1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/time/clock.h"
16
17 #include "absl/base/attributes.h"
18 #include "absl/base/optimization.h"
19
20 #ifdef _WIN32
21 #include <windows.h>
22 #endif
23
24 #include <algorithm>
25 #include <atomic>
26 #include <cerrno>
27 #include <cstdint>
28 #include <ctime>
29 #include <limits>
30
31 #include "absl/base/internal/spinlock.h"
32 #include "absl/base/internal/unscaledcycleclock.h"
33 #include "absl/base/macros.h"
34 #include "absl/base/port.h"
35 #include "absl/base/thread_annotations.h"
36
37 namespace absl {
38 ABSL_NAMESPACE_BEGIN
Now()39 Time Now() {
40 // TODO(bww): Get a timespec instead so we don't have to divide.
41 int64_t n = absl::GetCurrentTimeNanos();
42 if (n >= 0) {
43 return time_internal::FromUnixDuration(
44 time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
45 }
46 return time_internal::FromUnixDuration(absl::Nanoseconds(n));
47 }
48 ABSL_NAMESPACE_END
49 } // namespace absl
50
51 // Decide if we should use the fast GetCurrentTimeNanos() algorithm based on the
52 // cyclecounter, otherwise just get the time directly from the OS on every call.
53 // By default, the fast algorithm based on the cyclecount is disabled because in
54 // certain situations, for example, if the OS enters a "sleep" mode, it may
55 // produce incorrect values immediately upon waking.
56 // This can be chosen at compile-time via
57 // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
58 #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
59 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
60 #endif
61
62 #if defined(__APPLE__) || defined(_WIN32)
63 #include "absl/time/internal/get_current_time_chrono.inc"
64 #else
65 #include "absl/time/internal/get_current_time_posix.inc"
66 #endif
67
68 // Allows override by test.
69 #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
70 #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
71 ::absl::time_internal::GetCurrentTimeNanosFromSystem()
72 #endif
73
74 #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
75 namespace absl {
76 ABSL_NAMESPACE_BEGIN
GetCurrentTimeNanos()77 int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); }
78 ABSL_NAMESPACE_END
79 } // namespace absl
80 #else // Use the cyclecounter-based implementation below.
81
82 // Allows override by test.
83 #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
84 #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
85 ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
86 #endif
87
88 namespace absl {
89 ABSL_NAMESPACE_BEGIN
90 namespace time_internal {
91
92 // On some processors, consecutive reads of the cycle counter may yield the
93 // same value (weakly-increasing). In debug mode, clear the least significant
94 // bits to discourage depending on a strictly-increasing Now() value.
95 // In x86-64's debug mode, discourage depending on a strictly-increasing Now()
96 // value.
97 #if !defined(NDEBUG) && defined(__x86_64__)
98 constexpr int64_t kCycleClockNowMask = ~int64_t{0xff};
99 #else
100 constexpr int64_t kCycleClockNowMask = ~int64_t{0};
101 #endif
102
103 // This is a friend wrapper around UnscaledCycleClock::Now()
104 // (needed to access UnscaledCycleClock).
105 class UnscaledCycleClockWrapperForGetCurrentTime {
106 public:
Now()107 static int64_t Now() {
108 return base_internal::UnscaledCycleClock::Now() & kCycleClockNowMask;
109 }
110 };
111 } // namespace time_internal
112
113 // uint64_t is used in this module to provide an extra bit in multiplications
114
115 // ---------------------------------------------------------------------
116 // An implementation of reader-write locks that use no atomic ops in the read
117 // case. This is a generalization of Lamport's method for reading a multiword
118 // clock. Increment a word on each write acquisition, using the low-order bit
119 // as a spinlock; the word is the high word of the "clock". Readers read the
120 // high word, then all other data, then the high word again, and repeat the
121 // read if the reads of the high words yields different answers, or an odd
122 // value (either case suggests possible interference from a writer).
123 // Here we use a spinlock to ensure only one writer at a time, rather than
124 // spinning on the bottom bit of the word to benefit from SpinLock
125 // spin-delay tuning.
126
127 // Acquire seqlock (*seq) and return the value to be written to unlock.
SeqAcquire(std::atomic<uint64_t> * seq)128 static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
129 uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
130
131 // We put a release fence between update to *seq and writes to shared data.
