {
2458 std::string key("key");
2459 disk_cache::Entry* entry = nullptr;
2460 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2461
2462 const int kSize = 1024;
2463 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2464 CacheTestFillBuffer(buf->data(), kSize, false);
2465
2466 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize * 2);
2467 CacheTestFillBuffer(read_buf->data(), kSize * 2, false);
2468
2469 const int64_t kOffset = max_index - kSize;
2470 int rv = WriteSparseData(entry, kOffset, buf.get(), kSize);
2471 EXPECT_EQ(
2472 rv, expect_unsupported ? net::ERR_CACHE_OPERATION_NOT_SUPPORTED : kSize);
2473
2474 // Try to read further than offset range, should get clipped (if supported).
2475 rv = ReadSparseData(entry, kOffset, read_buf.get(), kSize * 2);
2476 if (expect_unsupported) {
2477 EXPECT_EQ(rv, net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
2478 } else {
2479 EXPECT_EQ(kSize, rv);
2480 EXPECT_EQ(0, memcmp(buf->data(), read_buf->data(), kSize));
2481 }
2482
2483 TestRangeResultCompletionCallback cb;
2484 RangeResult result = cb.GetResult(
2485 entry->GetAvailableRange(kOffset - kSize, kSize * 3, cb.callback()));
2486 if (expect_unsupported) {
2487 // GetAvailableRange just returns nothing found, not an error.
2488 EXPECT_EQ(net::OK, result.net_error);
2489 EXPECT_EQ(result.available_len, 0);
2490 } else {
2491 EXPECT_EQ(net::OK, result.net_error);
2492 EXPECT_EQ(kSize, result.available_len);
2493 EXPECT_EQ(kOffset, result.start);
2494 }
2495
2496 entry->Close();
2497 }
2498
TEST_F(DiskCacheEntryTest,SparseClipEnd)2499 TEST_F(DiskCacheEntryTest, SparseClipEnd) {
2500 InitCache();
2501
2502 // Blockfile refuses to deal with sparse indices over 64GiB.
2503 SparseClipEnd(std::numeric_limits<int64_t>::max(),
2504 /*expected_unsupported=*/true);
2505 }
2506
TEST_F(DiskCacheEntryTest,SparseClipEnd2)2507 TEST_F(DiskCacheEntryTest, SparseClipEnd2) {
2508 InitCache();
2509
2510 const int64_t kLimit = 64ll * 1024 * 1024 * 1024;
2511 // Separate test for blockfile for indices right at the edge of its address
2512 // space limit. kLimit must match kMaxEndOffset in sparse_control.cc
2513 SparseClipEnd(kLimit, /*expected_unsupported=*/false);
2514
2515 // Test with things after kLimit, too, which isn't an issue for backends
2516 // supporting the entire 64-bit offset range.
2517 std::string key("key2");
2518 disk_cache::Entry* entry = nullptr;
2519 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2520
2521 const int kSize = 1024;
2522 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2523 CacheTestFillBuffer(buf->data(), kSize, false);
2524
2525 // Try to write after --- fails.
2526 int rv = WriteSparseData(entry, kLimit, buf.get(), kSize);
2527 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
2528
2529 // Similarly for read.
2530 rv = ReadSparseData(entry, kLimit, buf.get(), kSize);
2531 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
2532
2533 // GetAvailableRange just returns nothing.
2534 TestRangeResultCompletionCallback cb;
2535 RangeResult result =
2536 cb.GetResult(entry->GetAvailableRange(kLimit, kSize * 3, cb.callback()));
2537 EXPECT_EQ(net::OK, result.net_error);
2538 EXPECT_EQ(0, result.available_len);
2539 entry->Close();
2540 }
2541
TEST_F(DiskCacheEntryTest,MemoryOnlySparseClipEnd)2542 TEST_F(DiskCacheEntryTest, MemoryOnlySparseClipEnd) {
2543 SetMemoryOnlyMode();
2544 InitCache();
2545 SparseClipEnd(std::numeric_limits<int64_t>::max(),
2546 /* expected_unsupported = */ false);
2547 }
2548
TEST_F(DiskCacheEntryTest,SimpleSparseClipEnd)2549 TEST_F(DiskCacheEntryTest, SimpleSparseClipEnd) {
2550 SetSimpleCacheMode();
2551 InitCache();
2552 SparseClipEnd(std::numeric_limits<int64_t>::max(),
2553 /* expected_unsupported = */ false);
2554 }
2555
2556 // Tests that corrupt sparse children are removed automatically.
TEST_F(DiskCacheEntryTest,CleanupSparseEntry)2557 TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
2558 InitCache();
2559 std::string key("the first key");
2560 disk_cache::Entry* entry;
2561 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2562
2563 const int kSize = 4 * 1024;
2564 auto buf1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2565 CacheTestFillBuffer(buf1->data(), kSize, false);
2566
2567 const int k1Meg = 1024 * 1024;
2568 EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize));
2569 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2570 EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2571 entry->Close();
2572 EXPECT_EQ(4, cache_->GetEntryCount());
2573
2574 std::unique_ptr<TestIterator> iter = CreateIterator();
2575 int count = 0;
2576 std::string child_keys[2];
2577 while (iter->OpenNextEntry(&entry) == net::OK) {
2578 ASSERT_TRUE(entry != nullptr);
2579 // Writing to an entry will alter the LRU list and invalidate the iterator.
2580 if (entry->GetKey() != key && count < 2)
2581 child_keys[count++] = entry->GetKey();
2582 entry->Close();
2583 }
2584 for (const auto& child_key : child_keys) {
2585 ASSERT_THAT(OpenEntry(child_key, &entry), IsOk());
2586 // Overwrite the header's magic and signature.
2587 EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false));
2588 entry->Close();
2589 }
2590
2591 EXPECT_EQ(4, cache_->GetEntryCount());
2592 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2593
2594 // Two children should be gone. One while reading and one while writing.
2595 EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2596 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize));
2597 EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2598
2599 // We never touched this one.
2600 EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize));
2601 entry->Close();
2602
2603 // We re-created one of the corrupt children.
2604 EXPECT_EQ(3, cache_->GetEntryCount());
2605 }
2606
TEST_F(DiskCacheEntryTest,CancelSparseIO)2607 TEST_F(DiskCacheEntryTest, CancelSparseIO) {
2608 UseCurrentThread();
2609 InitCache();
2610 std::string key("the first key");
2611 disk_cache::Entry* entry;
2612 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2613
2614 const int kSize = 40 * 1024;
2615 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2616 CacheTestFillBuffer(buf->data(), kSize, false);
2617
2618 // This will open and write two "real" entries.
2619 net::TestCompletionCallback cb1, cb2, cb3, cb4;
2620 int rv = entry->WriteSparseData(
2621 1024 * 1024 - 4096, buf.get(), kSize, cb1.callback());
2622 EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
2623
2624 TestRangeResultCompletionCallback cb5;
2625 RangeResult result =
2626 cb5.GetResult(entry->GetAvailableRange(0, kSize, cb5.callback()));
2627 if (!cb1.have_result()) {
2628 // We may or may not have finished writing to the entry. If we have not,
2629 // we cannot start another operation at this time.
2630 EXPECT_THAT(rv, IsError(net::ERR_CACHE_OPERATION_NOT_SUPPORTED));
2631 }
2632
2633 // We cancel the pending operation, and register multiple notifications.
2634 entry->CancelSparseIO();
2635 EXPECT_THAT(entry->ReadyForSparseIO(cb2.callback()),
2636 IsError(net::ERR_IO_PENDING));
2637 EXPECT_THAT(entry->ReadyForSparseIO(cb3.callback()),
2638 IsError(net::ERR_IO_PENDING));
2639 entry->CancelSparseIO(); // Should be a no op at this point.
2640 EXPECT_THAT(entry->ReadyForSparseIO(cb4.callback()),
2641 IsError(net::ERR_IO_PENDING));
2642
2643 if (!cb1.have_result()) {
2644 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2645 entry->ReadSparseData(result.start, buf.get(), kSize,
2646 net::CompletionOnceCallback()));
2647 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2648 entry->WriteSparseData(result.start, buf.get(), kSize,
2649 net::CompletionOnceCallback()));
2650 }
2651
2652 // Now see if we receive all notifications. Note that we should not be able
2653 // to write everything (unless the timing of the system is really weird).
2654 rv = cb1.WaitForResult();
2655 EXPECT_TRUE(rv == 4096 || rv == kSize);
2656 EXPECT_THAT(cb2.WaitForResult(), IsOk());
2657 EXPECT_THAT(cb3.WaitForResult(), IsOk());
2658 EXPECT_THAT(cb4.WaitForResult(), IsOk());
2659
2660 result = cb5.GetResult(
2661 entry->GetAvailableRange(result.start, kSize, cb5.callback()));
2662 EXPECT_EQ(net::OK, result.net_error);
2663 EXPECT_EQ(0, result.available_len);
2664 entry->Close();
2665 }
2666
2667 // Tests that we perform sanity checks on an entry's key. Note that there are
2668 // other tests that exercise sanity checks by using saved corrupt files.
TEST_F(DiskCacheEntryTest,KeySanityCheck)2669 TEST_F(DiskCacheEntryTest, KeySanityCheck) {
2670 UseCurrentThread();
2671 InitCache();
2672 std::string key("the first key");
2673 disk_cache::Entry* entry;
2674 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2675
2676 disk_cache::EntryImpl* entry_impl =
2677 static_cast<disk_cache::EntryImpl*>(entry);
2678 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2679
2680 // We have reserved space for a short key (one block), let's say that the key
2681 // takes more than one block, and remove the NULLs after the actual key.
2682 store->key_len = 800;
2683 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
2684 entry_impl->entry()->set_modified();
2685 entry->Close();
2686
2687 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2688 // allocated buffer here.
2689 ASSERT_NE(net::OK, OpenEntry(key, &entry));
2690 DisableIntegrityCheck();
2691 }
2692
TEST_F(DiskCacheEntryTest,KeySanityCheck2)2693 TEST_F(DiskCacheEntryTest, KeySanityCheck2) {
2694 UseCurrentThread();
2695 InitCache();
2696 std::string key("the first key");
2697 disk_cache::Entry* entry;
2698 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2699
2700 disk_cache::EntryImpl* entry_impl =
2701 static_cast<disk_cache::EntryImpl*>(entry);
2702 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2703
2704 // Fill in the rest of inline key store with non-nulls. Unlike in
2705 // KeySanityCheck, this does not change the length to identify it as
2706 // stored under |long_key|.
2707 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
2708 entry_impl->entry()->set_modified();
2709 entry->Close();
2710
2711 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2712 // allocated buffer here.
2713 ASSERT_NE(net::OK, OpenEntry(key, &entry));
2714 DisableIntegrityCheck();
2715 }
2716
TEST_F(DiskCacheEntryTest,KeySanityCheck3)2717 TEST_F(DiskCacheEntryTest, KeySanityCheck3) {
2718 const size_t kVeryLong = 40 * 1024;
2719 UseCurrentThread();
2720 InitCache();
2721 std::string key(kVeryLong, 'a');
2722 disk_cache::Entry* entry;
2723 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2724
2725 disk_cache::EntryImpl* entry_impl =
2726 static_cast<disk_cache::EntryImpl*>(entry);
2727 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2728
2729 // Test meaningful when using long keys; and also want this to be
2730 // an external file to avoid needing to duplicate offset math here.
2731 disk_cache::Addr key_addr(store->long_key);
2732 ASSERT_TRUE(key_addr.is_initialized());
2733 ASSERT_TRUE(key_addr.is_separate_file());
2734
2735 // Close the entry before messing up its files.
2736 entry->Close();
2737
2738 // Mess up the terminating null in the external key file.
2739 auto key_file =
2740 base::MakeRefCounted<disk_cache::File>(true /* want sync ops*/);
2741 ASSERT_TRUE(key_file->Init(cache_impl_->GetFileName(key_addr)));
2742
2743 ASSERT_TRUE(key_file->Write("b", 1u, kVeryLong));
2744 key_file = nullptr;
2745
2746 // This case gets graceful recovery.
2747 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2748
2749 // Make sure the key object isn't messed up.
2750 EXPECT_EQ(kVeryLong, strlen(entry->GetKey().data()));
2751 entry->Close();
2752 }
2753
TEST_F(DiskCacheEntryTest,SimpleCacheInternalAsyncIO)2754 TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) {
2755 SetSimpleCacheMode();
2756 InitCache();
2757 InternalAsyncIO();
2758 }
2759
TEST_F(DiskCacheEntryTest,SimpleCacheExternalAsyncIO)2760 TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) {
2761 SetSimpleCacheMode();
2762 InitCache();
2763 ExternalAsyncIO();
2764 }
2765
TEST_F(DiskCacheEntryTest,SimpleCacheReleaseBuffer)2766 TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) {
2767 SetSimpleCacheMode();
2768 InitCache();
2769 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2770 EXPECT_THAT(DoomAllEntries(), IsOk());
2771 ReleaseBuffer(i);
2772 }
2773 }
2774
TEST_F(DiskCacheEntryTest,SimpleCacheStreamAccess)2775 TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) {
2776 SetSimpleCacheMode();
2777 InitCache();
2778 StreamAccess();
2779 }
2780
TEST_F(DiskCacheEntryTest,SimpleCacheGetKey)2781 TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) {
2782 SetSimpleCacheMode();
2783 InitCache();
2784 GetKey();
2785 }
2786
TEST_F(DiskCacheEntryTest,SimpleCacheGetTimes)2787 TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) {
2788 SetSimpleCacheMode();
2789 InitCache();
2790 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2791 EXPECT_THAT(DoomAllEntries(), IsOk());
2792 GetTimes(i);
2793 }
2794 }
2795
TEST_F(DiskCacheEntryTest,SimpleCacheGrowData)2796 TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) {
2797 SetSimpleCacheMode();
2798 InitCache();
2799 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2800 EXPECT_THAT(DoomAllEntries(), IsOk());
2801 GrowData(i);
2802 }
2803 }
2804
TEST_F(DiskCacheEntryTest,SimpleCacheTruncateData)2805 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) {
2806 SetSimpleCacheMode();
2807 InitCache();
2808 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2809 EXPECT_THAT(DoomAllEntries(), IsOk());
2810 TruncateData(i);
2811 }
2812 }
2813
TEST_F(DiskCacheEntryTest,SimpleCacheZeroLengthIO)2814 TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) {
2815 SetSimpleCacheMode();
2816 InitCache();
2817 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2818 EXPECT_THAT(DoomAllEntries(), IsOk());
2819 ZeroLengthIO(i);
2820 }
2821 }
2822
TEST_F(DiskCacheEntryTest,SimpleCacheSizeAtCreate)2823 TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) {
2824 SetSimpleCacheMode();
2825 InitCache();
2826 SizeAtCreate();
2827 }
2828
TEST_F(DiskCacheEntryTest,SimpleCacheReuseExternalEntry)2829 TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) {
2830 SetSimpleCacheMode();
2831 SetMaxSize(200 * 1024);
2832 InitCache();
2833 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2834 EXPECT_THAT(DoomAllEntries(), IsOk());
2835 ReuseEntry(20 * 1024, i);
2836 }
2837 }
2838
TEST_F(DiskCacheEntryTest,SimpleCacheReuseInternalEntry)2839 TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) {
2840 SetSimpleCacheMode();
2841 SetMaxSize(100 * 1024);
2842 InitCache();
2843 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2844 EXPECT_THAT(DoomAllEntries(), IsOk());
2845 ReuseEntry(10 * 1024, i);
2846 }
2847 }
2848
TEST_F(DiskCacheEntryTest,SimpleCacheGiantEntry)2849 TEST_F(DiskCacheEntryTest, SimpleCacheGiantEntry) {
2850 const int kBufSize = 32 * 1024;
2851 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufSize);
2852 CacheTestFillBuffer(buffer->data(), kBufSize, false);
2853
2854 // Make sure SimpleCache can write up to 5MiB entry even with a 20MiB cache
2855 // size that Android WebView uses at the time of this test's writing.
2856 SetSimpleCacheMode();
2857 SetMaxSize(20 * 1024 * 1024);
2858 InitCache();
2859
2860 {
2861 std::string key1("the first key");
2862 disk_cache::Entry* entry1 = nullptr;
2863 ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
2864
2865 const int kSize1 = 5 * 1024 * 1024;
2866 EXPECT_EQ(kBufSize, WriteData(entry1, 1 /* stream */, kSize1 - kBufSize,
2867 buffer.get(), kBufSize, true /* truncate */));
2868 entry1->Close();
2869 }
2870
2871 // ... but not bigger than that.
