xref: /aosp_15_r20/external/cronet/third_party/abseil-cpp/absl/container/fixed_array.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29 
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32 
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42 
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/config.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/throw_delegate.h"
47 #include "absl/base/macros.h"
48 #include "absl/base/optimization.h"
49 #include "absl/base/port.h"
50 #include "absl/container/internal/compressed_tuple.h"
51 #include "absl/memory/memory.h"
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 
56 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
57 
58 // -----------------------------------------------------------------------------
59 // FixedArray
60 // -----------------------------------------------------------------------------
61 //
62 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
63 // inline for efficiency.
64 //
65 // Most users should not specify the `N` template parameter and let `FixedArray`
66 // automatically determine the number of elements to store inline based on
67 // `sizeof(T)`. If `N` is specified, the `FixedArray` implementation will use
68 // inline storage for arrays with a length <= `N`.
69 //
70 // Note that a `FixedArray` constructed with a `size_type` argument will
71 // default-initialize its values by leaving trivially constructible types
72 // uninitialized (e.g. int, int[4], double), and others default-constructed.
73 // This matches the behavior of c-style arrays and `std::array`, but not
74 // `std::vector`.
75 template <typename T, size_t N = kFixedArrayUseDefault,
76           typename A = std::allocator<T>>
77 class FixedArray {
78   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
79                 "Arrays with unknown bounds cannot be used with FixedArray.");
80 
81   static constexpr size_t kInlineBytesDefault = 256;
82 
83   using AllocatorTraits = std::allocator_traits<A>;
84   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
85   // but this seems to be mostly pedantic.
86   template <typename Iterator>
87   using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
88       typename std::iterator_traits<Iterator>::iterator_category,
89       std::forward_iterator_tag>::value>;
NoexceptCopyable()90   static constexpr bool NoexceptCopyable() {
91     return std::is_nothrow_copy_constructible<StorageElement>::value &&
92            absl::allocator_is_nothrow<allocator_type>::value;
93   }
NoexceptMovable()94   static constexpr bool NoexceptMovable() {
95     return std::is_nothrow_move_constructible<StorageElement>::value &&
96            absl::allocator_is_nothrow<allocator_type>::value;
97   }
DefaultConstructorIsNonTrivial()98   static constexpr bool DefaultConstructorIsNonTrivial() {
99     return !absl::is_trivially_default_constructible<StorageElement>::value;
100   }
101 
102  public:
103   using allocator_type = typename AllocatorTraits::allocator_type;
104   using value_type = typename AllocatorTraits::value_type;
105   using pointer = typename AllocatorTraits::pointer;
106   using const_pointer = typename AllocatorTraits::const_pointer;
107   using reference = value_type&;
108   using const_reference = const value_type&;
109   using size_type = typename AllocatorTraits::size_type;
110   using difference_type = typename AllocatorTraits::difference_type;
111   using iterator = pointer;
112   using const_iterator = const_pointer;
113   using reverse_iterator = std::reverse_iterator<iterator>;
114   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
115 
116   static constexpr size_type inline_elements =
117       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
118                                   : static_cast<size_type>(N));
119 
noexcept(NoexceptCopyable ())120   FixedArray(const FixedArray& other) noexcept(NoexceptCopyable())
121       : FixedArray(other,
122                    AllocatorTraits::select_on_container_copy_construction(
123                        other.storage_.alloc())) {}
124 
FixedArray(const FixedArray & other,const allocator_type & a)125   FixedArray(const FixedArray& other,
126              const allocator_type& a) noexcept(NoexceptCopyable())
127       : FixedArray(other.begin(), other.end(), a) {}
128 
noexcept(NoexceptMovable ())129   FixedArray(FixedArray&& other) noexcept(NoexceptMovable())
130       : FixedArray(std::move(other), other.storage_.alloc()) {}
131 
FixedArray(FixedArray && other,const allocator_type & a)132   FixedArray(FixedArray&& other,
133              const allocator_type& a) noexcept(NoexceptMovable())
134       : FixedArray(std::make_move_iterator(other.begin()),
135                    std::make_move_iterator(other.end()), a) {}
136 
137   // Creates an array object that can store `n` elements.