132 // Thus all stores to shared data are effectively release operations and
133 // update to *seq above cannot be re-ordered past any of them. Note that
134 // this barrier is not for the fetch_add above. A release barrier for the
135 // fetch_add would be before it, not after.
136 std::atomic_thread_fence(std::memory_order_release);
137
138 return x + 2; // original word plus 2
139 }
140
141 // Release seqlock (*seq) by writing x to it---a value previously returned by
142 // SeqAcquire.
SeqRelease(std::atomic<uint64_t> * seq,uint64_t x)143 static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
144 // The unlock store to *seq must have release ordering so that all
145 // updates to shared data must finish before this store.
146 seq->store(x, std::memory_order_release); // release lock for readers
147 }
148
149 // ---------------------------------------------------------------------
150
151 // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
152 enum { kScale = 30 };
153
154 // The minimum interval between samples of the time base.
155 // We pick enough time to amortize the cost of the sample,
156 // to get a reasonably accurate cycle counter rate reading,
157 // and not so much that calculations will overflow 64-bits.
158 static const uint64_t kMinNSBetweenSamples = 2000 << 20;
159
160 // We require that kMinNSBetweenSamples shifted by kScale
161 // have at least a bit left over for 64-bit calculations.
162 static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
163 kMinNSBetweenSamples,
164 "cannot represent kMaxBetweenSamplesNSScaled");
165
166 // data from a sample of the kernel's time value
167 struct TimeSampleAtomic {
168 std::atomic<uint64_t> raw_ns{0}; // raw kernel time
169 std::atomic<uint64_t> base_ns{0}; // our estimate of time
170 std::atomic<uint64_t> base_cycles{0}; // cycle counter reading
171 std::atomic<uint64_t> nsscaled_per_cycle{0}; // cycle period
172 // cycles before we'll sample again (a scaled reciprocal of the period,
173 // to avoid a division on the fast path).
174 std::atomic<uint64_t> min_cycles_per_sample{0};
175 };
176 // Same again, but with non-atomic types
177 struct TimeSample {
178 uint64_t raw_ns = 0; // raw kernel time
179 uint64_t base_ns = 0; // our estimate of time
180 uint64_t base_cycles = 0; // cycle counter reading
181 uint64_t nsscaled_per_cycle = 0; // cycle period
182 uint64_t min_cycles_per_sample = 0; // approx cycles before next sample
183 };
184
185 struct ABSL_CACHELINE_ALIGNED TimeState {
186 std::atomic<uint64_t> seq{0};
187 TimeSampleAtomic last_sample; // the last sample; under seq
188
189 // The following counters are used only by the test code.
190 int64_t stats_initializations{0};
191 int64_t stats_reinitializations{0};
192 int64_t stats_calibrations{0};
193 int64_t stats_slow_paths{0};
194 int64_t stats_fast_slow_paths{0};
195
ABSL_GUARDED_BYabsl::TimeState196 uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0};
197
198 // Used by GetCurrentTimeNanosFromKernel().
199 // We try to read clock values at about the same time as the kernel clock.
200 // This value gets adjusted up or down as estimate of how long that should
201 // take, so we can reject attempts that take unusually long.
202 std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
203 // Number of times in a row we've seen a kernel time call take substantially
204 // less than approx_syscall_time_in_cycles.
205 std::atomic<uint32_t> kernel_time_seen_smaller{0};
206
207 // A reader-writer lock protecting the static locations below.
208 // See SeqAcquire() and SeqRelease() above.
209 absl::base_internal::SpinLock lock{absl::kConstInit,
210 base_internal::SCHEDULE_KERNEL_ONLY};
211 };
212 ABSL_CONST_INIT static TimeState time_state;
213
214 // Return the time in ns as told by the kernel interface. Place in *cycleclock
215 // the value of the cycleclock at about the time of the syscall.
216 // This call represents the time base that this module synchronizes to.
217 // Ensures that *cycleclock does not step back by up to (1 << 16) from
218 // last_cycleclock, to discard small backward counter steps. (Larger steps are
219 // assumed to be complete resyncs, which shouldn't happen. If they do, a full
220 // reinitialization of the outer algorithm should occur.)
GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,uint64_t * cycleclock)221 static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
222 uint64_t *cycleclock)
223 ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
224 uint64_t local_approx_syscall_time_in_cycles = // local copy
225 time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
226
227 int64_t current_time_nanos_from_system;
228 uint64_t before_cycles;
229 uint64_t after_cycles;
230 uint64_t elapsed_cycles;
231 int loops = 0;
232 do {
233 before_cycles =
234 static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
235 current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
236 after_cycles =
237 static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
238 // elapsed_cycles is unsigned, so is large on overflow
239 elapsed_cycles = after_cycles - before_cycles;
240 if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
241 ++loops == 20) { // clock changed frequencies? Back off.
242 loops = 0;
243 if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
244 local_approx_syscall_time_in_cycles =
245 (local_approx_syscall_time_in_cycles + 1) << 1;
246 }
247 time_state.approx_syscall_time_in_cycles.store(
248 local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
249 }
250 } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
251 last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
252
253 // Adjust approx_syscall_time_in_cycles to be within a factor of 2
254 // of the typical time to execute one iteration of the loop above.
255 if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
256 // measured time is no smaller than half current approximation
257 time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
258 } else if (time_state.kernel_time_seen_smaller.fetch_add(
259 1, std::memory_order_relaxed) >= 3) {
260 // smaller delays several times in a row; reduce approximation by 12.5%
261 const uint64_t new_approximation =
262 local_approx_syscall_time_in_cycles -
263 (local_approx_syscall_time_in_cycles >> 3);
264 time_state.approx_syscall_time_in_cycles.store(new_approximation,
265 std::memory_order_relaxed);
266 time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
267 }
268
269 *cycleclock = after_cycles;
270 return current_time_nanos_from_system;
271 }
272
273 static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
274
275 // Read the contents of *atomic into *sample.
276 // Each field is read atomically, but to maintain atomicity between fields,
277 // the access must be done under a lock.
ReadTimeSampleAtomic(const struct TimeSampleAtomic * atomic,struct TimeSample * sample)278 static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
279 struct TimeSample *sample) {
280 sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
281 sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
282 sample->nsscaled_per_cycle =
283 atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
284 sample->min_cycles_per_sample =
285 atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
286 sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
287 }
288
289 // Public routine.
290 // Algorithm: We wish to compute real time from a cycle counter. In normal
291 // operation, we construct a piecewise linear approximation to the kernel time
292 // source, using the cycle counter value. The start of each line segment is at
293 // the same point as the end of the last, but may have a different slope (that
294 // is, a different idea of the cycle counter frequency). Every couple of
295 // seconds, the kernel time source is sampled and compared with the current
296 // approximation. A new slope is chosen that, if followed for another couple
297 // of seconds, will correct the error at the current position. The information
298 // for a sample is in the "last_sample" struct. The linear approximation is
299 // estimated_time = last_sample.base_ns +
300 // last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
301 // (ns_per_cycle is actually stored in different units and scaled, to avoid
302 // overflow). The base_ns of the next linear approximation is the
303 // estimated_time using the last approximation; the base_cycles is the cycle
304 // counter value at that time; the ns_per_cycle is the number of ns per cycle
305 // measured since the last sample, but adjusted so that most of the difference
306 // between the estimated_time and the kernel time will be corrected by the
307 // estimated time to the next sample. In normal operation, this algorithm
308 // relies on:
309 // - the cycle counter and kernel time rates not changing a lot in a few
310 // seconds.
311 // - the client calling into the code often compared to a couple of seconds, so
312 // the time to the next correction can be estimated.
313 // Any time ns_per_cycle is not known, a major error is detected, or the
314 // assumption about frequent calls is violated, the implementation returns the
315 // kernel time. It records sufficient data that a linear approximation can
316 // resume a little later.
317
GetCurrentTimeNanos()318 int64_t GetCurrentTimeNanos() {
319 // read the data from the "last_sample" struct (but don't need raw_ns yet)
320 // The reads of "seq" and test of the values emulate a reader lock.
321 uint64_t base_ns;
322 uint64_t base_cycles;
323 uint64_t nsscaled_per_cycle;
324 uint64_t min_cycles_per_sample;
325 uint64_t seq_read0;
326 uint64_t seq_read1;
327
328 // If we have enough information to interpolate, the value returned will be
329 // derived from this cycleclock-derived time estimate. On some platforms
330 // (POWER) the function to retrieve this value has enough complexity to
331 // contribute to register pressure - reading it early before initializing
332 // the other pieces of the calculation minimizes spill/restore instructions,
333 // minimizing icache cost.