2872 {
2873 std::string key2("the second key");
2874 disk_cache::Entry* entry2 = nullptr;
2875 ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
2876
2877 const int kSize2 = 5 * 1024 * 1024 + 1;
2878 EXPECT_EQ(net::ERR_FAILED,
2879 WriteData(entry2, 1 /* stream */, kSize2 - kBufSize, buffer.get(),
2880 kBufSize, true /* truncate */));
2881 entry2->Close();
2882 }
2883 }
2884
TEST_F(DiskCacheEntryTest,SimpleCacheSizeChanges)2885 TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) {
2886 SetSimpleCacheMode();
2887 InitCache();
2888 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2889 EXPECT_THAT(DoomAllEntries(), IsOk());
2890 SizeChanges(i);
2891 }
2892 }
2893
TEST_F(DiskCacheEntryTest,SimpleCacheInvalidData)2894 TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) {
2895 SetSimpleCacheMode();
2896 InitCache();
2897 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2898 EXPECT_THAT(DoomAllEntries(), IsOk());
2899 InvalidData(i);
2900 }
2901 }
2902
TEST_F(DiskCacheEntryTest,SimpleCacheReadWriteDestroyBuffer)2903 TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) {
2904 // Proving that the test works well with optimistic operations enabled is
2905 // subtle, instead run only in APP_CACHE mode to disable optimistic
2906 // operations. Stream 0 always uses optimistic operations, so the test is not
2907 // run on stream 0.
2908 SetCacheType(net::APP_CACHE);
2909 SetSimpleCacheMode();
2910 InitCache();
2911 for (int i = 1; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2912 EXPECT_THAT(DoomAllEntries(), IsOk());
2913 ReadWriteDestroyBuffer(i);
2914 }
2915 }
2916
TEST_F(DiskCacheEntryTest,SimpleCacheDoomEntry)2917 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) {
2918 SetSimpleCacheMode();
2919 InitCache();
2920 DoomNormalEntry();
2921 }
2922
TEST_F(DiskCacheEntryTest,SimpleCacheDoomEntryNextToOpenEntry)2923 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) {
2924 SetSimpleCacheMode();
2925 InitCache();
2926 DoomEntryNextToOpenEntry();
2927 }
2928
TEST_F(DiskCacheEntryTest,SimpleCacheDoomedEntry)2929 TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) {
2930 SetSimpleCacheMode();
2931 InitCache();
2932 // Stream 2 is excluded because the implementation does not support writing to
2933 // it on a doomed entry, if it was previously lazily omitted.
2934 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount - 1; ++i) {
2935 EXPECT_THAT(DoomAllEntries(), IsOk());
2936 DoomedEntry(i);
2937 }
2938 }
2939
2940 // Creates an entry with corrupted last byte in stream 0.
2941 // Requires SimpleCacheMode.
SimpleCacheMakeBadChecksumEntry(const std::string & key,int data_size)2942 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key,
2943 int data_size) {
2944 disk_cache::Entry* entry = nullptr;
2945
2946 if (CreateEntry(key, &entry) != net::OK || !entry) {
2947 LOG(ERROR) << "Could not create entry";
2948 return false;
2949 }
2950
2951 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(data_size);
2952 memset(buffer->data(), 'A', data_size);
2953
2954 EXPECT_EQ(data_size, WriteData(entry, 1, 0, buffer.get(), data_size, false));
2955 entry->Close();
2956 entry = nullptr;
2957
2958 // Corrupt the last byte of the data.
2959 base::FilePath entry_file0_path = cache_path_.AppendASCII(
2960 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
2961 base::File entry_file0(entry_file0_path,
2962 base::File::FLAG_WRITE | base::File::FLAG_OPEN);
2963 if (!entry_file0.IsValid())
2964 return false;
2965
2966 int64_t file_offset =
2967 sizeof(disk_cache::SimpleFileHeader) + key.size() + data_size - 2;
2968 EXPECT_EQ(1, entry_file0.Write(file_offset, "X", 1));
2969 return true;
2970 }
2971
TEST_F(DiskCacheEntryTest,SimpleCacheBadChecksum)2972 TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) {
2973 SetSimpleCacheMode();
2974 InitCache();
2975
2976 const char key[] = "the first key";
2977 const int kLargeSize = 50000;
2978 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize));
2979
2980 disk_cache::Entry* entry = nullptr;
2981
2982 // Open the entry. Can't spot the checksum that quickly with it so
2983 // huge.
2984 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2985 ScopedEntryPtr entry_closer(entry);
2986
2987 EXPECT_GE(kLargeSize, entry->GetDataSize(1));
2988 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kLargeSize);
2989 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
2990 ReadData(entry, 1, 0, read_buffer.get(), kLargeSize));
2991 }
2992
2993 // Tests that an entry that has had an IO error occur can still be Doomed().
TEST_F(DiskCacheEntryTest,SimpleCacheErrorThenDoom)2994 TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) {
2995 SetSimpleCacheMode();
2996 InitCache();
2997
2998 const char key[] = "the first key";
2999 const int kLargeSize = 50000;
3000 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize));
3001
3002 disk_cache::Entry* entry = nullptr;
3003
3004 // Open the entry, forcing an IO error.
3005 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
3006 ScopedEntryPtr entry_closer(entry);
3007
3008 EXPECT_GE(kLargeSize, entry->GetDataSize(1));
3009 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kLargeSize);
3010 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
3011 ReadData(entry, 1, 0, read_buffer.get(), kLargeSize));
3012 entry->Doom(); // Should not crash.
3013 }
3014
TEST_F(DiskCacheEntryTest,SimpleCacheCreateAfterDiskLayerDoom)3015 TEST_F(DiskCacheEntryTest, SimpleCacheCreateAfterDiskLayerDoom) {
3016 // Code coverage for what happens when a queued create runs after failure
3017 // was noticed at SimpleSynchronousEntry layer.
3018 SetSimpleCacheMode();
3019 // Disable optimistic ops so we can block on CreateEntry and start
3020 // WriteData off with an empty op queue.
3021 SetCacheType(net::APP_CACHE);
3022 InitCache();
3023
3024 const char key[] = "the key";
3025 const int kSize1 = 10;
3026 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3027 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3028
3029 disk_cache::Entry* entry = nullptr;
3030 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3031 ASSERT_TRUE(entry != nullptr);
3032
3033 // Make an empty _1 file, to cause a stream 2 write to fail.
3034 base::FilePath entry_file1_path = cache_path_.AppendASCII(
3035 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 1));
3036 base::File entry_file1(entry_file1_path,
3037 base::File::FLAG_WRITE | base::File::FLAG_CREATE);
3038 ASSERT_TRUE(entry_file1.IsValid());
3039
3040 entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(),
3041 /* truncate= */ true);
3042 entry->Close();
3043
3044 // At this point we have put WriteData & Close on the queue, and WriteData
3045 // started, but we haven't given the event loop control so the failure
3046 // hasn't been reported and handled here, so the entry is still active
3047 // for the key. Queue up another create for same key, and run through the
3048 // events.
3049 disk_cache::Entry* entry2 = nullptr;
3050 ASSERT_EQ(net::ERR_FAILED, CreateEntry(key, &entry2));
3051 ASSERT_TRUE(entry2 == nullptr);
3052
3053 EXPECT_EQ(0, cache_->GetEntryCount());
3054
3055 // Should be able to create properly next time, though.
3056 disk_cache::Entry* entry3 = nullptr;
3057 ASSERT_EQ(net::OK, CreateEntry(key, &entry3));
3058 ASSERT_TRUE(entry3 != nullptr);
3059 entry3->Close();
3060 }
3061
TEST_F(DiskCacheEntryTest,SimpleCacheQueuedOpenOnDoomedEntry)3062 TEST_F(DiskCacheEntryTest, SimpleCacheQueuedOpenOnDoomedEntry) {
3063 // This tests the following sequence of ops:
3064 // A = Create(K);
3065 // Close(A);
3066 // B = Open(K);
3067 // Doom(K);
3068 // Close(B);
3069 //
3070 // ... where the execution of the Open sits on the queue all the way till
3071 // Doom. This now succeeds, as the doom is merely queued at time of Open,
3072 // rather than completed.
3073
3074 SetSimpleCacheMode();
3075 // Disable optimistic ops so we can block on CreateEntry and start
3076 // WriteData off with an empty op queue.
3077 SetCacheType(net::APP_CACHE);
3078 InitCache();
3079
3080 const char key[] = "the key";
3081
3082 disk_cache::Entry* entry = nullptr;
3083 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // event loop!
3084 ASSERT_TRUE(entry != nullptr);
3085
3086 entry->Close();
3087
3088 // Done via cache_ -> no event loop.
3089 TestEntryResultCompletionCallback cb;
3090 EntryResult result = cache_->OpenEntry(key, net::HIGHEST, cb.callback());
3091 ASSERT_EQ(net::ERR_IO_PENDING, result.net_error());
3092
3093 net::TestCompletionCallback cb2;
3094 cache_->DoomEntry(key, net::HIGHEST, cb2.callback());
3095 // Now event loop.
3096 result = cb.WaitForResult();
3097 EXPECT_EQ(net::OK, result.net_error());
3098 result.ReleaseEntry()->Close();
3099
3100 EXPECT_EQ(net::OK, cb2.WaitForResult());
3101 EXPECT_EQ(0, cache_->GetEntryCount());
3102 }
3103
TEST_F(DiskCacheEntryTest,SimpleCacheDoomErrorRace)3104 TEST_F(DiskCacheEntryTest, SimpleCacheDoomErrorRace) {
3105 // Code coverage for a doom racing with a doom induced by a failure.
3106 SetSimpleCacheMode();
3107 // Disable optimistic ops so we can block on CreateEntry and start
3108 // WriteData off with an empty op queue.
3109 SetCacheType(net::APP_CACHE);
3110 InitCache();
3111
3112 const char kKey[] = "the first key";
3113 const int kSize1 = 10;
3114 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3115 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3116
3117 disk_cache::Entry* entry = nullptr;
3118 ASSERT_EQ(net::OK, CreateEntry(kKey, &entry));
3119 ASSERT_TRUE(entry != nullptr);
3120
3121 // Now an empty _1 file, to cause a stream 2 write to fail.
3122 base::FilePath entry_file1_path = cache_path_.AppendASCII(
3123 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1));
3124 base::File entry_file1(entry_file1_path,
3125 base::File::FLAG_WRITE | base::File::FLAG_CREATE);
3126 ASSERT_TRUE(entry_file1.IsValid());
3127
3128 entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(),
3129 /* truncate= */ true);
3130
3131 net::TestCompletionCallback cb;
3132 cache_->DoomEntry(kKey, net::HIGHEST, cb.callback());
3133 entry->Close();
3134 EXPECT_EQ(0, cb.WaitForResult());
3135 }
3136
TruncatePath(const base::FilePath & file_path,int64_t length)3137 bool TruncatePath(const base::FilePath& file_path, int64_t length) {
3138 base::File file(file_path, base::File::FLAG_WRITE | base::File::FLAG_OPEN);
3139 if (!file.IsValid())
3140 return false;
3141 return file.SetLength(length);
3142 }
3143
TEST_F(DiskCacheEntryTest,SimpleCacheNoEOF)3144 TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) {
3145 SetSimpleCacheMode();
3146 InitCache();
3147
3148 const std::string key("the first key");
3149
3150 disk_cache::Entry* entry = nullptr;
3151 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
3152 disk_cache::Entry* null = nullptr;
3153 EXPECT_NE(null, entry);
3154 entry->Close();
3155 entry = nullptr;
3156
3157 // Force the entry to flush to disk, so subsequent platform file operations
3158 // succed.
3159 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
3160 entry->Close();
3161 entry = nullptr;
3162
3163 // Truncate the file such that the length isn't sufficient to have an EOF
3164 // record.
3165 int kTruncationBytes = -static_cast<int>(sizeof(disk_cache::SimpleFileEOF));
3166 const base::FilePath entry_path = cache_path_.AppendASCII(
3167 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
3168 const int64_t invalid_size = disk_cache::simple_util::GetFileSizeFromDataSize(
3169 key.size(), kTruncationBytes);
3170 EXPECT_TRUE(TruncatePath(entry_path, invalid_size));
3171 EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
3172 DisableIntegrityCheck();
3173 }
3174
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsBasic)3175 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) {
3176 // Test sequence:
3177 // Create, Write, Read, Close.
3178 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
3179 SetSimpleCacheMode();
3180 InitCache();
3181 disk_cache::Entry* const null_entry = nullptr;
3182
3183 disk_cache::Entry* entry = nullptr;
3184 EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
3185 ASSERT_NE(null_entry, entry);
3186 ScopedEntryPtr entry_closer(entry);
3187
3188 const int kBufferSize = 10;
3189 scoped_refptr<net::IOBufferWithSize> write_buffer =
3190 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3191 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
3192 EXPECT_EQ(
3193 write_buffer->size(),
3194 WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false));
3195
3196 scoped_refptr<net::IOBufferWithSize> read_buffer =
3197 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3198 EXPECT_EQ(read_buffer->size(),
3199 ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size()));
3200 }
3201
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsDontBlock)3202 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) {
3203 // Test sequence:
3204 // Create, Write, Close.
3205 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
3206 SetSimpleCacheMode();
3207 InitCache();
3208 disk_cache::Entry* const null_entry = nullptr;
3209
3210 MessageLoopHelper helper;
3211 CallbackTest create_callback(&helper, false);
3212
3213 int expected_callback_runs = 0;
3214 const int kBufferSize = 10;
3215 scoped_refptr<net::IOBufferWithSize> write_buffer =
3216 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3217
3218 disk_cache::Entry* entry = nullptr;
3219 EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
3220 ASSERT_NE(null_entry, entry);
3221 ScopedEntryPtr entry_closer(entry);
3222
3223 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
3224 CallbackTest write_callback(&helper, false);
3225 int ret = entry->WriteData(
3226 1, 0, write_buffer.get(), write_buffer->size(),
3227 base::BindOnce(&CallbackTest::Run, base::Unretained(&write_callback)),
3228 false);
3229 ASSERT_THAT(ret, IsError(net::ERR_IO_PENDING));
3230 helper.WaitUntilCacheIoFinished(++expected_callback_runs);
3231 }
3232
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting)3233 TEST_F(DiskCacheEntryTest,
3234 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) {
3235 // Test sequence:
3236 // Create, Write, Read, Close.
3237 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
3238 SetSimpleCacheMode();
3239 InitCache();
3240 disk_cache::Entry* const null_entry = nullptr;
3241 MessageLoopHelper helper;
3242
3243 disk_cache::Entry* entry = nullptr;
3244 // Note that |entry| is only set once CreateEntry() completed which is why we
3245 // have to wait (i.e. use the helper CreateEntry() function).
3246 EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
3247 ASSERT_NE(null_entry, entry);
3248 ScopedEntryPtr entry_closer(entry);
3249
3250 const int kBufferSize = 10;
3251 scoped_refptr<net::IOBufferWithSize> write_buffer =
3252 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3253 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
3254 CallbackTest write_callback(&helper, false);
3255 int ret = entry->WriteData(
3256 1, 0, write_buffer.get(), write_buffer->size(),
3257 base::BindOnce(&CallbackTest::Run, base::Unretained(&write_callback)),
3258 false);
3259 EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING));
3260 int expected_callback_runs = 1;
3261
3262 scoped_refptr<net::IOBufferWithSize> read_buffer =
3263 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3264 CallbackTest read_callback(&helper, false);
3265 ret = entry->ReadData(
3266 1, 0, read_buffer.get(), read_buffer->size(),
3267 base::BindOnce(&CallbackTest::Run, base::Unretained(&read_callback)));
3268 EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING));
3269 ++expected_callback_runs;
3270
3271 helper.WaitUntilCacheIoFinished(expected_callback_runs);
3272 ASSERT_EQ(read_buffer->size(), write_buffer->size());
3273 EXPECT_EQ(
3274 0,
3275 memcmp(read_buffer->data(), write_buffer->data(), read_buffer->size()));
3276 }
3277
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic)3278 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) {
3279 // Test sequence:
3280 // Create, Write, Read, Write, Read, Close.
3281 SetSimpleCacheMode();
3282 InitCache();
3283 disk_cache::Entry* null = nullptr;
3284 const char key[] = "the first key";
3285
3286 MessageLoopHelper helper;
3287 CallbackTest callback1(&helper, false);
3288 CallbackTest callback2(&helper, false);
3289 CallbackTest callback3(&helper, false);
3290 CallbackTest callback4(&helper, false);
3291 CallbackTest callback5(&helper, false);
3292
3293 int expected = 0;
3294 const int kSize1 = 10;
3295 const int kSize2 = 20;
3296 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3297 auto buffer1_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3298 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
3299 auto buffer2_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
3300 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3301 CacheTestFillBuffer(buffer2->data(), kSize2, false);
3302
3303 // Create is optimistic, must return OK.
3304 EntryResult result =
3305 cache_->CreateEntry(key, net::HIGHEST,
3306 base::BindOnce(&CallbackTest::RunWithEntry,
3307 base::Unretained(&callback1)));
3308 ASSERT_EQ(net::OK, result.net_error());
3309 disk_cache::Entry* entry = result.ReleaseEntry();
3310 ASSERT_NE(null, entry);
3311 ScopedEntryPtr entry_closer(entry);
3312
3313 // This write may or may not be optimistic (it depends if the previous
3314 // optimistic create already finished by the time we call the write here).
3315 int ret = entry->WriteData(
3316 1, 0, buffer1.get(), kSize1,
3317 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)), false);
3318 EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret);
3319 if (net::ERR_IO_PENDING == ret)
3320 expected++;
3321
3322 // This Read must not be optimistic, since we don't support that yet.