138   // Note that trivially constructible elements will be uninitialized.
139   explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)140       : storage_(n, a) {
141     if (DefaultConstructorIsNonTrivial()) {
142       memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
143                                       storage_.end());
144     }
145   }
146 
147   // Creates an array initialized with `n` copies of `val`.
148   FixedArray(size_type n, const value_type& val,
149              const allocator_type& a = allocator_type())
storage_(n,a)150       : storage_(n, a) {
151     memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
152                                     storage_.end(), val);
153   }
154 
155   // Creates an array initialized with the size and contents of `init_list`.
156   FixedArray(std::initializer_list<value_type> init_list,
157              const allocator_type& a = allocator_type())
158       : FixedArray(init_list.begin(), init_list.end(), a) {}
159 
160   // Creates an array initialized with the elements from the input
161   // range. The array's size will always be `std::distance(first, last)`.
162   // REQUIRES: Iterator must be a forward_iterator or better.
163   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
164   FixedArray(Iterator first, Iterator last,
165              const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)166       : storage_(std::distance(first, last), a) {
167     memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
168   }
169 
~FixedArray()170   ~FixedArray() noexcept {
171     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
172       AllocatorTraits::destroy(storage_.alloc(), cur);
173     }
174   }
175 
176   // Assignments are deleted because they break the invariant that the size of a
177   // `FixedArray` never changes.
178   void operator=(FixedArray&&) = delete;
179   void operator=(const FixedArray&) = delete;
180 
181   // FixedArray::size()
182   //
183   // Returns the length of the fixed array.
size()184   size_type size() const { return storage_.size(); }
185 
186   // FixedArray::max_size()
187   //
188   // Returns the largest possible value of `std::distance(begin(), end())` for a
189   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
190   // over the number of bytes taken by T.
max_size()191   constexpr size_type max_size() const {
192     return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
193   }
194 
195   // FixedArray::empty()
196   //
197   // Returns whether or not the fixed array is empty.
empty()198   bool empty() const { return size() == 0; }
199 
200   // FixedArray::memsize()
201   //
202   // Returns the memory size of the fixed array in bytes.
memsize()203   size_t memsize() const { return size() * sizeof(value_type); }
204 
205   // FixedArray::data()
206   //
207   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
208   // can be used to access (but not modify) the contained elements.
data()209   const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
210     return AsValueType(storage_.begin());
211   }
212 
213   // Overload of FixedArray::data() to return a T* pointer to elements of the
214   // fixed array. This pointer can be used to access and modify the contained
215   // elements.
data()216   pointer data() ABSL_ATTRIBUTE_LIFETIME_BOUND {
217     return AsValueType(storage_.begin());
218   }
219 
220   // FixedArray::operator[]
221   //
222   // Returns a reference the ith element of the fixed array.
223   // REQUIRES: 0 <= i < size()
224   reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
225     ABSL_HARDENING_ASSERT(i < size());
226     return data()[i];
227   }
228 
229   // Overload of FixedArray::operator()[] to return a const reference to the
230   // ith element of the fixed array.
231   // REQUIRES: 0 <= i < size()
232   const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
233     ABSL_HARDENING_ASSERT(i < size());
234     return data()[i];
235   }
236 
237   // FixedArray::at
238   //
239   // Bounds-checked access.  Returns a reference to the ith element of the fixed
240   // array, or throws std::out_of_range
at(size_type i)241   reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
242     if (ABSL_PREDICT_FALSE(i >= size())) {
243       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
244     }
245     return data()[i];
246   }
247 
248   // Overload of FixedArray::at() to return a const reference to the ith element
249   // of the fixed array.
at(size_type i)250   const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
251     if (ABSL_PREDICT_FALSE(i >= size())) {
252       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
253     }
254     return data()[i];
255   }
256 
257   // FixedArray::front()
258   //
259   // Returns a reference to the first element of the fixed array.
front()260   reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
261     ABSL_HARDENING_ASSERT(!empty());
262     return data()[0];
263   }
264 
265   // Overload of FixedArray::front() to return a reference to the first element
266   // of a fixed array of const values.
