1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/config.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/throw_delegate.h"
47 #include "absl/base/macros.h"
48 #include "absl/base/optimization.h"
49 #include "absl/base/port.h"
50 #include "absl/container/internal/compressed_tuple.h"
51 #include "absl/memory/memory.h"
52
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55
56 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
57
58 // -----------------------------------------------------------------------------
59 // FixedArray
60 // -----------------------------------------------------------------------------
61 //
62 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
63 // inline for efficiency.
64 //
65 // Most users should not specify the `N` template parameter and let `FixedArray`
66 // automatically determine the number of elements to store inline based on
67 // `sizeof(T)`. If `N` is specified, the `FixedArray` implementation will use
68 // inline storage for arrays with a length <= `N`.
69 //
70 // Note that a `FixedArray` constructed with a `size_type` argument will
71 // default-initialize its values by leaving trivially constructible types
72 // uninitialized (e.g. int, int[4], double), and others default-constructed.
73 // This matches the behavior of c-style arrays and `std::array`, but not
74 // `std::vector`.
75 template <typename T, size_t N = kFixedArrayUseDefault,
76 typename A = std::allocator<T>>
77 class FixedArray {
78 static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
79 "Arrays with unknown bounds cannot be used with FixedArray.");
80
81 static constexpr size_t kInlineBytesDefault = 256;
82
83 using AllocatorTraits = std::allocator_traits<A>;
84 // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
85 // but this seems to be mostly pedantic.
86 template <typename Iterator>
87 using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
88 typename std::iterator_traits<Iterator>::iterator_category,
89 std::forward_iterator_tag>::value>;
NoexceptCopyable()90 static constexpr bool NoexceptCopyable() {
91 return std::is_nothrow_copy_constructible<StorageElement>::value &&
92 absl::allocator_is_nothrow<allocator_type>::value;
93 }
NoexceptMovable()94 static constexpr bool NoexceptMovable() {
95 return std::is_nothrow_move_constructible<StorageElement>::value &&
96 absl::allocator_is_nothrow<allocator_type>::value;
97 }
DefaultConstructorIsNonTrivial()98 static constexpr bool DefaultConstructorIsNonTrivial() {
99 return !absl::is_trivially_default_constructible<StorageElement>::value;
100 }
101
102 public:
103 using allocator_type = typename AllocatorTraits::allocator_type;
104 using value_type = typename AllocatorTraits::value_type;
105 using pointer = typename AllocatorTraits::pointer;
106 using const_pointer = typename AllocatorTraits::const_pointer;
107 using reference = value_type&;
108 using const_reference = const value_type&;
109 using size_type = typename AllocatorTraits::size_type;
110 using difference_type = typename AllocatorTraits::difference_type;
111 using iterator = pointer;
112 using const_iterator = const_pointer;
113 using reverse_iterator = std::reverse_iterator<iterator>;
114 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
115
116 static constexpr size_type inline_elements =
117 (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
118 : static_cast<size_type>(N));
119
noexcept(NoexceptCopyable ())120 FixedArray(const FixedArray& other) noexcept(NoexceptCopyable())
121 : FixedArray(other,
122 AllocatorTraits::select_on_container_copy_construction(
123 other.storage_.alloc())) {}
124
FixedArray(const FixedArray & other,const allocator_type & a)125 FixedArray(const FixedArray& other,
126 const allocator_type& a) noexcept(NoexceptCopyable())
127 : FixedArray(other.begin(), other.end(), a) {}
128
noexcept(NoexceptMovable ())129 FixedArray(FixedArray&& other) noexcept(NoexceptMovable())
130 : FixedArray(std::move(other), other.storage_.alloc()) {}
131
FixedArray(FixedArray && other,const allocator_type & a)132 FixedArray(FixedArray&& other,
133 const allocator_type& a) noexcept(NoexceptMovable())
134 : FixedArray(std::make_move_iterator(other.begin()),
135 std::make_move_iterator(other.end()), a) {}
136
137 // Creates an array object that can store `n` elements.
138 // Note that trivially constructible elements will be uninitialized.