3323 EXPECT_EQ(net::ERR_IO_PENDING,
3324 entry->ReadData(1, 0, buffer1_read.get(), kSize1,
3325 base::BindOnce(&CallbackTest::Run,
3326 base::Unretained(&callback3))));
3327 expected++;
3328 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3329 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
3330
3331 // At this point after waiting, the pending operations queue on the entry
3332 // should be empty, so the next Write operation must run as optimistic.
3333 EXPECT_EQ(kSize2,
3334 entry->WriteData(1, 0, buffer2.get(), kSize2,
3335 base::BindOnce(&CallbackTest::Run,
3336 base::Unretained(&callback4)),
3337 false));
3338
3339 // Lets do another read so we block until both the write and the read
3340 // operation finishes and we can then test for HasOneRef() below.
3341 EXPECT_EQ(net::ERR_IO_PENDING,
3342 entry->ReadData(1, 0, buffer2_read.get(), kSize2,
3343 base::BindOnce(&CallbackTest::Run,
3344 base::Unretained(&callback5))));
3345 expected++;
3346
3347 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3348 EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2));
3349
3350 // Check that we are not leaking.
3351 EXPECT_NE(entry, null);
3352 EXPECT_TRUE(
3353 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3354 }
3355
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic2)3356 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) {
3357 // Test sequence:
3358 // Create, Open, Close, Close.
3359 SetSimpleCacheMode();
3360 InitCache();
3361 const char key[] = "the first key";
3362
3363 MessageLoopHelper helper;
3364 CallbackTest callback1(&helper, false);
3365 CallbackTest callback2(&helper, false);
3366
3367 EntryResult result =
3368 cache_->CreateEntry(key, net::HIGHEST,
3369 base::BindOnce(&CallbackTest::RunWithEntry,
3370 base::Unretained(&callback1)));
3371 ASSERT_EQ(net::OK, result.net_error());
3372 disk_cache::Entry* entry = result.ReleaseEntry();
3373 ASSERT_NE(nullptr, entry);
3374 ScopedEntryPtr entry_closer(entry);
3375
3376 EntryResult result2 =
3377 cache_->OpenEntry(key, net::HIGHEST,
3378 base::BindOnce(&CallbackTest::RunWithEntry,
3379 base::Unretained(&callback2)));
3380 ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
3381 ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1));
3382 result2 = callback2.ReleaseLastEntryResult();
3383 EXPECT_EQ(net::OK, result2.net_error());
3384 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3385 EXPECT_NE(nullptr, entry2);
3386 EXPECT_EQ(entry, entry2);
3387
3388 // We have to call close twice, since we called create and open above.
3389 // (the other closes is from |entry_closer|).
3390 entry->Close();
3391
3392 // Check that we are not leaking.
3393 EXPECT_TRUE(
3394 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3395 }
3396
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic3)3397 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) {
3398 // Test sequence:
3399 // Create, Close, Open, Close.
3400 SetSimpleCacheMode();
3401 InitCache();
3402 const char key[] = "the first key";
3403
3404 EntryResult result =
3405 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3406 ASSERT_EQ(net::OK, result.net_error());
3407 disk_cache::Entry* entry = result.ReleaseEntry();
3408 ASSERT_NE(nullptr, entry);
3409 entry->Close();
3410
3411 TestEntryResultCompletionCallback cb;
3412 EntryResult result2 = cache_->OpenEntry(key, net::HIGHEST, cb.callback());
3413 ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
3414 result2 = cb.WaitForResult();
3415 ASSERT_THAT(result2.net_error(), IsOk());
3416 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3417 ScopedEntryPtr entry_closer(entry2);
3418
3419 EXPECT_NE(nullptr, entry2);
3420 EXPECT_EQ(entry, entry2);
3421
3422 // Check that we are not leaking.
3423 EXPECT_TRUE(
3424 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
3425 }
3426
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic4)3427 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) {
3428 // Test sequence:
3429 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
3430 SetSimpleCacheMode();
3431 InitCache();
3432 const char key[] = "the first key";
3433
3434 net::TestCompletionCallback cb;
3435 const int kSize1 = 10;
3436 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3437 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3438
3439 EntryResult result =
3440 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3441 ASSERT_EQ(net::OK, result.net_error());
3442 disk_cache::Entry* entry = result.ReleaseEntry();
3443 ASSERT_NE(nullptr, entry);
3444 entry->Close();
3445
3446 // Lets do a Write so we block until both the Close and the Write
3447 // operation finishes. Write must fail since we are writing in a closed entry.
3448 EXPECT_EQ(
3449 net::ERR_IO_PENDING,
3450 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3451 EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsError(net::ERR_FAILED));
3452
3453 // Finish running the pending tasks so that we fully complete the close
3454 // operation and destroy the entry object.
3455 base::RunLoop().RunUntilIdle();
3456
3457 // At this point the |entry| must have been destroyed, and called
3458 // RemoveSelfFromBackend().
3459 TestEntryResultCompletionCallback cb2;
3460 EntryResult result2 = cache_->OpenEntry(key, net::HIGHEST, cb2.callback());
3461 ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
3462 result2 = cb2.WaitForResult();
3463 ASSERT_THAT(result2.net_error(), IsOk());
3464 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3465 EXPECT_NE(nullptr, entry2);
3466
3467 EntryResult result3 = cache_->OpenEntry(key, net::HIGHEST, cb2.callback());
3468 ASSERT_EQ(net::ERR_IO_PENDING, result3.net_error());
3469 result3 = cb2.WaitForResult();
3470 ASSERT_THAT(result3.net_error(), IsOk());
3471 disk_cache::Entry* entry3 = result3.ReleaseEntry();
3472 EXPECT_NE(nullptr, entry3);
3473 EXPECT_EQ(entry2, entry3);
3474 entry3->Close();
3475
3476 // The previous Close doesn't actually closes the entry since we opened it
3477 // twice, so the next Write operation must succeed and it must be able to
3478 // perform it optimistically, since there is no operation running on this
3479 // entry.
3480 EXPECT_EQ(kSize1, entry2->WriteData(1, 0, buffer1.get(), kSize1,
3481 net::CompletionOnceCallback(), false));
3482
3483 // Lets do another read so we block until both the write and the read
3484 // operation finishes and we can then test for HasOneRef() below.
3485 EXPECT_EQ(net::ERR_IO_PENDING,
3486 entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
3487 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3488
3489 // Check that we are not leaking.
3490 EXPECT_TRUE(
3491 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
3492 entry2->Close();
3493 }
3494
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic5)3495 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) {
3496 // Test sequence:
3497 // Create, Doom, Write, Read, Close.
3498 SetSimpleCacheMode();
3499 InitCache();
3500 const char key[] = "the first key";
3501
3502 net::TestCompletionCallback cb;
3503 const int kSize1 = 10;
3504 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3505 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3506
3507 EntryResult result =
3508 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3509 ASSERT_EQ(net::OK, result.net_error());
3510 disk_cache::Entry* entry = result.ReleaseEntry();
3511 ASSERT_NE(nullptr, entry);
3512 ScopedEntryPtr entry_closer(entry);
3513 entry->Doom();
3514
3515 EXPECT_EQ(
3516 net::ERR_IO_PENDING,
3517 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3518 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3519
3520 EXPECT_EQ(net::ERR_IO_PENDING,
3521 entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
3522 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3523
3524 // Check that we are not leaking.
3525 EXPECT_TRUE(
3526 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3527 }
3528
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic6)3529 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) {
3530 // Test sequence:
3531 // Create, Write, Doom, Doom, Read, Doom, Close.
3532 SetSimpleCacheMode();
3533 InitCache();
3534 const char key[] = "the first key";
3535
3536 net::TestCompletionCallback cb;
3537 const int kSize1 = 10;
3538 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3539 auto buffer1_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3540 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3541
3542 EntryResult result =
3543 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3544 ASSERT_EQ(net::OK, result.net_error());
3545 disk_cache::Entry* entry = result.ReleaseEntry();
3546 EXPECT_NE(nullptr, entry);
3547 ScopedEntryPtr entry_closer(entry);
3548
3549 EXPECT_EQ(
3550 net::ERR_IO_PENDING,
3551 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3552 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3553
3554 entry->Doom();
3555 entry->Doom();
3556
3557 // This Read must not be optimistic, since we don't support that yet.
3558 EXPECT_EQ(net::ERR_IO_PENDING,
3559 entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback()));
3560 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3561 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
3562
3563 entry->Doom();
3564 }
3565
3566 // Confirm that IO buffers are not referenced by the Simple Cache after a write
3567 // completes.
TEST_F(DiskCacheEntryTest,SimpleCacheOptimisticWriteReleases)3568 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) {
3569 SetSimpleCacheMode();
3570 InitCache();
3571
3572 const char key[] = "the first key";
3573
3574 // First, an optimistic create.
3575 EntryResult result =
3576 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3577 ASSERT_EQ(net::OK, result.net_error());
3578 disk_cache::Entry* entry = result.ReleaseEntry();
3579 ASSERT_TRUE(entry);
3580 ScopedEntryPtr entry_closer(entry);
3581
3582 const int kWriteSize = 512;
3583 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kWriteSize);
3584 EXPECT_TRUE(buffer1->HasOneRef());
3585 CacheTestFillBuffer(buffer1->data(), kWriteSize, false);
3586
3587 // An optimistic write happens only when there is an empty queue of pending
3588 // operations. To ensure the queue is empty, we issue a write and wait until
3589 // it completes.
3590 EXPECT_EQ(kWriteSize,
3591 WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false));
3592 EXPECT_TRUE(buffer1->HasOneRef());
3593
3594 // Finally, we should perform an optimistic write and confirm that all
3595 // references to the IO buffer have been released.
3596 EXPECT_EQ(kWriteSize, entry->WriteData(1, 0, buffer1.get(), kWriteSize,
3597 net::CompletionOnceCallback(), false));
3598 EXPECT_TRUE(buffer1->HasOneRef());
3599 }
3600
TEST_F(DiskCacheEntryTest,SimpleCacheCreateDoomRace)3601 TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) {
3602 // Test sequence:
3603 // Create, Doom, Write, Close, Check files are not on disk anymore.
3604 SetSimpleCacheMode();
3605 InitCache();
3606 const char key[] = "the first key";
3607
3608 net::TestCompletionCallback cb;
3609 const int kSize1 = 10;
3610 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3611 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3612
3613 EntryResult result =
3614 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3615 ASSERT_EQ(net::OK, result.net_error());
3616 disk_cache::Entry* entry = result.ReleaseEntry();
3617 EXPECT_NE(nullptr, entry);
3618
3619 EXPECT_THAT(cache_->DoomEntry(key, net::HIGHEST, cb.callback()),
3620 IsError(net::ERR_IO_PENDING));
3621 EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk());
3622
3623 EXPECT_EQ(
3624 kSize1,
3625 entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false));
3626
3627 entry->Close();
3628
3629 // Finish running the pending tasks so that we fully complete the close
3630 // operation and destroy the entry object.
3631 base::RunLoop().RunUntilIdle();
3632
3633 for (int i = 0; i < disk_cache::kSimpleEntryNormalFileCount; ++i) {
3634 base::FilePath entry_file_path = cache_path_.AppendASCII(
3635 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i));
3636 base::File::Info info;
3637 EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info));
3638 }
3639 }
3640
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateRace)3641 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) {
3642 // This test runs as APP_CACHE to make operations more synchronous. Test
3643 // sequence:
3644 // Create, Doom, Create.
3645 SetCacheType(net::APP_CACHE);
3646 SetSimpleCacheMode();
3647 InitCache();
3648 const char key[] = "the first key";
3649
3650 TestEntryResultCompletionCallback create_callback;
3651
3652 EntryResult result1 = create_callback.GetResult(
3653 cache_->CreateEntry(key, net::HIGHEST, create_callback.callback()));
3654 ASSERT_EQ(net::OK, result1.net_error());
3655 disk_cache::Entry* entry1 = result1.ReleaseEntry();
3656 ScopedEntryPtr entry1_closer(entry1);
3657 EXPECT_NE(nullptr, entry1);
3658
3659 net::TestCompletionCallback doom_callback;
3660 EXPECT_EQ(net::ERR_IO_PENDING,
3661 cache_->DoomEntry(key, net::HIGHEST, doom_callback.callback()));
3662
3663 EntryResult result2 = create_callback.GetResult(
3664 cache_->CreateEntry(key, net::HIGHEST, create_callback.callback()));
3665 ASSERT_EQ(net::OK, result2.net_error());
3666 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3667 ScopedEntryPtr entry2_closer(entry2);
3668 EXPECT_THAT(doom_callback.GetResult(net::ERR_IO_PENDING), IsOk());
3669 }
3670
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateOptimistic)3671 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimistic) {
3672 // Test that we optimize the doom -> create sequence when optimistic ops
3673 // are on.
3674 SetSimpleCacheMode();
3675 InitCache();
3676 const char kKey[] = "the key";
3677
3678 // Create entry and initiate its Doom.
3679 disk_cache::Entry* entry1 = nullptr;
3680 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
3681 ASSERT_TRUE(entry1 != nullptr);
3682
3683 net::TestCompletionCallback doom_callback;
3684 cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
3685
3686 TestEntryResultCompletionCallback create_callback;
3687 // Open entry2, with same key. With optimistic ops, this should succeed
3688 // immediately, hence us using cache_->CreateEntry directly rather than using
3689 // the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed.
3690 EntryResult result2 =
3691 cache_->CreateEntry(kKey, net::HIGHEST, create_callback.callback());
3692 ASSERT_EQ(net::OK, result2.net_error());
3693 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3694 ASSERT_NE(nullptr, entry2);
3695
3696 // Do some I/O to make sure it's alive.
3697 const int kSize = 2048;
3698 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
3699 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
3700 CacheTestFillBuffer(buf_1->data(), kSize, false);
3701
3702 EXPECT_EQ(kSize, WriteData(entry2, /* index = */ 1, /* offset = */ 0,
3703 buf_1.get(), kSize, /* truncate = */ false));
3704 EXPECT_EQ(kSize, ReadData(entry2, /* index = */ 1, /* offset = */ 0,
3705 buf_2.get(), kSize));
3706
3707 doom_callback.WaitForResult();
3708
3709 entry1->Close();
3710 entry2->Close();
3711 }
3712
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateOptimisticMassDoom)3713 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimisticMassDoom) {
3714 // Test that shows that a certain DCHECK in mass doom code had to be removed
3715 // once optimistic doom -> create was added.
3716 SetSimpleCacheMode();
3717 InitCache();
3718 const char kKey[] = "the key";
3719
3720 // Create entry and initiate its Doom.
3721 disk_cache::Entry* entry1 = nullptr;
3722 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
3723 ASSERT_TRUE(entry1 != nullptr);
3724
3725 net::TestCompletionCallback doom_callback;
3726 cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
3727
3728 TestEntryResultCompletionCallback create_callback;
3729 // Open entry2, with same key. With optimistic ops, this should succeed
3730 // immediately, hence us using cache_->CreateEntry directly rather than using
3731 // the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed.
3732 EntryResult result =
3733 cache_->CreateEntry(kKey, net::HIGHEST, create_callback.callback());
3734 ASSERT_EQ(net::OK, result.net_error());
3735 disk_cache::Entry* entry2 = result.ReleaseEntry();
3736 ASSERT_NE(nullptr, entry2);
3737
3738 net::TestCompletionCallback doomall_callback;
3739
3740 // This is what had code that had a no-longer valid DCHECK.
3741 cache_->DoomAllEntries(doomall_callback.callback());
3742
3743 doom_callback.WaitForResult();
3744 doomall_callback.WaitForResult();
3745
3746 entry1->Close();
3747 entry2->Close();
3748 }
3749
TEST_F(DiskCacheEntryTest,SimpleCacheDoomOpenOptimistic)3750 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOpenOptimistic) {
3751 // Test that we optimize the doom -> optimize sequence when optimistic ops
3752 // are on.
3753 SetSimpleCacheMode();
3754 InitCache();
3755 const char kKey[] = "the key";
3756
3757 // Create entry and initiate its Doom.
3758 disk_cache::Entry* entry1 = nullptr;
3759 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
3760 ASSERT_TRUE(entry1 != nullptr);
3761 entry1->Close();
3762
3763 net::TestCompletionCallback doom_callback;
3764 cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
3765
3766 // Try to open entry. This should detect a miss immediately, since it's
3767 // the only thing after a doom.
3768
3769 EntryResult result2 =
3770 cache_->OpenEntry(kKey, net::HIGHEST, EntryResultCallback());
3771 EXPECT_EQ(net::ERR_FAILED, result2.net_error());
3772 EXPECT_EQ(nullptr, result2.ReleaseEntry());
3773 doom_callback.WaitForResult();
3774 }
3775
TEST_F(DiskCacheEntryTest,SimpleCacheDoomDoom)3776 TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) {
3777 // Test sequence:
3778 // Create, Doom, Create, Doom (1st entry), Open.