front()267   const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
268     ABSL_HARDENING_ASSERT(!empty());
269     return data()[0];
270   }
271 
272   // FixedArray::back()
273   //
274   // Returns a reference to the last element of the fixed array.
back()275   reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
276     ABSL_HARDENING_ASSERT(!empty());
277     return data()[size() - 1];
278   }
279 
280   // Overload of FixedArray::back() to return a reference to the last element
281   // of a fixed array of const values.
back()282   const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
283     ABSL_HARDENING_ASSERT(!empty());
284     return data()[size() - 1];
285   }
286 
287   // FixedArray::begin()
288   //
289   // Returns an iterator to the beginning of the fixed array.
begin()290   iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
291 
292   // Overload of FixedArray::begin() to return a const iterator to the
293   // beginning of the fixed array.
begin()294   const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
295 
296   // FixedArray::cbegin()
297   //
298   // Returns a const iterator to the beginning of the fixed array.
cbegin()299   const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
300     return begin();
301   }
302 
303   // FixedArray::end()
304   //
305   // Returns an iterator to the end of the fixed array.
end()306   iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); }
307 
308   // Overload of FixedArray::end() to return a const iterator to the end of the
309   // fixed array.
end()310   const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
311     return data() + size();
312   }
313 
314   // FixedArray::cend()
315   //
316   // Returns a const iterator to the end of the fixed array.
cend()317   const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
318 
319   // FixedArray::rbegin()
320   //
321   // Returns a reverse iterator from the end of the fixed array.
rbegin()322   reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
323     return reverse_iterator(end());
324   }
325 
326   // Overload of FixedArray::rbegin() to return a const reverse iterator from
327   // the end of the fixed array.
rbegin()328   const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
329     return const_reverse_iterator(end());
330   }
331 
332   // FixedArray::crbegin()
333   //
334   // Returns a const reverse iterator from the end of the fixed array.
crbegin()335   const_reverse_iterator crbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
336     return rbegin();
337   }
338 
339   // FixedArray::rend()
340   //
341   // Returns a reverse iterator from the beginning of the fixed array.
rend()342   reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
343     return reverse_iterator(begin());
344   }
345 
346   // Overload of FixedArray::rend() for returning a const reverse iterator
347   // from the beginning of the fixed array.
rend()348   const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
349     return const_reverse_iterator(begin());
350   }
351 
352   // FixedArray::crend()
353   //
354   // Returns a reverse iterator from the beginning of the fixed array.
crend()355   const_reverse_iterator crend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
356     return rend();
357   }
358 
359   // FixedArray::fill()
360   //
361   // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)362   void fill(const value_type& val) { std::fill(begin(), end(), val); }
363 
364   // Relational operators. Equality operators are elementwise using
365   // `operator==`, while order operators order FixedArrays lexicographically.
366   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
367     return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
368   }
369 
370   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
371     return !(lhs == rhs);
372   }
373 
374   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
375     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
376                                         rhs.end());
377   }
378 
379   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
380     return rhs < lhs;
381   }
382 
383   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
384     return !(rhs < lhs);
385   }
386 
387   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
388     return !(lhs < rhs);
389   }
390 
391   template <typename H>
AbslHashValue(H h,const FixedArray & v)392   friend H AbslHashValue(H h, const FixedArray& v) {
393     return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
394                       v.size());
395   }
396 
397  private:
398   // StorageElement
399   //
400   // For FixedArrays with a C-style-array value_type, StorageElement is a POD
401   // wrapper struct called StorageElementWrapper that holds the value_type
402   // instance inside. This is needed for construction and destruction of the
403   // entire array regardless of how many dimensions it has. For all other cases,
404   // StorageElement is just an alias of value_type.
405   //
406   // Maintainer's Note: The simpler solution would be to simply wrap value_type
407   // in a struct whether it's an array or not. That causes some paranoid
408   // diagnostics to misfire, believing that 'data()' returns a pointer to a
409   // single element, rather than the packed array that it really is.
410   // e.g.:
411   //
412   //     FixedArray<char> buf(1);
413   //     sprintf(buf.data(), "foo");
414   //
415   //     error: call to int __builtin___sprintf_chk(etc...)