139 explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)140 : storage_(n, a) {
141 if (DefaultConstructorIsNonTrivial()) {
142 memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
143 storage_.end());
144 }
145 }
146
147 // Creates an array initialized with `n` copies of `val`.
148 FixedArray(size_type n, const value_type& val,
149 const allocator_type& a = allocator_type())
storage_(n,a)150 : storage_(n, a) {
151 memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
152 storage_.end(), val);
153 }
154
155 // Creates an array initialized with the size and contents of `init_list`.
156 FixedArray(std::initializer_list<value_type> init_list,
157 const allocator_type& a = allocator_type())
158 : FixedArray(init_list.begin(), init_list.end(), a) {}
159
160 // Creates an array initialized with the elements from the input
161 // range. The array's size will always be `std::distance(first, last)`.
162 // REQUIRES: Iterator must be a forward_iterator or better.
163 template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
164 FixedArray(Iterator first, Iterator last,
165 const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)166 : storage_(std::distance(first, last), a) {
167 memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
168 }
169
~FixedArray()170 ~FixedArray() noexcept {
171 for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
172 AllocatorTraits::destroy(storage_.alloc(), cur);
173 }
174 }
175
176 // Assignments are deleted because they break the invariant that the size of a
177 // `FixedArray` never changes.
178 void operator=(FixedArray&&) = delete;
179 void operator=(const FixedArray&) = delete;
180
181 // FixedArray::size()
182 //
183 // Returns the length of the fixed array.
size()184 size_type size() const { return storage_.size(); }
185
186 // FixedArray::max_size()
187 //
188 // Returns the largest possible value of `std::distance(begin(), end())` for a
189 // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
190 // over the number of bytes taken by T.
max_size()191 constexpr size_type max_size() const {
192 return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
193 }
194
195 // FixedArray::empty()
196 //
197 // Returns whether or not the fixed array is empty.
empty()198 bool empty() const { return size() == 0; }
199
200 // FixedArray::memsize()
201 //
202 // Returns the memory size of the fixed array in bytes.
memsize()203 size_t memsize() const { return size() * sizeof(value_type); }
204
205 // FixedArray::data()
206 //
207 // Returns a const T* pointer to elements of the `FixedArray`. This pointer
208 // can be used to access (but not modify) the contained elements.
data()209 const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
210 return AsValueType(storage_.begin());
211 }
212
213 // Overload of FixedArray::data() to return a T* pointer to elements of the
214 // fixed array. This pointer can be used to access and modify the contained
215 // elements.
data()216 pointer data() ABSL_ATTRIBUTE_LIFETIME_BOUND {
217 return AsValueType(storage_.begin());
218 }
219
220 // FixedArray::operator[]
221 //
222 // Returns a reference the ith element of the fixed array.
223 // REQUIRES: 0 <= i < size()
224 reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
225 ABSL_HARDENING_ASSERT(i < size());
226 return data()[i];
227 }
228
229 // Overload of FixedArray::operator()[] to return a const reference to the
230 // ith element of the fixed array.
231 // REQUIRES: 0 <= i < size()
232 const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
233 ABSL_HARDENING_ASSERT(i < size());
234 return data()[i];
235 }
236
237 // FixedArray::at
238 //
239 // Bounds-checked access. Returns a reference to the ith element of the fixed
240 // array, or throws std::out_of_range
at(size_type i)241 reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
242 if (ABSL_PREDICT_FALSE(i >= size())) {
243 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
244 }
245 return data()[i];
246 }
247
248 // Overload of FixedArray::at() to return a const reference to the ith element
249 // of the fixed array.
at(size_type i)250 const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
251 if (ABSL_PREDICT_FALSE(i >= size())) {
252 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
253 }
254 return data()[i];
255 }
256
257 // FixedArray::front()
258 //
259 // Returns a reference to the first element of the fixed array.
front()260 reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
261 ABSL_HARDENING_ASSERT(!empty());
262 return data()[0];
263 }
264
265 // Overload of FixedArray::front() to return a reference to the first element
266 // of a fixed array of const values.
front()267 const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
268 ABSL_HARDENING_ASSERT(!empty());
269 return data()[0];
270 }
271
272 // FixedArray::back()
273 //
274 // Returns a reference to the last element of the fixed array.