3779 SetSimpleCacheMode();
3780 InitCache();
3781 disk_cache::Entry* null = nullptr;
3782
3783 const char key[] = "the first key";
3784
3785 disk_cache::Entry* entry1 = nullptr;
3786 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
3787 ScopedEntryPtr entry1_closer(entry1);
3788 EXPECT_NE(null, entry1);
3789
3790 EXPECT_THAT(DoomEntry(key), IsOk());
3791
3792 disk_cache::Entry* entry2 = nullptr;
3793 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
3794 ScopedEntryPtr entry2_closer(entry2);
3795 EXPECT_NE(null, entry2);
3796
3797 // Redundantly dooming entry1 should not delete entry2.
3798 disk_cache::SimpleEntryImpl* simple_entry1 =
3799 static_cast<disk_cache::SimpleEntryImpl*>(entry1);
3800 net::TestCompletionCallback cb;
3801 EXPECT_EQ(net::OK,
3802 cb.GetResult(simple_entry1->DoomEntry(cb.callback())));
3803
3804 disk_cache::Entry* entry3 = nullptr;
3805 ASSERT_THAT(OpenEntry(key, &entry3), IsOk());
3806 ScopedEntryPtr entry3_closer(entry3);
3807 EXPECT_NE(null, entry3);
3808 }
3809
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateDoom)3810 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) {
3811 // Test sequence:
3812 // Create, Doom, Create, Doom.
3813 SetSimpleCacheMode();
3814 InitCache();
3815
3816 disk_cache::Entry* null = nullptr;
3817
3818 const char key[] = "the first key";
3819
3820 disk_cache::Entry* entry1 = nullptr;
3821 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
3822 ScopedEntryPtr entry1_closer(entry1);
3823 EXPECT_NE(null, entry1);
3824
3825 entry1->Doom();
3826
3827 disk_cache::Entry* entry2 = nullptr;
3828 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
3829 ScopedEntryPtr entry2_closer(entry2);
3830 EXPECT_NE(null, entry2);
3831
3832 entry2->Doom();
3833
3834 // This test passes if it doesn't crash.
3835 }
3836
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCloseCreateCloseOpen)3837 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCloseCreateCloseOpen) {
3838 // Test sequence: Create, Doom, Close, Create, Close, Open.
3839 SetSimpleCacheMode();
3840 InitCache();
3841
3842 disk_cache::Entry* null = nullptr;
3843
3844 const char key[] = "this is a key";
3845
3846 disk_cache::Entry* entry1 = nullptr;
3847 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
3848 ScopedEntryPtr entry1_closer(entry1);
3849 EXPECT_NE(null, entry1);
3850
3851 entry1->Doom();
3852 entry1_closer.reset();
3853 entry1 = nullptr;
3854
3855 disk_cache::Entry* entry2 = nullptr;
3856 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
3857 ScopedEntryPtr entry2_closer(entry2);
3858 EXPECT_NE(null, entry2);
3859
3860 entry2_closer.reset();
3861 entry2 = nullptr;
3862
3863 disk_cache::Entry* entry3 = nullptr;
3864 ASSERT_THAT(OpenEntry(key, &entry3), IsOk());
3865 ScopedEntryPtr entry3_closer(entry3);
3866 EXPECT_NE(null, entry3);
3867 }
3868
3869 // Checks that an optimistic Create would fail later on a racing Open.
TEST_F(DiskCacheEntryTest,SimpleCacheOptimisticCreateFailsOnOpen)3870 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) {
3871 SetSimpleCacheMode();
3872 InitCache();
3873
3874 // Create a corrupt file in place of a future entry. Optimistic create should
3875 // initially succeed, but realize later that creation failed.
3876 const std::string key = "the key";
3877 disk_cache::Entry* entry = nullptr;
3878 disk_cache::Entry* entry2 = nullptr;
3879
3880 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3881 key, cache_path_));
3882 EntryResult result =
3883 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3884 EXPECT_THAT(result.net_error(), IsOk());
3885 entry = result.ReleaseEntry();
3886 ASSERT_TRUE(entry);
3887 ScopedEntryPtr entry_closer(entry);
3888 ASSERT_NE(net::OK, OpenEntry(key, &entry2));
3889
3890 // Check that we are not leaking.
3891 EXPECT_TRUE(
3892 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3893
3894 DisableIntegrityCheck();
3895 }
3896
3897 // Tests that old entries are evicted while new entries remain in the index.
3898 // This test relies on non-mandatory properties of the simple Cache Backend:
3899 // LRU eviction, specific values of high-watermark and low-watermark etc.
3900 // When changing the eviction algorithm, the test will have to be re-engineered.
TEST_F(DiskCacheEntryTest,SimpleCacheEvictOldEntries)3901 TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) {
3902 const int kMaxSize = 200 * 1024;
3903 const int kWriteSize = kMaxSize / 10;
3904 const int kNumExtraEntries = 12;
3905 SetSimpleCacheMode();
3906 SetMaxSize(kMaxSize);
3907 InitCache();
3908
3909 std::string key1("the first key");
3910 disk_cache::Entry* entry;
3911 ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
3912 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kWriteSize);
3913 CacheTestFillBuffer(buffer->data(), kWriteSize, false);
3914 EXPECT_EQ(kWriteSize,
3915 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3916 entry->Close();
3917 AddDelay();
3918
3919 std::string key2("the key prefix");
3920 for (int i = 0; i < kNumExtraEntries; i++) {
3921 if (i == kNumExtraEntries - 2) {
3922 // Create a distinct timestamp for the last two entries. These entries
3923 // will be checked for outliving the eviction.
3924 AddDelay();
3925 }
3926 ASSERT_THAT(CreateEntry(key2 + base::NumberToString(i), &entry), IsOk());
3927 ScopedEntryPtr entry_closer(entry);
3928 EXPECT_EQ(kWriteSize,
3929 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3930 }
3931
3932 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3933 // the internal knowledge about |SimpleBackendImpl|.
3934 ASSERT_NE(net::OK, OpenEntry(key1, &entry))
3935 << "Should have evicted the old entry";
3936 for (int i = 0; i < 2; i++) {
3937 int entry_no = kNumExtraEntries - i - 1;
3938 // Generally there is no guarantee that at this point the backround eviction
3939 // is finished. We are testing the positive case, i.e. when the eviction
3940 // never reaches this entry, should be non-flaky.
3941 ASSERT_EQ(net::OK, OpenEntry(key2 + base::NumberToString(entry_no), &entry))
3942 << "Should not have evicted fresh entry " << entry_no;
3943 entry->Close();
3944 }
3945 }
3946
3947 // Tests that if a read and a following in-flight truncate are both in progress
3948 // simultaniously that they both can occur successfully. See
3949 // http://crbug.com/239223
TEST_F(DiskCacheEntryTest,SimpleCacheInFlightTruncate)3950 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) {
3951 SetSimpleCacheMode();
3952 InitCache();
3953
3954 const char key[] = "the first key";
3955
3956 // We use a very large entry size here to make sure this doesn't hit
3957 // the prefetch path for any concievable setting. Hitting prefetch would
3958 // make us serve the read below from memory entirely on I/O thread, missing
3959 // the point of the test which coverred two concurrent disk ops, with
3960 // portions of work happening on the workpool.
3961 const int kBufferSize = 50000;
3962 auto write_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3963 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
3964
3965 disk_cache::Entry* entry = nullptr;
3966 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
3967
3968 EXPECT_EQ(kBufferSize,
3969 WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false));
3970 entry->Close();
3971 entry = nullptr;
3972
3973 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
3974 ScopedEntryPtr entry_closer(entry);
3975
3976 MessageLoopHelper helper;
3977 int expected = 0;
3978
3979 // Make a short read.
3980 const int kReadBufferSize = 512;
3981 auto read_buffer =
3982 base::MakeRefCounted<net::IOBufferWithSize>(kReadBufferSize);
3983 CallbackTest read_callback(&helper, false);
3984 EXPECT_EQ(net::ERR_IO_PENDING,
3985 entry->ReadData(1, 0, read_buffer.get(), kReadBufferSize,
3986 base::BindOnce(&CallbackTest::Run,
3987 base::Unretained(&read_callback))));
3988 ++expected;
3989
3990 // Truncate the entry to the length of that read.
3991 auto truncate_buffer =
3992 base::MakeRefCounted<net::IOBufferWithSize>(kReadBufferSize);
3993 CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false);
3994 CallbackTest truncate_callback(&helper, false);
3995 EXPECT_EQ(
3996 net::ERR_IO_PENDING,
3997 entry->WriteData(1, 0, truncate_buffer.get(), kReadBufferSize,
3998 base::BindOnce(&CallbackTest::Run,
3999 base::Unretained(&truncate_callback)),
4000 true));
4001 ++expected;
4002
4003 // Wait for both the read and truncation to finish, and confirm that both
4004 // succeeded.
4005 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
4006 EXPECT_EQ(kReadBufferSize, read_callback.last_result());
4007 EXPECT_EQ(kReadBufferSize, truncate_callback.last_result());
4008 EXPECT_EQ(0,
4009 memcmp(write_buffer->data(), read_buffer->data(), kReadBufferSize));
4010 }
4011
4012 // Tests that if a write and a read dependant on it are both in flight
4013 // simultaneiously that they both can complete successfully without erroneous
4014 // early returns. See http://crbug.com/239223
TEST_F(DiskCacheEntryTest,SimpleCacheInFlightRead)4015 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) {
4016 SetSimpleCacheMode();
4017 InitCache();
4018
4019 const char key[] = "the first key";
4020 EntryResult result =
4021 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
4022 ASSERT_EQ(net::OK, result.net_error());
4023 disk_cache::Entry* entry = result.ReleaseEntry();
4024 ScopedEntryPtr entry_closer(entry);
4025
4026 const int kBufferSize = 1024;
4027 auto write_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
4028 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
4029
4030 MessageLoopHelper helper;
4031 int expected = 0;
4032
4033 CallbackTest write_callback(&helper, false);
4034 EXPECT_EQ(net::ERR_IO_PENDING,
4035 entry->WriteData(1, 0, write_buffer.get(), kBufferSize,
4036 base::BindOnce(&CallbackTest::Run,
4037 base::Unretained(&write_callback)),
4038 true));
4039 ++expected;
4040
4041 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
4042 CallbackTest read_callback(&helper, false);
4043 EXPECT_EQ(net::ERR_IO_PENDING,
4044 entry->ReadData(1, 0, read_buffer.get(), kBufferSize,
4045 base::BindOnce(&CallbackTest::Run,
4046 base::Unretained(&read_callback))));
4047 ++expected;
4048
4049 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
4050 EXPECT_EQ(kBufferSize, write_callback.last_result());
4051 EXPECT_EQ(kBufferSize, read_callback.last_result());
4052 EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), kBufferSize));
4053 }
4054
TEST_F(DiskCacheEntryTest,SimpleCacheOpenCreateRaceWithNoIndex)4055 TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) {
4056 SetSimpleCacheMode();
4057 DisableSimpleCacheWaitForIndex();
4058 DisableIntegrityCheck();
4059 InitCache();
4060
4061 // Assume the index is not initialized, which is likely, since we are blocking
4062 // the IO thread from executing the index finalization step.
4063 TestEntryResultCompletionCallback cb1;
4064 TestEntryResultCompletionCallback cb2;
4065 EntryResult rv1 = cache_->OpenEntry("key", net::HIGHEST, cb1.callback());
4066 EntryResult rv2 = cache_->CreateEntry("key", net::HIGHEST, cb2.callback());
4067
4068 rv1 = cb1.GetResult(std::move(rv1));
4069 EXPECT_THAT(rv1.net_error(), IsError(net::ERR_FAILED));
4070 rv2 = cb2.GetResult(std::move(rv2));
4071 ASSERT_THAT(rv2.net_error(), IsOk());
4072 disk_cache::Entry* entry2 = rv2.ReleaseEntry();
4073
4074 // Try to get an alias for entry2. Open should succeed, and return the same
4075 // pointer.
4076 disk_cache::Entry* entry3 = nullptr;
4077 ASSERT_EQ(net::OK, OpenEntry("key", &entry3));
4078 EXPECT_EQ(entry3, entry2);
4079
4080 entry2->Close();
4081 entry3->Close();
4082 }
4083
4084 // Checking one more scenario of overlapped reading of a bad entry.
4085 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
4086 // last two reads.
TEST_F(DiskCacheEntryTest,SimpleCacheMultipleReadersCheckCRC2)4087 TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) {
4088 SetSimpleCacheMode();
4089 InitCache();
4090
4091 const char key[] = "key";
4092 int size = 50000;
4093 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, size));
4094
4095 auto read_buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(size);
4096 auto read_buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(size);
4097
4098 // Advance the first reader a little.
4099 disk_cache::Entry* entry = nullptr;
4100 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4101 ScopedEntryPtr entry_closer(entry);
4102 EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1));
4103
4104 // Advance the 2nd reader by the same amount.
4105 disk_cache::Entry* entry2 = nullptr;
4106 EXPECT_THAT(OpenEntry(key, &entry2), IsOk());
4107 ScopedEntryPtr entry2_closer(entry2);
4108 EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1));
4109
4110 // Continue reading 1st.
4111 EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size));
4112
4113 // This read should fail as well because we have previous read failures.
4114 EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1));
4115 DisableIntegrityCheck();
4116 }
4117
4118 // Test if we can sequentially read each subset of the data until all the data
4119 // is read, then the CRC is calculated correctly and the reads are successful.
TEST_F(DiskCacheEntryTest,SimpleCacheReadCombineCRC)4120 TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) {
4121 // Test sequence:
4122 // Create, Write, Read (first half of data), Read (second half of data),
4123 // Close.
4124 SetSimpleCacheMode();
4125 InitCache();
4126 disk_cache::Entry* null = nullptr;
4127 const char key[] = "the first key";
4128
4129 const int kHalfSize = 200;
4130 const int kSize = 2 * kHalfSize;
4131 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4132 CacheTestFillBuffer(buffer1->data(), kSize, false);
4133 disk_cache::Entry* entry = nullptr;
4134
4135 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4136 EXPECT_NE(null, entry);
4137
4138 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
4139 entry->Close();
4140
4141 disk_cache::Entry* entry2 = nullptr;
4142 ASSERT_THAT(OpenEntry(key, &entry2), IsOk());
4143 EXPECT_EQ(entry, entry2);
4144
4145 // Read the first half of the data.
4146 int offset = 0;
4147 int buf_len = kHalfSize;
4148 auto buffer1_read1 = base::MakeRefCounted<net::IOBufferWithSize>(buf_len);
4149 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len));
4150 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), buf_len));
4151
4152 // Read the second half of the data.
4153 offset = buf_len;
4154 buf_len = kHalfSize;
4155 auto buffer1_read2 = base::MakeRefCounted<net::IOBufferWithSize>(buf_len);
4156 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len));
4157 char* buffer1_data = buffer1->data() + offset;
4158 EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len));
4159
4160 // Check that we are not leaking.
4161 EXPECT_NE(entry, null);
4162 EXPECT_TRUE(
4163 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
4164 entry->Close();
4165 entry = nullptr;
4166 }
4167
4168 // Test if we can write the data not in sequence and read correctly. In
4169 // this case the CRC will not be present.
TEST_F(DiskCacheEntryTest,SimpleCacheNonSequentialWrite)4170 TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) {
4171 // Test sequence:
4172 // Create, Write (second half of data), Write (first half of data), Read,
4173 // Close.
4174 SetSimpleCacheMode();
4175 InitCache();
4176 disk_cache::Entry* null = nullptr;
4177 const char key[] = "the first key";
4178
4179 const int kHalfSize = 200;
4180 const int kSize = 2 * kHalfSize;
4181 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4182 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4183 CacheTestFillBuffer(buffer1->data(), kSize, false);
4184 char* buffer1_data = buffer1->data() + kHalfSize;
4185 memcpy(buffer2->data(), buffer1_data, kHalfSize);
4186
4187 disk_cache::Entry* entry = nullptr;
4188 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4189 entry->Close();
4190 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4191 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4192 EXPECT_NE(null, entry);
4193
4194 int offset = kHalfSize;
4195 int buf_len = kHalfSize;
4196
4197 EXPECT_EQ(buf_len,
4198 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
4199 offset = 0;
4200 buf_len = kHalfSize;
4201 EXPECT_EQ(buf_len,
4202 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
4203 entry->Close();
4204
4205 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4206
4207 auto buffer1_read1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4208 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
4209 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kSize));
4210 // Check that we are not leaking.
4211 ASSERT_NE(entry, null);
4212 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
4213 entry->Close();
4214 }
4215 }
4216
4217 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
4218 // are stored in the same file in Simple Cache).
TEST_F(DiskCacheEntryTest,SimpleCacheStream1SizeChanges)4219 TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) {
4220 SetSimpleCacheMode();
4221 InitCache();
4222 disk_cache::Entry* entry = nullptr;
4223 const std::string key("the key");
4224 const int kSize = 100;
4225 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4226 auto buffer_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4227 CacheTestFillBuffer(buffer->data(), kSize, false);
4228
4229 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4230 EXPECT_TRUE(entry);
4231
4232 // Write something into stream0.
4233 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
4234 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
4235 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
4236 entry->Close();
4237
4238 // Extend stream1.
4239 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4240 int stream1_size = 100;
4241 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false));
4242 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
4243 entry->Close();
4244
4245 // Check that stream0 data has not been modified and that the EOF record for
4246 // stream 0 contains a crc.