416   //     will always overflow destination buffer [-Werror]
417   //
418   template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
419             size_t InnerN = std::extent<OuterT>::value>
420   struct StorageElementWrapper {
421     InnerT array[InnerN];
422   };
423 
424   using StorageElement =
425       absl::conditional_t<std::is_array<value_type>::value,
426                           StorageElementWrapper<value_type>, value_type>;
427 
AsValueType(pointer ptr)428   static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)429   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
430     return std::addressof(ptr->array);
431   }
432 
433   static_assert(sizeof(StorageElement) == sizeof(value_type), "");
434   static_assert(alignof(StorageElement) == alignof(value_type), "");
435 
436   class NonEmptyInlinedStorage {
437    public:
data()438     StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
439     void AnnotateConstruct(size_type n);
440     void AnnotateDestruct(size_type n);
441 
442 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()443     void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()444     void* RedzoneEnd() { return &redzone_end_ + 1; }
445 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
446 
447    private:
448     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
449     alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
450     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
451   };
452 
453   class EmptyInlinedStorage {
454    public:
data()455     StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)456     void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)457     void AnnotateDestruct(size_type) {}
458   };
459 
460   using InlinedStorage =
461       absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
462                           NonEmptyInlinedStorage>;
463 
464   // Storage
465   //
466   // An instance of Storage manages the inline and out-of-line memory for
467   // instances of FixedArray. This guarantees that even when construction of
468   // individual elements fails in the FixedArray constructor body, the
469   // destructor for Storage will still be called and out-of-line memory will be
470   // properly deallocated.
471   //
472   class Storage : public InlinedStorage {
473    public:
Storage(size_type n,const allocator_type & a)474     Storage(size_type n, const allocator_type& a)
475         : size_alloc_(n, a), data_(InitializeData()) {}
476 
~Storage()477     ~Storage() noexcept {
478       if (UsingInlinedStorage(size())) {
479         InlinedStorage::AnnotateDestruct(size());
480       } else {
481         AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
482       }
483     }
484 
size()485     size_type size() const { return size_alloc_.template get<0>(); }
begin()486     StorageElement* begin() const { return data_; }
end()487     StorageElement* end() const { return begin() + size(); }
alloc()488     allocator_type& alloc() { return size_alloc_.template get<1>(); }
alloc()489     const allocator_type& alloc() const {
490       return size_alloc_.template get<1>();
491     }
492 
493    private:
UsingInlinedStorage(size_type n)494     static bool UsingInlinedStorage(size_type n) {
495       return n <= inline_elements;
496     }
497 
498 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
499     ABSL_ATTRIBUTE_NOINLINE
500 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
InitializeData()501     StorageElement* InitializeData() {
502       if (UsingInlinedStorage(size())) {
503         InlinedStorage::AnnotateConstruct(size());
504         return InlinedStorage::data();
505       } else {
506         return reinterpret_cast<StorageElement*>(
507             AllocatorTraits::allocate(alloc(), size()));
508       }
509     }
510 
511     // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
512     container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
513     StorageElement* data_;
514   };
515 
516   Storage storage_;
517 };
518 
519 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
520 template <typename T, size_t N, typename A>
521 constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
522 
523 template <typename T, size_t N, typename A>
524 constexpr typename FixedArray<T, N, A>::size_type
525     FixedArray<T, N, A>::inline_elements;
526 #endif
527 
528 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)529 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
530     typename FixedArray<T, N, A>::size_type n) {
531 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
532   if (!n) return;
533   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
534                                      data() + n);
535   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
536                                      RedzoneBegin());
537 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
538   static_cast<void>(n);  // Mark used when not in asan mode
539 }
540 
541 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)542 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
543     typename FixedArray<T, N, A>::size_type n) {
544 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
545   if (!n) return;
546   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
547                                      RedzoneEnd());
548   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
549                                      data());
550 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
551   static_cast<void>(n);  // Mark used when not in asan mode
552 }
553 ABSL_NAMESPACE_END
554 }  // namespace absl
555 
556 #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
557