back()275 reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
276 ABSL_HARDENING_ASSERT(!empty());
277 return data()[size() - 1];
278 }
279
280 // Overload of FixedArray::back() to return a reference to the last element
281 // of a fixed array of const values.
back()282 const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
283 ABSL_HARDENING_ASSERT(!empty());
284 return data()[size() - 1];
285 }
286
287 // FixedArray::begin()
288 //
289 // Returns an iterator to the beginning of the fixed array.
begin()290 iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
291
292 // Overload of FixedArray::begin() to return a const iterator to the
293 // beginning of the fixed array.
begin()294 const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
295
296 // FixedArray::cbegin()
297 //
298 // Returns a const iterator to the beginning of the fixed array.
cbegin()299 const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
300 return begin();
301 }
302
303 // FixedArray::end()
304 //
305 // Returns an iterator to the end of the fixed array.
end()306 iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); }
307
308 // Overload of FixedArray::end() to return a const iterator to the end of the
309 // fixed array.
end()310 const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
311 return data() + size();
312 }
313
314 // FixedArray::cend()
315 //
316 // Returns a const iterator to the end of the fixed array.
cend()317 const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
318
319 // FixedArray::rbegin()
320 //
321 // Returns a reverse iterator from the end of the fixed array.
rbegin()322 reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
323 return reverse_iterator(end());
324 }
325
326 // Overload of FixedArray::rbegin() to return a const reverse iterator from
327 // the end of the fixed array.
rbegin()328 const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
329 return const_reverse_iterator(end());
330 }
331
332 // FixedArray::crbegin()
333 //
334 // Returns a const reverse iterator from the end of the fixed array.
crbegin()335 const_reverse_iterator crbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
336 return rbegin();
337 }
338
339 // FixedArray::rend()
340 //
341 // Returns a reverse iterator from the beginning of the fixed array.
rend()342 reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
343 return reverse_iterator(begin());
344 }
345
346 // Overload of FixedArray::rend() for returning a const reverse iterator
347 // from the beginning of the fixed array.
rend()348 const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
349 return const_reverse_iterator(begin());
350 }
351
352 // FixedArray::crend()
353 //
354 // Returns a reverse iterator from the beginning of the fixed array.
crend()355 const_reverse_iterator crend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
356 return rend();
357 }
358
359 // FixedArray::fill()
360 //
361 // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)362 void fill(const value_type& val) { std::fill(begin(), end(), val); }
363
364 // Relational operators. Equality operators are elementwise using
365 // `operator==`, while order operators order FixedArrays lexicographically.
366 friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
367 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
368 }
369
370 friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
371 return !(lhs == rhs);
372 }
373
374 friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
375 return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
376 rhs.end());
377 }
378
379 friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
380 return rhs < lhs;
381 }
382
383 friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
384 return !(rhs < lhs);
385 }
386
387 friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
388 return !(lhs < rhs);
389 }
390
391 template <typename H>
AbslHashValue(H h,const FixedArray & v)392 friend H AbslHashValue(H h, const FixedArray& v) {
393 return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
394 v.size());
395 }
396
397 private:
398 // StorageElement
399 //
400 // For FixedArrays with a C-style-array value_type, StorageElement is a POD
401 // wrapper struct called StorageElementWrapper that holds the value_type
402 // instance inside. This is needed for construction and destruction of the
403 // entire array regardless of how many dimensions it has. For all other cases,
404 // StorageElement is just an alias of value_type.
405 //
406 // Maintainer's Note: The simpler solution would be to simply wrap value_type
407 // in a struct whether it's an array or not. That causes some paranoid
408 // diagnostics to misfire, believing that 'data()' returns a pointer to a
409 // single element, rather than the packed array that it really is.
410 // e.g.:
411 //
412 // FixedArray<char> buf(1);
413 // sprintf(buf.data(), "foo");
414 //
415 // error: call to int __builtin___sprintf_chk(etc...)