4247 // The entry needs to be reopened before checking the crc: Open will perform
4248 // the synchronization with the previous Close. This ensures the EOF records
4249 // have been written to disk before we attempt to read them independently.
4250 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4251 base::FilePath entry_file0_path = cache_path_.AppendASCII(
4252 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
4253 base::File entry_file0(entry_file0_path,
4254 base::File::FLAG_READ | base::File::FLAG_OPEN);
4255 ASSERT_TRUE(entry_file0.IsValid());
4256
4257 int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0};
4258 int sparse_data_size = 0;
4259 disk_cache::SimpleEntryStat entry_stat(
4260 base::Time::Now(), base::Time::Now(), data_size, sparse_data_size);
4261 int eof_offset = entry_stat.GetEOFOffsetInFile(key.size(), 0);
4262 disk_cache::SimpleFileEOF eof_record;
4263 ASSERT_EQ(static_cast<int>(sizeof(eof_record)),
4264 entry_file0.Read(eof_offset, reinterpret_cast<char*>(&eof_record),
4265 sizeof(eof_record)));
4266 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number);
4267 EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) ==
4268 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32);
4269
4270 buffer_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4271 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
4272 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
4273
4274 // Shrink stream1.
4275 stream1_size = 50;
4276 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true));
4277 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
4278 entry->Close();
4279
4280 // Check that stream0 data has not been modified.
4281 buffer_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4282 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4283 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
4284 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
4285 entry->Close();
4286 entry = nullptr;
4287 }
4288
4289 // Test that writing within the range for which the crc has already been
4290 // computed will properly invalidate the computed crc.
TEST_F(DiskCacheEntryTest,SimpleCacheCRCRewrite)4291 TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) {
4292 // Test sequence:
4293 // Create, Write (big data), Write (small data in the middle), Close.
4294 // Open, Read (all), Close.
4295 SetSimpleCacheMode();
4296 InitCache();
4297 disk_cache::Entry* null = nullptr;
4298 const char key[] = "the first key";
4299
4300 const int kHalfSize = 200;
4301 const int kSize = 2 * kHalfSize;
4302 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4303 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kHalfSize);
4304 CacheTestFillBuffer(buffer1->data(), kSize, false);
4305 CacheTestFillBuffer(buffer2->data(), kHalfSize, false);
4306
4307 disk_cache::Entry* entry = nullptr;
4308 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4309 EXPECT_NE(null, entry);
4310 entry->Close();
4311
4312 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4313 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4314 int offset = 0;
4315 int buf_len = kSize;
4316
4317 EXPECT_EQ(buf_len,
4318 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
4319 offset = kHalfSize;
4320 buf_len = kHalfSize;
4321 EXPECT_EQ(buf_len,
4322 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
4323 entry->Close();
4324
4325 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4326
4327 auto buffer1_read1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4328 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
4329 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize));
4330 EXPECT_EQ(
4331 0,
4332 memcmp(buffer2->data(), buffer1_read1->data() + kHalfSize, kHalfSize));
4333
4334 entry->Close();
4335 }
4336 }
4337
SimpleCacheThirdStreamFileExists(const char * key)4338 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) {
4339 int third_stream_file_index =
4340 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
4341 base::FilePath third_stream_file_path = cache_path_.AppendASCII(
4342 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
4343 key, third_stream_file_index));
4344 return PathExists(third_stream_file_path);
4345 }
4346
SyncDoomEntry(const char * key)4347 void DiskCacheEntryTest::SyncDoomEntry(const char* key) {
4348 net::TestCompletionCallback callback;
4349 cache_->DoomEntry(key, net::HIGHEST, callback.callback());
4350 callback.WaitForResult();
4351 }
4352
CreateEntryWithHeaderBodyAndSideData(const std::string & key,int data_size)4353 void DiskCacheEntryTest::CreateEntryWithHeaderBodyAndSideData(
4354 const std::string& key,
4355 int data_size) {
4356 // Use one buffer for simplicity.
4357 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(data_size);
4358 CacheTestFillBuffer(buffer->data(), data_size, false);
4359
4360 disk_cache::Entry* entry = nullptr;
4361 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4362 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4363 EXPECT_EQ(data_size, WriteData(entry, i, /* offset */ 0, buffer.get(),
4364 data_size, false));
4365 }
4366 entry->Close();
4367 }
4368
TruncateFileFromEnd(int file_index,const std::string & key,int data_size,int truncate_size)4369 void DiskCacheEntryTest::TruncateFileFromEnd(int file_index,
4370 const std::string& key,
4371 int data_size,
4372 int truncate_size) {
4373 // Remove last eof bytes from cache file.
4374 ASSERT_GT(data_size, truncate_size);
4375 const int64_t new_size =
4376 disk_cache::simple_util::GetFileSizeFromDataSize(key.size(), data_size) -
4377 truncate_size;
4378 const base::FilePath entry_path = cache_path_.AppendASCII(
4379 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, file_index));
4380 EXPECT_TRUE(TruncatePath(entry_path, new_size));
4381 }
4382
UseAfterBackendDestruction()4383 void DiskCacheEntryTest::UseAfterBackendDestruction() {
4384 disk_cache::Entry* entry = nullptr;
4385 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
4386 ResetCaches();
4387
4388 const int kSize = 100;
4389 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4390 CacheTestFillBuffer(buffer->data(), kSize, false);
4391
4392 // Do some writes and reads, but don't change the result. We're OK
4393 // with them failing, just not them crashing.
4394 WriteData(entry, 1, 0, buffer.get(), kSize, false);
4395 ReadData(entry, 1, 0, buffer.get(), kSize);
4396 WriteSparseData(entry, 20000, buffer.get(), kSize);
4397
4398 entry->Close();
4399 }
4400
CloseSparseAfterBackendDestruction()4401 void DiskCacheEntryTest::CloseSparseAfterBackendDestruction() {
4402 const int kSize = 100;
4403 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4404 CacheTestFillBuffer(buffer->data(), kSize, false);
4405
4406 disk_cache::Entry* entry = nullptr;
4407 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
4408 WriteSparseData(entry, 20000, buffer.get(), kSize);
4409
4410 ResetCaches();
4411
4412 // This call shouldn't DCHECK or crash.
4413 entry->Close();
4414 }
4415
4416 // Check that a newly-created entry with no third-stream writes omits the
4417 // third stream file.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream1)4418 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) {
4419 SetSimpleCacheMode();
4420 InitCache();
4421
4422 const char key[] = "key";
4423
4424 disk_cache::Entry* entry;
4425
4426 // Create entry and close without writing: third stream file should be
4427 // omitted, since the stream is empty.
4428 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4429 entry->Close();
4430 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4431
4432 SyncDoomEntry(key);
4433 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4434 }
4435
4436 // Check that a newly-created entry with only a single zero-offset, zero-length
4437 // write omits the third stream file.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream2)4438 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) {
4439 SetSimpleCacheMode();
4440 InitCache();
4441
4442 const int kHalfSize = 8;
4443 const int kSize = kHalfSize * 2;
4444 const char key[] = "key";
4445 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4446 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
4447
4448 disk_cache::Entry* entry;
4449
4450 // Create entry, write empty buffer to third stream, and close: third stream
4451 // should still be omitted, since the entry ignores writes that don't modify
4452 // data or change the length.
4453 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4454 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer.get(), 0, true));
4455 entry->Close();
4456 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4457
4458 SyncDoomEntry(key);
4459 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4460 }
4461
4462 // Check that we can read back data written to the third stream.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream3)4463 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) {
4464 SetSimpleCacheMode();
4465 InitCache();
4466
4467 const int kHalfSize = 8;
4468 const int kSize = kHalfSize * 2;
4469 const char key[] = "key";
4470 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4471 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4472 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
4473
4474 disk_cache::Entry* entry;
4475
4476 // Create entry, write data to third stream, and close: third stream should
4477 // not be omitted, since it contains data. Re-open entry and ensure there
4478 // are that many bytes in the third stream.
4479 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4480 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
4481 entry->Close();
4482 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
4483
4484 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4485 EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2.get(), kSize));
4486 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize));
4487 entry->Close();
4488 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
4489
4490 SyncDoomEntry(key);
4491 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4492 }
4493
4494 // Check that we remove the third stream file upon opening an entry and finding
4495 // the third stream empty. (This is the upgrade path for entries written
4496 // before the third stream was optional.)
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream4)4497 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) {
4498 SetSimpleCacheMode();
4499 InitCache();
4500
4501 const int kHalfSize = 8;
4502 const int kSize = kHalfSize * 2;
4503 const char key[] = "key";
4504 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4505 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4506 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
4507
4508 disk_cache::Entry* entry;
4509
4510 // Create entry, write data to third stream, truncate third stream back to
4511 // empty, and close: third stream will not initially be omitted, since entry
4512 // creates the file when the first significant write comes in, and only
4513 // removes it on open if it is empty. Reopen, ensure that the file is
4514 // deleted, and that there's no data in the third stream.
4515 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4516 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
4517 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1.get(), 0, true));
4518 entry->Close();
4519 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
4520
4521 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4522 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4523 EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2.get(), kSize));
4524 entry->Close();
4525 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4526
4527 SyncDoomEntry(key);
4528 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4529 }
4530
4531 // Check that we don't accidentally create the third stream file once the entry
4532 // has been doomed.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream5)4533 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) {
4534 SetSimpleCacheMode();
4535 InitCache();
4536
4537 const int kHalfSize = 8;
4538 const int kSize = kHalfSize * 2;
4539 const char key[] = "key";
4540 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4541 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
4542
4543 disk_cache::Entry* entry;
4544
4545 // Create entry, doom entry, write data to third stream, and close: third
4546 // stream should not exist. (Note: We don't care if the write fails, just
4547 // that it doesn't cause the file to be created on disk.)
4548 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4549 entry->Doom();
4550 WriteData(entry, 2, 0, buffer.get(), kHalfSize, true);
4551 entry->Close();
4552 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4553 }
4554
4555 // There could be a race between Doom and an optimistic write.
TEST_F(DiskCacheEntryTest,SimpleCacheDoomOptimisticWritesRace)4556 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) {
4557 // Test sequence:
4558 // Create, first Write, second Write, Close.
4559 // Open, Close.
4560 SetSimpleCacheMode();
4561 InitCache();
4562 disk_cache::Entry* null = nullptr;
4563 const char key[] = "the first key";
4564
4565 const int kSize = 200;
4566 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4567 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4568 CacheTestFillBuffer(buffer1->data(), kSize, false);
4569 CacheTestFillBuffer(buffer2->data(), kSize, false);
4570
4571 // The race only happens on stream 1 and stream 2.
4572 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4573 ASSERT_THAT(DoomAllEntries(), IsOk());
4574 disk_cache::Entry* entry = nullptr;
4575
4576 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4577 EXPECT_NE(null, entry);
4578 entry->Close();
4579 entry = nullptr;
4580
4581 ASSERT_THAT(DoomAllEntries(), IsOk());
4582 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4583 EXPECT_NE(null, entry);
4584
4585 int offset = 0;
4586 int buf_len = kSize;
4587 // This write should not be optimistic (since create is).
4588 EXPECT_EQ(buf_len,
4589 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
4590
4591 offset = kSize;
4592 // This write should be optimistic.
4593 EXPECT_EQ(buf_len,
4594 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
4595 entry->Close();
4596
4597 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4598 EXPECT_NE(null, entry);
4599
4600 entry->Close();
4601 entry = nullptr;
4602 }
4603 }
4604
4605 // Tests for a regression in crbug.com/317138 , in which deleting an already
4606 // doomed entry was removing the active entry from the index.
TEST_F(DiskCacheEntryTest,SimpleCachePreserveActiveEntries)4607 TEST_F(DiskCacheEntryTest, SimpleCachePreserveActiveEntries) {
4608 SetSimpleCacheMode();
4609 InitCache();
4610
4611 disk_cache::Entry* null = nullptr;
4612
4613 const char key[] = "this is a key";
4614
4615 disk_cache::Entry* entry1 = nullptr;
4616 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
4617 ScopedEntryPtr entry1_closer(entry1);
4618 EXPECT_NE(null, entry1);
4619 entry1->Doom();
4620
4621 disk_cache::Entry* entry2 = nullptr;
4622 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
4623 ScopedEntryPtr entry2_closer(entry2);
4624 EXPECT_NE(null, entry2);
4625 entry2_closer.reset();
4626
4627 // Closing then reopening entry2 insures that entry2 is serialized, and so
4628 // it can be opened from files without error.
4629 entry2 = nullptr;
4630 ASSERT_THAT(OpenEntry(key, &entry2), IsOk());
4631 EXPECT_NE(null, entry2);
4632 entry2_closer.reset(entry2);
4633
4634 scoped_refptr<disk_cache::SimpleEntryImpl>
4635 entry1_refptr = static_cast<disk_cache::SimpleEntryImpl*>(entry1);
4636
4637 // If crbug.com/317138 has regressed, this will remove |entry2| from
4638 // the backend's |active_entries_| while |entry2| is still alive and its
4639 // files are still on disk.
4640 entry1_closer.reset();
4641 entry1 = nullptr;
4642
4643 // Close does not have a callback. However, we need to be sure the close is
4644 // finished before we continue the test. We can take advantage of how the ref
4645 // counting of a SimpleEntryImpl works to fake out a callback: When the
4646 // last Close() call is made to an entry, an IO operation is sent to the
4647 // synchronous entry to close the platform files. This IO operation holds a
4648 // ref pointer to the entry, which expires when the operation is done. So,
4649 // we take a refpointer, and watch the SimpleEntry object until it has only
4650 // one ref; this indicates the IO operation is complete.
4651 while (!entry1_refptr->HasOneRef()) {
4652 base::PlatformThread::YieldCurrentThread();
4653 base::RunLoop().RunUntilIdle();
4654 }
4655 entry1_refptr = nullptr;
4656
4657 // In the bug case, this new entry ends up being a duplicate object pointing
4658 // at the same underlying files.
4659 disk_cache::Entry* entry3 = nullptr;
4660 EXPECT_THAT(OpenEntry(key, &entry3), IsOk());
4661 ScopedEntryPtr entry3_closer(entry3);
4662 EXPECT_NE(null, entry3);
4663
4664 // The test passes if these two dooms do not crash.
4665 entry2->Doom();
4666 entry3->Doom();
4667 }
4668
TEST_F(DiskCacheEntryTest,SimpleCacheBasicSparseIO)4669 TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) {
4670 SetSimpleCacheMode();
4671 InitCache();
4672 BasicSparseIO();
4673 }
4674
TEST_F(DiskCacheEntryTest,SimpleCacheHugeSparseIO)4675 TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) {
4676 SetSimpleCacheMode();
4677 InitCache();
4678 HugeSparseIO();
4679 }
4680
TEST_F(DiskCacheEntryTest,SimpleCacheGetAvailableRange)4681 TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) {
4682 SetSimpleCacheMode();
4683 InitCache();
4684 GetAvailableRangeTest();
4685 }
4686
TEST_F(DiskCacheEntryTest,SimpleCacheUpdateSparseEntry)4687 TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) {
4688 SetSimpleCacheMode();
4689 InitCache();
4690 UpdateSparseEntry();
4691 }
4692
TEST_F(DiskCacheEntryTest,SimpleCacheDoomSparseEntry)4693 TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) {
4694 SetSimpleCacheMode();
4695 InitCache();
4696 DoomSparseEntry();
4697 }
4698
TEST_F(DiskCacheEntryTest,SimpleCachePartialSparseEntry)4699 TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) {
4700 SetSimpleCacheMode();
4701 InitCache();
4702 PartialSparseEntry();
4703 }
4704
TEST_F(DiskCacheEntryTest,SimpleCacheTruncateLargeSparseFile)4705 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) {
4706 const int kSize = 1024;
4707
4708 SetSimpleCacheMode();
4709 // An entry is allowed sparse data 1/10 the size of the cache, so this size
4710 // allows for one |kSize|-sized range plus overhead, but not two ranges.
4711 SetMaxSize(kSize * 15);
4712 InitCache();
4713
4714 const char key[] = "key";
4715 disk_cache::Entry* null = nullptr;
4716 disk_cache::Entry* entry;
4717 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4718 EXPECT_NE(null, entry);
4719
4720 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4721 CacheTestFillBuffer(buffer->data(), kSize, false);
4722 net::TestCompletionCallback callback;
4723 int ret;
4724
4725 // Verify initial conditions.
4726 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4727 EXPECT_EQ(0, callback.GetResult(ret));
4728
4729 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
4730 EXPECT_EQ(0, callback.GetResult(ret));
4731
4732 // Write a range and make sure it reads back.
4733 ret = entry->WriteSparseData(0, buffer.get(), kSize, callback.callback());
4734 EXPECT_EQ(kSize, callback.GetResult(ret));
4735
4736 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4737 EXPECT_EQ(kSize, callback.GetResult(ret));
4738
4739 // Write another range and make sure it reads back.
4740 ret = entry->WriteSparseData(kSize, buffer.get(), kSize, callback.callback());
4741 EXPECT_EQ(kSize, callback.GetResult(ret));
4742
4743 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
4744 EXPECT_EQ(kSize, callback.GetResult(ret));
4745
4746 // Make sure the first range was removed when the second was written.
4747 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4748 EXPECT_EQ(0, callback.GetResult(ret));
4749
4750 // Close and reopen the entry and make sure the first entry is still absent
4751 // and the second entry is still present.
4752 entry->Close();
4753 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4754
4755 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4756 EXPECT_EQ(0, callback.GetResult(ret));
4757
4758 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
4759 EXPECT_EQ(kSize, callback.GetResult(ret));
4760
4761 entry->Close();
4762 }
4763
TEST_F(DiskCacheEntryTest,SimpleCacheNoBodyEOF)4764 TEST_F(DiskCacheEntryTest, SimpleCacheNoBodyEOF) {
4765 SetSimpleCacheMode();
4766 InitCache();
4767
4768 const std::string key("the first key");
4769 const int kSize = 1024;
4770 CreateEntryWithHeaderBodyAndSideData(key, kSize);
4771
4772 disk_cache::Entry* entry = nullptr;
4773 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4774 entry->Close();
4775
4776 TruncateFileFromEnd(0 /*header and body file index*/, key, kSize,
4777 static_cast<int>(sizeof(disk_cache::SimpleFileEOF)));
4778 EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
4779 }
4780
TEST_F(DiskCacheEntryTest,SimpleCacheNoSideDataEOF)4781 TEST_F(DiskCacheEntryTest, SimpleCacheNoSideDataEOF) {
4782 SetSimpleCacheMode();
4783 InitCache();
4784
4785 const char key[] = "the first key";
4786 const int kSize = 1024;
4787 CreateEntryWithHeaderBodyAndSideData(key, kSize);
4788
4789 disk_cache::Entry* entry = nullptr;
4790 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4791 entry->Close();
4792
4793 TruncateFileFromEnd(1 /*side data file_index*/, key, kSize,
4794 static_cast<int>(sizeof(disk_cache::SimpleFileEOF)));
4795 EXPECT_THAT(OpenEntry(key, &entry), IsOk());
4796 // The corrupted stream should have been deleted.
4797 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4798 // _0 should still exist.
4799 base::FilePath path_0 = cache_path_.AppendASCII(
4800 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
4801 EXPECT_TRUE(base::PathExists(path_0));
4802
4803 auto check_stream_data = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4804 EXPECT_EQ(kSize, ReadData(entry, 0, 0, check_stream_data.get(), kSize));
4805 EXPECT_EQ(kSize, ReadData(entry, 1, 0, check_stream_data.get(), kSize));
4806 EXPECT_EQ(0, entry->GetDataSize(2));
4807 entry->Close();
4808 }
4809
TEST_F(DiskCacheEntryTest,SimpleCacheReadWithoutKeySHA256)4810 TEST_F(DiskCacheEntryTest, SimpleCacheReadWithoutKeySHA256) {
4811 // This test runs as APP_CACHE to make operations more synchronous.
4812 SetCacheType(net::APP_CACHE);
4813 SetSimpleCacheMode();
4814 InitCache();
4815 disk_cache::Entry* entry;
4816 std::string key("a key");
4817 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4818
4819 const std::string stream_0_data = "data for stream zero";
4820 auto stream_0_iobuffer =
4821 base::MakeRefCounted<net::StringIOBuffer>(stream_0_data);
4822 EXPECT_EQ(static_cast<int>(stream_0_data.size()),
4823 WriteData(entry, 0, 0, stream_0_iobuffer.get(),
4824 stream_0_data.size(), false));
4825 const std::string stream_1_data = "FOR STREAM ONE, QUITE DIFFERENT THINGS";
4826 auto stream_1_iobuffer =
4827 base::MakeRefCounted<net::StringIOBuffer>(stream_1_data);
4828 EXPECT_EQ(static_cast<int>(stream_1_data.size()),
4829 WriteData(entry, 1, 0, stream_1_iobuffer.get(),
4830 stream_1_data.size(), false));
4831 entry->Close();
4832
4833 base::RunLoop().RunUntilIdle();
4834 disk_cache::FlushCacheThreadForTesting();
4835 base::RunLoop().RunUntilIdle();
4836
4837 EXPECT_TRUE(
4838 disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_));
4839 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4840 ScopedEntryPtr entry_closer(entry);
4841
4842 EXPECT_EQ(static_cast<int>(stream_0_data.size()), entry->GetDataSize(0));
4843 auto check_stream_0_data =
4844 base::MakeRefCounted<net::IOBufferWithSize>(stream_0_data.size());
4845 EXPECT_EQ(
4846 static_cast<int>(stream_0_data.size()),
4847 ReadData(entry, 0, 0, check_stream_0_data.get(), stream_0_data.size()));
4848 EXPECT_EQ(0, stream_0_data.compare(0, std::string::npos,
4849 check_stream_0_data->data(),
4850 stream_0_data.size()));
4851
4852 EXPECT_EQ(static_cast<int>(stream_1_data.size()), entry->GetDataSize(1));
4853 auto check_stream_1_data =
4854 base::MakeRefCounted<net::IOBufferWithSize>(stream_1_data.size());
4855 EXPECT_EQ(
4856 static_cast<int>(stream_1_data.size()),
4857 ReadData(entry, 1, 0, check_stream_1_data.get(), stream_1_data.size()));
4858 EXPECT_EQ(0, stream_1_data.compare(0, std::string::npos,
4859 check_stream_1_data->data(),
4860 stream_1_data.size()));
4861 }
4862
TEST_F(DiskCacheEntryTest,SimpleCacheDoubleOpenWithoutKeySHA256)4863 TEST_F(DiskCacheEntryTest, SimpleCacheDoubleOpenWithoutKeySHA256) {
4864 // This test runs as APP_CACHE to make operations more synchronous.
4865 SetCacheType(net::APP_CACHE);
4866 SetSimpleCacheMode();
4867 InitCache();
4868 disk_cache::Entry* entry;
4869 std::string key("a key");
4870 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4871 entry->Close();
4872
4873 base::RunLoop().RunUntilIdle();
4874 disk_cache::FlushCacheThreadForTesting();
4875 base::RunLoop().RunUntilIdle();
4876
4877 EXPECT_TRUE(
4878 disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_));
4879 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4880 entry->Close();
4881
4882 base::RunLoop().RunUntilIdle();
4883 disk_cache::FlushCacheThreadForTesting();
4884 base::RunLoop().RunUntilIdle();
4885
4886 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4887 entry->Close();
4888 }
4889
TEST_F(DiskCacheEntryTest,SimpleCacheReadCorruptKeySHA256)4890 TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptKeySHA256) {
4891 // This test runs as APP_CACHE to make operations more synchronous.
4892 SetCacheType(net::APP_CACHE);
4893 SetSimpleCacheMode();
4894 InitCache();
4895 disk_cache::Entry* entry;
4896 std::string key("a key");
4897 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4898 entry->Close();
4899
4900 base::RunLoop().RunUntilIdle();
4901 disk_cache::FlushCacheThreadForTesting();
4902 base::RunLoop().RunUntilIdle();
4903
4904 EXPECT_TRUE(
4905 disk_cache::simple_util::CorruptKeySHA256FromEntry(key, cache_path_));
4906 EXPECT_NE(net::OK, OpenEntry(key, &entry));
4907 }
4908
TEST_F(DiskCacheEntryTest,SimpleCacheReadCorruptLength)4909 TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptLength) {
4910 SetCacheType(net::APP_CACHE);
4911 SetSimpleCacheMode();
4912 InitCache();
4913 disk_cache::Entry* entry;
4914 std::string key("a key");
4915 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
4916 entry->Close();
4917
4918 base::RunLoop().RunUntilIdle();
4919 disk_cache::FlushCacheThreadForTesting();
4920 base::RunLoop().RunUntilIdle();
4921
4922 EXPECT_TRUE(
4923 disk_cache::simple_util::CorruptStream0LengthFromEntry(key, cache_path_));
4924 EXPECT_NE(net::OK, OpenEntry(key, &entry));
4925 }
4926
TEST_F(DiskCacheEntryTest,SimpleCacheCreateRecoverFromRmdir)4927 TEST_F(DiskCacheEntryTest, SimpleCacheCreateRecoverFromRmdir) {
4928 // This test runs as APP_CACHE to make operations more synchronous.
4929 // (in particular we want to see if create succeeded or not, so we don't
4930 // want an optimistic one).
4931 SetCacheType(net::APP_CACHE);
4932 SetSimpleCacheMode();
4933 InitCache();
4934
4935 // Pretend someone deleted the cache dir. This shouldn't be too scary in
4936 // the test since cache_path_ is set as:
4937 // CHECK(temp_dir_.CreateUniqueTempDir());
4938 // cache_path_ = temp_dir_.GetPath().AppendASCII("cache");
4939 disk_cache::DeleteCache(cache_path_,
4940 true /* delete the dir, what we really want*/);
4941
4942 disk_cache::Entry* entry;
4943 std::string key("a key");
4944 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4945 entry->Close();
4946 }
4947
TEST_F(DiskCacheEntryTest,SimpleCacheSparseErrorHandling)4948 TEST_F(DiskCacheEntryTest, SimpleCacheSparseErrorHandling) {
4949 // If there is corruption in sparse file, we should delete all the files
4950 // before returning the failure. Further additional sparse operations in
4951 // failure state should fail gracefully.
4952 SetSimpleCacheMode();
4953 InitCache();
4954
4955 std::string key("a key");
4956
4957 disk_cache::SimpleFileTracker::EntryFileKey num_key(
4958 disk_cache::simple_util::GetEntryHashKey(key));
4959 base::FilePath path_0 = cache_path_.AppendASCII(
4960 disk_cache::simple_util::GetFilenameFromEntryFileKeyAndFileIndex(num_key,
4961 0));
4962 base::FilePath path_s = cache_path_.AppendASCII(
4963 disk_cache::simple_util::GetSparseFilenameFromEntryFileKey(num_key));
4964
4965 disk_cache::Entry* entry = nullptr;
4966 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4967
4968 const int kSize = 1024;
4969 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4970 CacheTestFillBuffer(buffer->data(), kSize, false);
4971
4972 EXPECT_EQ(kSize, WriteSparseData(entry, 0, buffer.get(), kSize));
4973 entry->Close();
4974
4975 disk_cache::FlushCacheThreadForTesting();
4976 EXPECT_TRUE(base::PathExists(path_0));
4977 EXPECT_TRUE(base::PathExists(path_s));
4978
4979 // Now corrupt the _s file in a way that makes it look OK on open, but not on
4980 // read.
4981 base::File file_s(path_s, base::File::FLAG_OPEN | base::File::FLAG_READ |
4982 base::File::FLAG_WRITE);
4983 ASSERT_TRUE(file_s.IsValid());
4984 file_s.SetLength(sizeof(disk_cache::SimpleFileHeader) +
4985 sizeof(disk_cache::SimpleFileSparseRangeHeader) +
4986 key.size());
4987 file_s.Close();
4988
4989 // Re-open, it should still be fine.
4990 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4991
4992 // Read should fail though.
4993 EXPECT_EQ(net::ERR_CACHE_READ_FAILURE,
4994 ReadSparseData(entry, 0, buffer.get(), kSize));
4995
4996 // At the point read returns to us, the files should already been gone.
4997 EXPECT_FALSE(base::PathExists(path_0));
4998 EXPECT_FALSE(base::PathExists(path_s));
4999
5000 // Re-trying should still fail. Not DCHECK-fail.
5001 EXPECT_EQ(net::ERR_FAILED, ReadSparseData(entry, 0, buffer.get(), kSize));
5002
5003 // Similarly for other ops.
5004 EXPECT_EQ(net::ERR_FAILED, WriteSparseData(entry, 0, buffer.get(), kSize));
5005 net::TestCompletionCallback cb;
5006
5007 TestRangeResultCompletionCallback range_cb;
5008 RangeResult result = range_cb.GetResult(
5009 entry->GetAvailableRange(0, 1024, range_cb.callback()));
5010 EXPECT_EQ(net::ERR_FAILED, result.net_error);
5011
5012 entry->Close();
5013 disk_cache::FlushCacheThreadForTesting();
5014
5015 // Closing shouldn't resurrect files, either.
5016 EXPECT_FALSE(base::PathExists(path_0));
5017 EXPECT_FALSE(base::PathExists(path_s));
5018 }
5019
TEST_F(DiskCacheEntryTest,SimpleCacheCreateCollision)5020 TEST_F(DiskCacheEntryTest, SimpleCacheCreateCollision) {
5021 // These two keys collide; this test is that we properly handled creation
5022 // of both.
5023 const char kCollKey1[] =
5024 "\xfb\x4e\x9c\x1d\x66\x71\xf7\x54\xa3\x11\xa0\x7e\x16\xa5\x68\xf6";
5025 const char kCollKey2[] =
5026 "\xbc\x60\x64\x92\xbc\xa0\x5c\x15\x17\x93\x29\x2d\xe4\x21\xbd\x03";
5027
5028 const int kSize = 256;
5029 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5030 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5031 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5032 CacheTestFillBuffer(buffer1->data(), kSize, false);
5033 CacheTestFillBuffer(buffer2->data(), kSize, false);
5034
5035 SetSimpleCacheMode();
5036 InitCache();
5037
5038 disk_cache::Entry* entry1;
5039 ASSERT_THAT(CreateEntry(kCollKey1, &entry1), IsOk());
5040
5041 disk_cache::Entry* entry2;
5042 ASSERT_THAT(CreateEntry(kCollKey2, &entry2), IsOk());
5043
5044 // Make sure that entry was actually created and we didn't just succeed
5045 // optimistically. (Oddly I can't seem to hit the sequence of events required
5046 // for the bug that used to be here if I just set this to APP_CACHE).
5047 EXPECT_EQ(kSize, WriteData(entry2, 0, 0, buffer2.get(), kSize, false));
5048
5049 // entry1 is still usable, though, and distinct (we just won't be able to
5050 // re-open it).
5051 EXPECT_EQ(kSize, WriteData(entry1, 0, 0, buffer1.get(), kSize, false));
5052 EXPECT_EQ(kSize, ReadData(entry1, 0, 0, read_buffer.get(), kSize));
5053 EXPECT_EQ(0, memcmp(buffer1->data(), read_buffer->data(), kSize));
5054
5055 EXPECT_EQ(kSize, ReadData(entry2, 0, 0, read_buffer.get(), kSize));
5056 EXPECT_EQ(0, memcmp(buffer2->data(), read_buffer->data(), kSize));
5057
5058 entry1->Close();
5059 entry2->Close();
5060 }
5061
TEST_F(DiskCacheEntryTest,SimpleCacheConvertToSparseStream2LeftOver)5062 TEST_F(DiskCacheEntryTest, SimpleCacheConvertToSparseStream2LeftOver) {
5063 // Testcase for what happens when we have a sparse stream and a left over
5064 // empty stream 2 file.
5065 const int kSize = 10;
5066 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5067 CacheTestFillBuffer(buffer->data(), kSize, false);
5068
5069 SetSimpleCacheMode();
5070 InitCache();
5071 disk_cache::Entry* entry;
5072 std::string key("a key");
5073 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
5074 // Create an empty stream 2. To do that, we first make a non-empty one, then
5075 // truncate it (since otherwise the write would just get ignored).
5076 EXPECT_EQ(kSize, WriteData(entry, /* stream = */ 2, /* offset = */ 0,
5077 buffer.get(), kSize, false));
5078 EXPECT_EQ(0, WriteData(entry, /* stream = */ 2, /* offset = */ 0,
5079 buffer.get(), 0, true));
5080
5081 EXPECT_EQ(kSize, WriteSparseData(entry, 5, buffer.get(), kSize));
5082 entry->Close();
5083
5084 // Reopen, and try to get the sparse data back.
5085 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
5086 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5087 EXPECT_EQ(kSize, ReadSparseData(entry, 5, buffer2.get(), kSize));
5088 EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
5089 entry->Close();
5090 }
5091
TEST_F(DiskCacheEntryTest,SimpleCacheLazyStream2CreateFailure)5092 TEST_F(DiskCacheEntryTest, SimpleCacheLazyStream2CreateFailure) {
5093 // Testcase for what happens when lazy-creation of stream 2 fails.
5094 const int kSize = 10;
5095 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5096 CacheTestFillBuffer(buffer->data(), kSize, false);
5097
5098 // Synchronous ops, for ease of disk state;
5099 SetCacheType(net::APP_CACHE);
5100 SetSimpleCacheMode();
5101 InitCache();
5102
5103 const char kKey[] = "a key";
5104 disk_cache::Entry* entry = nullptr;
5105 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5106
5107 // Create _1 file for stream 2; this should inject a failure when the cache
5108 // tries to create it itself.