416 // will always overflow destination buffer [-Werror]
417 //
418 template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
419 size_t InnerN = std::extent<OuterT>::value>
420 struct StorageElementWrapper {
421 InnerT array[InnerN];
422 };
423
424 using StorageElement =
425 absl::conditional_t<std::is_array<value_type>::value,
426 StorageElementWrapper<value_type>, value_type>;
427
AsValueType(pointer ptr)428 static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)429 static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
430 return std::addressof(ptr->array);
431 }
432
433 static_assert(sizeof(StorageElement) == sizeof(value_type), "");
434 static_assert(alignof(StorageElement) == alignof(value_type), "");
435
436 class NonEmptyInlinedStorage {
437 public:
data()438 StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
439 void AnnotateConstruct(size_type n);
440 void AnnotateDestruct(size_type n);
441
442 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()443 void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()444 void* RedzoneEnd() { return &redzone_end_ + 1; }
445 #endif // ABSL_HAVE_ADDRESS_SANITIZER
446
447 private:
448 ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
449 alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
450 ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
451 };
452
453 class EmptyInlinedStorage {
454 public:
data()455 StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)456 void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)457 void AnnotateDestruct(size_type) {}
458 };
459
460 using InlinedStorage =
461 absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
462 NonEmptyInlinedStorage>;
463
464 // Storage
465 //
466 // An instance of Storage manages the inline and out-of-line memory for
467 // instances of FixedArray. This guarantees that even when construction of
468 // individual elements fails in the FixedArray constructor body, the
469 // destructor for Storage will still be called and out-of-line memory will be
470 // properly deallocated.
471 //
472 class Storage : public InlinedStorage {
473 public:
Storage(size_type n,const allocator_type & a)474 Storage(size_type n, const allocator_type& a)
475 : size_alloc_(n, a), data_(InitializeData()) {}
476
~Storage()477 ~Storage() noexcept {
478 if (UsingInlinedStorage(size())) {
479 InlinedStorage::AnnotateDestruct(size());
480 } else {
481 AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
482 }
483 }
484
size()485 size_type size() const { return size_alloc_.template get<0>(); }
begin()486 StorageElement* begin() const { return data_; }
end()487 StorageElement* end() const { return begin() + size(); }
alloc()488 allocator_type& alloc() { return size_alloc_.template get<1>(); }
alloc()489 const allocator_type& alloc() const {
490 return size_alloc_.template get<1>();
491 }
492
493 private:
UsingInlinedStorage(size_type n)494 static bool UsingInlinedStorage(size_type n) {
495 return n <= inline_elements;
496 }
497
498 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
499 ABSL_ATTRIBUTE_NOINLINE
500 #endif // ABSL_HAVE_ADDRESS_SANITIZER
InitializeData()501 StorageElement* InitializeData() {
502 if (UsingInlinedStorage(size())) {
503 InlinedStorage::AnnotateConstruct(size());
504 return InlinedStorage::data();
505 } else {
506 return reinterpret_cast<StorageElement*>(
507 AllocatorTraits::allocate(alloc(), size()));
508 }
509 }
510
511 // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
512 container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
513 StorageElement* data_;
514 };
515
516 Storage storage_;
517 };
518
519 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
520 template <typename T, size_t N, typename A>
521 constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
522
523 template <typename T, size_t N, typename A>
524 constexpr typename FixedArray<T, N, A>::size_type
525 FixedArray<T, N, A>::inline_elements;
526 #endif
527
528 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)529 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
530 typename FixedArray<T, N, A>::size_type n) {
531 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
532 if (!n) return;
533 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
534 data() + n);
535 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
536 RedzoneBegin());
537 #endif // ABSL_HAVE_ADDRESS_SANITIZER
538 static_cast<void>(n); // Mark used when not in asan mode
539 }
540
541 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)542 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
543 typename FixedArray<T, N, A>::size_type n) {
544 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
545 if (!n) return;
546 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
547 RedzoneEnd());
548 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
549 data());
550 #endif // ABSL_HAVE_ADDRESS_SANITIZER
551 static_cast<void>(n); // Mark used when not in asan mode
552 }
553 ABSL_NAMESPACE_END
554 } // namespace absl
555
556 #endif // ABSL_CONTAINER_FIXED_ARRAY_H_
557