5109 base::FilePath entry_file1_path = cache_path_.AppendASCII(
5110 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1));
5111 base::File entry_file1(entry_file1_path,
5112 base::File::FLAG_WRITE | base::File::FLAG_CREATE);
5113 ASSERT_TRUE(entry_file1.IsValid());
5114 entry_file1.Close();
5115
5116 EXPECT_EQ(net::ERR_CACHE_WRITE_FAILURE,
5117 WriteData(entry, /* index = */ 2, /* offset = */ 0, buffer.get(),
5118 kSize, /* truncate = */ false));
5119 entry->Close();
5120 }
5121
TEST_F(DiskCacheEntryTest,SimpleCacheChecksumpScrewUp)5122 TEST_F(DiskCacheEntryTest, SimpleCacheChecksumpScrewUp) {
5123 // Test for a bug that occurred during development of movement of CRC
5124 // computation off I/O thread.
5125 const int kSize = 10;
5126 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5127 CacheTestFillBuffer(buffer->data(), kSize, false);
5128
5129 const int kDoubleSize = kSize * 2;
5130 auto big_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kDoubleSize);
5131 CacheTestFillBuffer(big_buffer->data(), kDoubleSize, false);
5132
5133 SetSimpleCacheMode();
5134 InitCache();
5135
5136 const char kKey[] = "a key";
5137 disk_cache::Entry* entry = nullptr;
5138 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5139
5140 // Write out big_buffer for the double range. Checksum will be set to this.
5141 ASSERT_EQ(kDoubleSize,
5142 WriteData(entry, 1, 0, big_buffer.get(), kDoubleSize, false));
5143
5144 // Reset remembered position to 0 by writing at an earlier non-zero offset.
5145 ASSERT_EQ(1, WriteData(entry, /* stream = */ 1, /* offset = */ 1,
5146 big_buffer.get(), /* len = */ 1, false));
5147
5148 // Now write out the half-range twice. An intermediate revision would
5149 // incorrectly compute checksum as if payload was buffer followed by buffer
5150 // rather than buffer followed by end of big_buffer.
5151 ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false));
5152 ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false));
5153 entry->Close();
5154
5155 ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
5156 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5157 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
5158 EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
5159 EXPECT_EQ(kSize, ReadData(entry, 1, kSize, buffer2.get(), kSize));
5160 EXPECT_EQ(0, memcmp(big_buffer->data() + kSize, buffer2->data(), kSize));
5161 entry->Close();
5162 }
5163
TEST_F(DiskCacheEntryTest,SimpleUseAfterBackendDestruction)5164 TEST_F(DiskCacheEntryTest, SimpleUseAfterBackendDestruction) {
5165 SetSimpleCacheMode();
5166 InitCache();
5167 UseAfterBackendDestruction();
5168 }
5169
TEST_F(DiskCacheEntryTest,MemoryOnlyUseAfterBackendDestruction)5170 TEST_F(DiskCacheEntryTest, MemoryOnlyUseAfterBackendDestruction) {
5171 // https://crbug.com/741620
5172 SetMemoryOnlyMode();
5173 InitCache();
5174 UseAfterBackendDestruction();
5175 }
5176
TEST_F(DiskCacheEntryTest,SimpleCloseSparseAfterBackendDestruction)5177 TEST_F(DiskCacheEntryTest, SimpleCloseSparseAfterBackendDestruction) {
5178 SetSimpleCacheMode();
5179 InitCache();
5180 CloseSparseAfterBackendDestruction();
5181 }
5182
TEST_F(DiskCacheEntryTest,MemoryOnlyCloseSparseAfterBackendDestruction)5183 TEST_F(DiskCacheEntryTest, MemoryOnlyCloseSparseAfterBackendDestruction) {
5184 // https://crbug.com/946434
5185 SetMemoryOnlyMode();
5186 InitCache();
5187 CloseSparseAfterBackendDestruction();
5188 }
5189
LastUsedTimePersists()5190 void DiskCacheEntryTest::LastUsedTimePersists() {
5191 // Make sure that SetLastUsedTimeForTest persists. When used with SimpleCache,
5192 // this also checks that Entry::GetLastUsed is based on information in index,
5193 // when available, not atime on disk, which can be inaccurate.
5194 const char kKey[] = "a key";
5195 InitCache();
5196
5197 disk_cache::Entry* entry1 = nullptr;
5198 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
5199 ASSERT_TRUE(nullptr != entry1);
5200 base::Time modified_last_used = entry1->GetLastUsed() - base::Minutes(5);
5201 entry1->SetLastUsedTimeForTest(modified_last_used);
5202 entry1->Close();
5203
5204 disk_cache::Entry* entry2 = nullptr;
5205 ASSERT_THAT(OpenEntry(kKey, &entry2), IsOk());
5206 ASSERT_TRUE(nullptr != entry2);
5207
5208 base::TimeDelta diff = modified_last_used - entry2->GetLastUsed();
5209 EXPECT_LT(diff, base::Seconds(2));
5210 EXPECT_GT(diff, -base::Seconds(2));
5211 entry2->Close();
5212 }
5213
TEST_F(DiskCacheEntryTest,LastUsedTimePersists)5214 TEST_F(DiskCacheEntryTest, LastUsedTimePersists) {
5215 LastUsedTimePersists();
5216 }
5217
TEST_F(DiskCacheEntryTest,SimpleLastUsedTimePersists)5218 TEST_F(DiskCacheEntryTest, SimpleLastUsedTimePersists) {
5219 SetSimpleCacheMode();
5220 LastUsedTimePersists();
5221 }
5222
TEST_F(DiskCacheEntryTest,MemoryOnlyLastUsedTimePersists)5223 TEST_F(DiskCacheEntryTest, MemoryOnlyLastUsedTimePersists) {
5224 SetMemoryOnlyMode();
5225 LastUsedTimePersists();
5226 }
5227
TruncateBackwards()5228 void DiskCacheEntryTest::TruncateBackwards() {
5229 const char kKey[] = "a key";
5230
5231 disk_cache::Entry* entry = nullptr;
5232 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5233 ASSERT_TRUE(entry != nullptr);
5234
5235 const int kBigSize = 40 * 1024;
5236 const int kSmallSize = 9727;
5237
5238 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBigSize);
5239 CacheTestFillBuffer(buffer->data(), kBigSize, false);
5240 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kBigSize);
5241
5242 ASSERT_EQ(kSmallSize, WriteData(entry, /* index = */ 0,
5243 /* offset = */ kBigSize, buffer.get(),
5244 /* size = */ kSmallSize,
5245 /* truncate = */ false));
5246 memset(read_buf->data(), 0, kBigSize);
5247 ASSERT_EQ(kSmallSize, ReadData(entry, /* index = */ 0,
5248 /* offset = */ kBigSize, read_buf.get(),
5249 /* size = */ kSmallSize));
5250 EXPECT_EQ(0, memcmp(read_buf->data(), buffer->data(), kSmallSize));
5251
5252 // A partly overlapping truncate before the previous write.
5253 ASSERT_EQ(kBigSize,
5254 WriteData(entry, /* index = */ 0,
5255 /* offset = */ 3, buffer.get(), /* size = */ kBigSize,
5256 /* truncate = */ true));
5257 memset(read_buf->data(), 0, kBigSize);
5258 ASSERT_EQ(kBigSize,
5259 ReadData(entry, /* index = */ 0,
5260 /* offset = */ 3, read_buf.get(), /* size = */ kBigSize));
5261 EXPECT_EQ(0, memcmp(read_buf->data(), buffer->data(), kBigSize));
5262 EXPECT_EQ(kBigSize + 3, entry->GetDataSize(0));
5263 entry->Close();
5264 }
5265
TEST_F(DiskCacheEntryTest,TruncateBackwards)5266 TEST_F(DiskCacheEntryTest, TruncateBackwards) {
5267 // https://crbug.com/946539/
5268 InitCache();
5269 TruncateBackwards();
5270 }
5271
TEST_F(DiskCacheEntryTest,SimpleTruncateBackwards)5272 TEST_F(DiskCacheEntryTest, SimpleTruncateBackwards) {
5273 SetSimpleCacheMode();
5274 InitCache();
5275 TruncateBackwards();
5276 }
5277
TEST_F(DiskCacheEntryTest,MemoryOnlyTruncateBackwards)5278 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateBackwards) {
5279 SetMemoryOnlyMode();
5280 InitCache();
5281 TruncateBackwards();
5282 }
5283
ZeroWriteBackwards()5284 void DiskCacheEntryTest::ZeroWriteBackwards() {
5285 const char kKey[] = "a key";
5286
5287 disk_cache::Entry* entry = nullptr;
5288 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5289 ASSERT_TRUE(entry != nullptr);
5290
5291 const int kSize = 1024;
5292 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5293 CacheTestFillBuffer(buffer->data(), kSize, false);
5294
5295 // Offset here needs to be > blockfile's kMaxBlockSize to hit
5296 // https://crbug.com/946538, as writes close to beginning are handled
5297 // specially.
5298 EXPECT_EQ(0, WriteData(entry, /* index = */ 0,
5299 /* offset = */ 17000, buffer.get(),
5300 /* size = */ 0, /* truncate = */ true));
5301
5302 EXPECT_EQ(0, WriteData(entry, /* index = */ 0,
5303 /* offset = */ 0, buffer.get(),
5304 /* size = */ 0, /* truncate = */ false));
5305
5306 EXPECT_EQ(kSize, ReadData(entry, /* index = */ 0,
5307 /* offset = */ 0, buffer.get(),
5308 /* size = */ kSize));
5309 for (int i = 0; i < kSize; ++i) {
5310 EXPECT_EQ(0, buffer->data()[i]) << i;
5311 }
5312 entry->Close();
5313 }
5314
TEST_F(DiskCacheEntryTest,ZeroWriteBackwards)5315 TEST_F(DiskCacheEntryTest, ZeroWriteBackwards) {
5316 // https://crbug.com/946538/
5317 InitCache();
5318 ZeroWriteBackwards();
5319 }
5320
TEST_F(DiskCacheEntryTest,SimpleZeroWriteBackwards)5321 TEST_F(DiskCacheEntryTest, SimpleZeroWriteBackwards) {
5322 SetSimpleCacheMode();
5323 InitCache();
5324 ZeroWriteBackwards();
5325 }
5326
TEST_F(DiskCacheEntryTest,MemoryOnlyZeroWriteBackwards)5327 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroWriteBackwards) {
5328 SetMemoryOnlyMode();
5329 InitCache();
5330 ZeroWriteBackwards();
5331 }
5332
SparseOffset64Bit()5333 void DiskCacheEntryTest::SparseOffset64Bit() {
5334 // Offsets to sparse ops are 64-bit, make sure we keep track of all of them.
5335 // (Or, as at least in case of blockfile, fail things cleanly, as it has a
5336 // cap on max offset that's much lower).
5337 bool blockfile = !memory_only_ && !simple_cache_mode_;
5338 InitCache();
5339
5340 const char kKey[] = "a key";
5341
5342 disk_cache::Entry* entry = nullptr;
5343 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5344 ASSERT_TRUE(entry != nullptr);
5345
5346 const int kSize = 1024;
5347 // One bit set very high, so intermediate truncations to 32-bit would drop it
5348 // even if they happen after a bunch of shifting right.
5349 const int64_t kOffset = (1ll << 61);
5350
5351 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5352 CacheTestFillBuffer(buffer->data(), kSize, false);
5353
5354 EXPECT_EQ(blockfile ? net::ERR_CACHE_OPERATION_NOT_SUPPORTED : kSize,
5355 WriteSparseData(entry, kOffset, buffer.get(), kSize));
5356
5357 int64_t start_out = -1;
5358 EXPECT_EQ(0, GetAvailableRange(entry, /* offset = */ 0, kSize, &start_out));
5359
5360 start_out = -1;
5361 EXPECT_EQ(blockfile ? 0 : kSize,
5362 GetAvailableRange(entry, kOffset, kSize, &start_out));
5363 EXPECT_EQ(kOffset, start_out);
5364
5365 entry->Close();
5366 }
5367
TEST_F(DiskCacheEntryTest,SparseOffset64Bit)5368 TEST_F(DiskCacheEntryTest, SparseOffset64Bit) {
5369 InitCache();
5370 SparseOffset64Bit();
5371 }
5372
TEST_F(DiskCacheEntryTest,SimpleSparseOffset64Bit)5373 TEST_F(DiskCacheEntryTest, SimpleSparseOffset64Bit) {
5374 SetSimpleCacheMode();
5375 InitCache();
5376 SparseOffset64Bit();
5377 }
5378
TEST_F(DiskCacheEntryTest,MemoryOnlySparseOffset64Bit)5379 TEST_F(DiskCacheEntryTest, MemoryOnlySparseOffset64Bit) {
5380 // https://crbug.com/946436
5381 SetMemoryOnlyMode();
5382 InitCache();
5383 SparseOffset64Bit();
5384 }
5385
TEST_F(DiskCacheEntryTest,SimpleCacheCloseResurrection)5386 TEST_F(DiskCacheEntryTest, SimpleCacheCloseResurrection) {
5387 const int kSize = 10;
5388 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5389 CacheTestFillBuffer(buffer->data(), kSize, false);
5390
5391 const char kKey[] = "key";
5392 SetSimpleCacheMode();
5393 InitCache();
5394
5395 disk_cache::Entry* entry = nullptr;
5396 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5397 ASSERT_TRUE(entry != nullptr);
5398
5399 // Let optimistic create finish.
5400 base::RunLoop().RunUntilIdle();
5401 disk_cache::FlushCacheThreadForTesting();
5402 base::RunLoop().RunUntilIdle();
5403
5404 int rv = entry->WriteData(1, 0, buffer.get(), kSize,
5405 net::CompletionOnceCallback(), false);
5406
5407 // Write should be optimistic.
5408 ASSERT_EQ(kSize, rv);
5409
5410 // Since the write is still pending, the open will get queued...
5411 TestEntryResultCompletionCallback cb_open;
5412 EntryResult result2 =
5413 cache_->OpenEntry(kKey, net::HIGHEST, cb_open.callback());
5414 EXPECT_EQ(net::ERR_IO_PENDING, result2.net_error());
5415
5416 // ... as the open is queued, this Close will temporarily reduce the number
5417 // of external references to 0. This should not break things.
5418 entry->Close();
5419
5420 // Wait till open finishes.
5421 result2 = cb_open.GetResult(std::move(result2));
5422 ASSERT_EQ(net::OK, result2.net_error());
5423 disk_cache::Entry* entry2 = result2.ReleaseEntry();
5424 ASSERT_TRUE(entry2 != nullptr);
5425
5426 // Get first close a chance to finish.
5427 base::RunLoop().RunUntilIdle();
5428 disk_cache::FlushCacheThreadForTesting();
5429 base::RunLoop().RunUntilIdle();
5430
5431 // Make sure |entry2| is still usable.
5432 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5433 memset(buffer2->data(), 0, kSize);
5434 EXPECT_EQ(kSize, ReadData(entry2, 1, 0, buffer2.get(), kSize));
5435 EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
5436 entry2->Close();
5437 }
5438
TEST_F(DiskCacheEntryTest,BlockFileSparsePendingAfterDtor)5439 TEST_F(DiskCacheEntryTest, BlockFileSparsePendingAfterDtor) {
5440 // Test of behavior of ~EntryImpl for sparse entry that runs after backend
5441 // destruction.
5442 //
5443 // Hand-creating the backend for realistic shutdown behavior.
5444 CleanupCacheDir();
5445 CreateBackend(disk_cache::kNone);
5446
5447 disk_cache::Entry* entry = nullptr;
5448 ASSERT_THAT(CreateEntry("key", &entry), IsOk());
5449 ASSERT_TRUE(entry != nullptr);
5450
5451 const int kSize = 61184;
5452
5453 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5454 CacheTestFillBuffer(buf->data(), kSize, false);
5455
5456 // The write pattern here avoids the second write being handled by the
5457 // buffering layer, making SparseControl have to deal with its asynchrony.
5458 EXPECT_EQ(1, WriteSparseData(entry, 65535, buf.get(), 1));
5459 EXPECT_EQ(net::ERR_IO_PENDING,
5460 entry->WriteSparseData(2560, buf.get(), kSize, base::DoNothing()));
5461 entry->Close();
5462 ResetCaches();
5463
5464 // Create a new instance as a way of flushing the thread.
5465 InitCache();
5466 FlushQueueForTest();
5467 }
5468
5469 class DiskCacheSimplePrefetchTest : public DiskCacheEntryTest {
5470 public:
5471 DiskCacheSimplePrefetchTest() = default;
5472
5473 enum { kEntrySize = 1024 };
5474
SetUp()5475 void SetUp() override {
5476 payload_ = base::MakeRefCounted<net::IOBufferWithSize>(kEntrySize);
5477 CacheTestFillBuffer(payload_->data(), kEntrySize, false);
5478 DiskCacheEntryTest::SetUp();
5479 }
5480
SetupFullAndTrailerPrefetch(int full_size,int trailer_speculative_size)5481 void SetupFullAndTrailerPrefetch(int full_size,
5482 int trailer_speculative_size) {
5483 std::map<std::string, std::string> params;
5484 params[disk_cache::kSimpleCacheFullPrefetchBytesParam] =
5485 base::NumberToString(full_size);
5486 params[disk_cache::kSimpleCacheTrailerPrefetchSpeculativeBytesParam] =
5487 base::NumberToString(trailer_speculative_size);
5488 scoped_feature_list_.InitAndEnableFeatureWithParameters(
5489 disk_cache::kSimpleCachePrefetchExperiment, params);
5490 }
5491
SetupFullPrefetch(int size)5492 void SetupFullPrefetch(int size) { SetupFullAndTrailerPrefetch(size, 0); }
5493
InitCacheAndCreateEntry(const std::string & key)5494 void InitCacheAndCreateEntry(const std::string& key) {
5495 SetSimpleCacheMode();
5496 SetCacheType(SimpleCacheType());
5497 InitCache();
5498
5499 disk_cache::Entry* entry;
5500 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
5501 // Use stream 1 since that's what new prefetch stuff is about.
5502 ASSERT_EQ(kEntrySize,
5503 WriteData(entry, 1, 0, payload_.get(), kEntrySize, false));
5504 entry->Close();
5505 }
5506
SimpleCacheType() const5507 virtual net::CacheType SimpleCacheType() const { return net::DISK_CACHE; }
5508
InitCacheAndCreateEntryWithNoCrc(const std::string & key)5509 void InitCacheAndCreateEntryWithNoCrc(const std::string& key) {
5510 const int kHalfSize = kEntrySize / 2;
5511 const int kRemSize = kEntrySize - kHalfSize;
5512
5513 SetSimpleCacheMode();
5514 InitCache();
5515
5516 disk_cache::Entry* entry;
5517 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
5518 // Use stream 1 since that's what new prefetch stuff is about.
5519 ASSERT_EQ(kEntrySize,
5520 WriteData(entry, 1, 0, payload_.get(), kEntrySize, false));
5521
5522 // Overwrite later part of the buffer, since we can't keep track of
5523 // the checksum in that case. Do it with identical contents, though,
5524 // so that the only difference between here and InitCacheAndCreateEntry()
5525 // would be whether the result has a checkum or not.
5526 auto second_half = base::MakeRefCounted<net::IOBufferWithSize>(kRemSize);
5527 memcpy(second_half->data(), payload_->data() + kHalfSize, kRemSize);
5528 ASSERT_EQ(kRemSize, WriteData(entry, 1, kHalfSize, second_half.get(),
5529 kRemSize, false));
5530 entry->Close();
5531 }
5532
TryRead(const std::string & key,bool expect_preread_stream1)5533 void TryRead(const std::string& key, bool expect_preread_stream1) {
5534 disk_cache::Entry* entry = nullptr;
5535 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
5536 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kEntrySize);
5537 net::TestCompletionCallback cb;
5538 int rv = entry->ReadData(1, 0, read_buf.get(), kEntrySize, cb.callback());
5539
5540 // if preload happened, sync reply is expected.
5541 if (expect_preread_stream1)
5542 EXPECT_EQ(kEntrySize, rv);
5543 else
5544 EXPECT_EQ(net::ERR_IO_PENDING, rv);
5545 rv = cb.GetResult(rv);
5546 EXPECT_EQ(kEntrySize, rv);
5547 EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize));
5548 entry->Close();
5549 }
5550
5551 protected:
5552 scoped_refptr<net::IOBuffer> payload_;
5553 base::test::ScopedFeatureList scoped_feature_list_;
5554 };
5555
TEST_F(DiskCacheSimplePrefetchTest,NoPrefetch)5556 TEST_F(DiskCacheSimplePrefetchTest, NoPrefetch) {
5557 base::HistogramTester histogram_tester;
5558 SetupFullPrefetch(0);
5559
5560 const char kKey[] = "a key";
5561 InitCacheAndCreateEntry(kKey);
5562 TryRead(kKey, /* expect_preread_stream1 */ false);
5563
5564 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5565 disk_cache::OPEN_PREFETCH_NONE, 1);
5566 }
5567
TEST_F(DiskCacheSimplePrefetchTest,YesPrefetch)5568 TEST_F(DiskCacheSimplePrefetchTest, YesPrefetch) {
5569 base::HistogramTester histogram_tester;
5570 SetupFullPrefetch(2 * kEntrySize);
5571
5572 const char kKey[] = "a key";
5573 InitCacheAndCreateEntry(kKey);
5574 TryRead(kKey, /* expect_preread_stream1 */ true);
5575
5576 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5577 disk_cache::OPEN_PREFETCH_FULL, 1);
5578 }
5579
TEST_F(DiskCacheSimplePrefetchTest,YesPrefetchNoRead)5580 TEST_F(DiskCacheSimplePrefetchTest, YesPrefetchNoRead) {
5581 base::HistogramTester histogram_tester;
5582 SetupFullPrefetch(2 * kEntrySize);
5583
5584 const char kKey[] = "a key";
5585 InitCacheAndCreateEntry(kKey);
5586
5587 disk_cache::Entry* entry = nullptr;
5588 ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
5589 entry->Close();
5590
5591 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5592 disk_cache::OPEN_PREFETCH_FULL, 1);
5593 }
5594
5595 // This makes sure we detect checksum error on entry that's small enough to be
5596 // prefetched. This is like DiskCacheEntryTest.BadChecksum, but we make sure
5597 // to configure prefetch explicitly.
TEST_F(DiskCacheSimplePrefetchTest,BadChecksumSmall)5598 TEST_F(DiskCacheSimplePrefetchTest, BadChecksumSmall) {
5599 SetupFullPrefetch(1024); // bigger than stuff below.
5600 SetSimpleCacheMode();
5601 InitCache();
5602
5603 const char key[] = "the first key";
5604 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, 10));
5605
5606 disk_cache::Entry* entry = nullptr;
5607
5608 // Open the entry. Since we made a small entry, we will detect the CRC
5609 // problem at open.
5610 EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
5611 }
5612
TEST_F(DiskCacheSimplePrefetchTest,ChecksumNoPrefetch)5613 TEST_F(DiskCacheSimplePrefetchTest, ChecksumNoPrefetch) {
5614 base::HistogramTester histogram_tester;
5615
5616 SetupFullPrefetch(0);
5617 const char kKey[] = "a key";
5618 InitCacheAndCreateEntry(kKey);
5619 TryRead(kKey, /* expect_preread_stream1 */ false);
5620
5621 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5622 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5623 }
5624
TEST_F(DiskCacheSimplePrefetchTest,NoChecksumNoPrefetch)5625 TEST_F(DiskCacheSimplePrefetchTest, NoChecksumNoPrefetch) {
5626 base::HistogramTester histogram_tester;
5627
5628 SetupFullPrefetch(0);
5629 const char kKey[] = "a key";
5630 InitCacheAndCreateEntryWithNoCrc(kKey);
5631 TryRead(kKey, /* expect_preread_stream1 */ false);
5632
5633 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5634 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5635 }
5636
TEST_F(DiskCacheSimplePrefetchTest,ChecksumPrefetch)5637 TEST_F(DiskCacheSimplePrefetchTest, ChecksumPrefetch) {
5638 base::HistogramTester histogram_tester;
5639
5640 SetupFullPrefetch(2 * kEntrySize);
5641 const char kKey[] = "a key";
5642 InitCacheAndCreateEntry(kKey);
5643 TryRead(kKey, /* expect_preread_stream1 */ true);
5644
5645 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5646 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5647 }
5648
TEST_F(DiskCacheSimplePrefetchTest,NoChecksumPrefetch)5649 TEST_F(DiskCacheSimplePrefetchTest, NoChecksumPrefetch) {
5650 base::HistogramTester histogram_tester;
5651
5652 SetupFullPrefetch(2 * kEntrySize);
5653 const char kKey[] = "a key";
5654 InitCacheAndCreateEntryWithNoCrc(kKey);
5655 TryRead(kKey, /* expect_preread_stream1 */ true);
5656
5657 // EOF check is recorded even if there is no CRC there.
5658 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5659 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5660 }
5661
TEST_F(DiskCacheSimplePrefetchTest,PrefetchReadsSync)5662 TEST_F(DiskCacheSimplePrefetchTest, PrefetchReadsSync) {
5663 // Make sure we can read things synchronously after prefetch.
5664 SetupFullPrefetch(32768); // way bigger than kEntrySize
5665 const char kKey[] = "a key";
5666 InitCacheAndCreateEntry(kKey);
5667
5668 disk_cache::Entry* entry = nullptr;
5669 ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
5670 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kEntrySize);
5671
5672 // That this is entry->ReadData(...) rather than ReadData(entry, ...) is
5673 // meaningful here, as the latter is a helper in the test fixture that blocks
5674 // if needed.
5675 EXPECT_EQ(kEntrySize, entry->ReadData(1, 0, read_buf.get(), kEntrySize,
5676 net::CompletionOnceCallback()));
5677 EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize));
5678 entry->Close();
5679 }
5680
TEST_F(DiskCacheSimplePrefetchTest,NoFullNoSpeculative)5681 TEST_F(DiskCacheSimplePrefetchTest, NoFullNoSpeculative) {
5682 base::HistogramTester histogram_tester;
5683 SetupFullAndTrailerPrefetch(0, 0);
5684
5685 const char kKey[] = "a key";
5686 InitCacheAndCreateEntry(kKey);
5687 TryRead(kKey, /* expect_preread_stream1 */ false);
5688
5689 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5690 disk_cache::OPEN_PREFETCH_NONE, 1);
5691 }
5692
TEST_F(DiskCacheSimplePrefetchTest,NoFullSmallSpeculative)5693 TEST_F(DiskCacheSimplePrefetchTest, NoFullSmallSpeculative) {
5694 base::HistogramTester histogram_tester;
5695 SetupFullAndTrailerPrefetch(0, kEntrySize / 2);
5696
5697 const char kKey[] = "a key";
5698 InitCacheAndCreateEntry(kKey);
5699 TryRead(kKey, /* expect_preread_stream1 */ false);
5700
5701 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5702 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5703 }
5704
TEST_F(DiskCacheSimplePrefetchTest,NoFullLargeSpeculative)5705 TEST_F(DiskCacheSimplePrefetchTest, NoFullLargeSpeculative) {
5706 base::HistogramTester histogram_tester;
5707 // A large speculative trailer prefetch that exceeds the entry file
5708 // size should effectively trigger full prefetch behavior.
5709 SetupFullAndTrailerPrefetch(0, kEntrySize * 2);
5710
5711 const char kKey[] = "a key";
5712 InitCacheAndCreateEntry(kKey);
5713 TryRead(kKey, /* expect_preread_stream1 */ true);
5714
5715 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5716 disk_cache::OPEN_PREFETCH_FULL, 1);
5717 }
5718
TEST_F(DiskCacheSimplePrefetchTest,SmallFullNoSpeculative)5719 TEST_F(DiskCacheSimplePrefetchTest, SmallFullNoSpeculative) {
5720 base::HistogramTester histogram_tester;
5721 SetupFullAndTrailerPrefetch(kEntrySize / 2, 0);
5722
5723 const char kKey[] = "a key";
5724 InitCacheAndCreateEntry(kKey);
5725 TryRead(kKey, /* expect_preread_stream1 */ false);
5726
5727 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5728 disk_cache::OPEN_PREFETCH_NONE, 1);
5729 }
5730
TEST_F(DiskCacheSimplePrefetchTest,LargeFullNoSpeculative)5731 TEST_F(DiskCacheSimplePrefetchTest, LargeFullNoSpeculative) {
5732 base::HistogramTester histogram_tester;
5733 SetupFullAndTrailerPrefetch(kEntrySize * 2, 0);
5734
5735 const char kKey[] = "a key";
5736 InitCacheAndCreateEntry(kKey);
5737 TryRead(kKey, /* expect_preread_stream1 */ true);
5738
5739 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5740 disk_cache::OPEN_PREFETCH_FULL, 1);
5741 }
5742
TEST_F(DiskCacheSimplePrefetchTest,SmallFullSmallSpeculative)5743 TEST_F(DiskCacheSimplePrefetchTest, SmallFullSmallSpeculative) {
5744 base::HistogramTester histogram_tester;
5745 SetupFullAndTrailerPrefetch(kEntrySize / 2, kEntrySize / 2);
5746
5747 const char kKey[] = "a key";
5748 InitCacheAndCreateEntry(kKey);
5749 TryRead(kKey, /* expect_preread_stream1 */ false);
5750
5751 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5752 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5753 }
5754
TEST_F(DiskCacheSimplePrefetchTest,LargeFullSmallSpeculative)5755 TEST_F(DiskCacheSimplePrefetchTest, LargeFullSmallSpeculative) {
5756 base::HistogramTester histogram_tester;
5757 // Full prefetch takes precedence over a trailer speculative prefetch.
5758 SetupFullAndTrailerPrefetch(kEntrySize * 2, kEntrySize / 2);
5759
5760 const char kKey[] = "a key";
5761 InitCacheAndCreateEntry(kKey);
5762 TryRead(kKey, /* expect_preread_stream1 */ true);
5763
5764 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5765 disk_cache::OPEN_PREFETCH_FULL, 1);
5766 }
5767
5768 class DiskCacheSimpleAppCachePrefetchTest : public DiskCacheSimplePrefetchTest {
5769 public:
5770 // APP_CACHE mode will enable trailer prefetch hint support.
SimpleCacheType() const5771 net::CacheType SimpleCacheType() const override { return net::APP_CACHE; }
5772 };
5773
TEST_F(DiskCacheSimpleAppCachePrefetchTest,NoFullNoSpeculative)5774 TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullNoSpeculative) {
5775 base::HistogramTester histogram_tester;
5776 SetupFullAndTrailerPrefetch(0, 0);
5777
5778 const char kKey[] = "a key";
5779 InitCacheAndCreateEntry(kKey);
5780 TryRead(kKey, /* expect_preread_stream1 */ false);
5781
5782 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5783 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5784 }
5785
TEST_F(DiskCacheSimpleAppCachePrefetchTest,NoFullSmallSpeculative)5786 TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullSmallSpeculative) {
5787 base::HistogramTester histogram_tester;
5788 SetupFullAndTrailerPrefetch(0, kEntrySize / 2);
5789
5790 const char kKey[] = "a key";
5791 InitCacheAndCreateEntry(kKey);
5792 TryRead(kKey, /* expect_preread_stream1 */ false);
5793
5794 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5795 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5796 }
5797
TEST_F(DiskCacheSimpleAppCachePrefetchTest,NoFullLargeSpeculative)5798 TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullLargeSpeculative) {
5799 base::HistogramTester histogram_tester;
5800 // Even though the speculative trailer prefetch size is larger than the
5801 // file size, the hint should take precedence and still perform a limited
5802 // trailer prefetch.
5803 SetupFullAndTrailerPrefetch(0, kEntrySize * 2);
5804
5805 const char kKey[] = "a key";
5806 InitCacheAndCreateEntry(kKey);
5807 TryRead(kKey, /* expect_preread_stream1 */ false);
5808
5809 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5810 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5811 }
5812
TEST_F(DiskCacheSimpleAppCachePrefetchTest,SmallFullNoSpeculative)5813 TEST_F(DiskCacheSimpleAppCachePrefetchTest, SmallFullNoSpeculative) {
5814 base::HistogramTester histogram_tester;
5815 SetupFullAndTrailerPrefetch(kEntrySize / 2, 0);
5816
5817 const char kKey[] = "a key";
5818 InitCacheAndCreateEntry(kKey);
5819 TryRead(kKey, /* expect_preread_stream1 */ false);
5820
5821 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5822 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5823 }
5824
TEST_F(DiskCacheSimpleAppCachePrefetchTest,LargeFullNoSpeculative)5825 TEST_F(DiskCacheSimpleAppCachePrefetchTest, LargeFullNoSpeculative) {
5826 base::HistogramTester histogram_tester;
5827 // Full prefetch takes precedence over a trailer hint prefetch.
5828 SetupFullAndTrailerPrefetch(kEntrySize * 2, 0);
5829
5830 const char kKey[] = "a key";
5831 InitCacheAndCreateEntry(kKey);
5832 TryRead(kKey, /* expect_preread_stream1 */ true);
5833
5834 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5835 disk_cache::OPEN_PREFETCH_FULL, 1);
5836 }
5837
TEST_F(DiskCacheSimpleAppCachePrefetchTest,SmallFullSmallSpeculative)5838 TEST_F(DiskCacheSimpleAppCachePrefetchTest, SmallFullSmallSpeculative) {
5839 base::HistogramTester histogram_tester;
5840 SetupFullAndTrailerPrefetch(kEntrySize / 2, kEntrySize / 2);
5841
5842 const char kKey[] = "a key";
5843 InitCacheAndCreateEntry(kKey);
5844 TryRead(kKey, /* expect_preread_stream1 */ false);
5845
5846 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5847 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5848 }
5849
TEST_F(DiskCacheSimpleAppCachePrefetchTest,LargeFullSmallSpeculative)5850 TEST_F(DiskCacheSimpleAppCachePrefetchTest, LargeFullSmallSpeculative) {
5851 base::HistogramTester histogram_tester;
5852 // Full prefetch takes precedence over a trailer speculative prefetch.
5853 SetupFullAndTrailerPrefetch(kEntrySize * 2, kEntrySize / 2);
5854
5855 const char kKey[] = "a key";
5856 InitCacheAndCreateEntry(kKey);
5857 TryRead(kKey, /* expect_preread_stream1 */ true);
5858
5859 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5860 disk_cache::OPEN_PREFETCH_FULL, 1);
5861 }
5862