334 uint64_t now_cycles =
335 static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
336
337 // Acquire pairs with the barrier in SeqRelease - if this load sees that
338 // store, the shared-data reads necessarily see that SeqRelease's updates
339 // to the same shared data.
340 seq_read0 = time_state.seq.load(std::memory_order_acquire);
341
342 base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
343 base_cycles =
344 time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
345 nsscaled_per_cycle =
346 time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
347 min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
348 std::memory_order_relaxed);
349
350 // This acquire fence pairs with the release fence in SeqAcquire. Since it
351 // is sequenced between reads of shared data and seq_read1, the reads of
352 // shared data are effectively acquiring.
353 std::atomic_thread_fence(std::memory_order_acquire);
354
355 // The shared-data reads are effectively acquire ordered, and the
356 // shared-data writes are effectively release ordered. Therefore if our
357 // shared-data reads see any of a particular update's shared-data writes,
358 // seq_read1 is guaranteed to see that update's SeqAcquire.
359 seq_read1 = time_state.seq.load(std::memory_order_relaxed);
360
361 // Fast path. Return if min_cycles_per_sample has not yet elapsed since the
362 // last sample, and we read a consistent sample. The fast path activates
363 // only when min_cycles_per_sample is non-zero, which happens when we get an
364 // estimate for the cycle time. The predicate will fail if now_cycles <
365 // base_cycles, or if some other thread is in the slow path.
366 //
367 // Since we now read now_cycles before base_ns, it is possible for now_cycles
368 // to be less than base_cycles (if we were interrupted between those loads and
369 // last_sample was updated). This is harmless, because delta_cycles will wrap
370 // and report a time much much bigger than min_cycles_per_sample. In that case
371 // we will take the slow path.
372 uint64_t delta_cycles;
373 if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
374 (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
375 return static_cast<int64_t>(
376 base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale));
377 }
378 return GetCurrentTimeNanosSlowPath();
379 }
380
381 // Return (a << kScale)/b.
382 // Zero is returned if b==0. Scaling is performed internally to
383 // preserve precision without overflow.
SafeDivideAndScale(uint64_t a,uint64_t b)384 static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
385 // Find maximum safe_shift so that
386 // 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow.
387 int safe_shift = kScale;
388 while (((a << safe_shift) >> safe_shift) != a) {
389 safe_shift--;
390 }
391 uint64_t scaled_b = b >> (kScale - safe_shift);
392 uint64_t quotient = 0;
393 if (scaled_b != 0) {
394 quotient = (a << safe_shift) / scaled_b;
395 }
396 return quotient;
397 }
398
399 static uint64_t UpdateLastSample(
400 uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
401 const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
402
403 // The slow path of GetCurrentTimeNanos(). This is taken while gathering
404 // initial samples, when enough time has elapsed since the last sample, and if
405 // any other thread is writing to last_sample.
406 //
407 // Manually mark this 'noinline' to minimize stack frame size of the fast
408 // path. Without this, sometimes a compiler may inline this big block of code
409 // into the fast path. That causes lots of register spills and reloads that
410 // are unnecessary unless the slow path is taken.
411 //
412 // TODO(absl-team): Remove this attribute when our compiler is smart enough
413 // to do the right thing.
414 ABSL_ATTRIBUTE_NOINLINE
GetCurrentTimeNanosSlowPath()415 static int64_t GetCurrentTimeNanosSlowPath()
416 ABSL_LOCKS_EXCLUDED(time_state.lock) {
417 // Serialize access to slow-path. Fast-path readers are not blocked yet, and
418 // code below must not modify last_sample until the seqlock is acquired.
419 time_state.lock.Lock();
420
421 // Sample the kernel time base. This is the definition of
422 // "now" if we take the slow path.
423 uint64_t now_cycles;
424 uint64_t now_ns = static_cast<uint64_t>(
425 GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles));
426 time_state.last_now_cycles = now_cycles;
427
428 uint64_t estimated_base_ns;
429
430 // ----------
431 // Read the "last_sample" values again; this time holding the write lock.
432 struct TimeSample sample;
433 ReadTimeSampleAtomic(&time_state.last_sample, &sample);
434
435 // ----------
436 // Try running the fast path again; another thread may have updated the
437 // sample between our run of the fast path and the sample we just read.
438 uint64_t delta_cycles = now_cycles - sample.base_cycles;
439 if (delta_cycles < sample.min_cycles_per_sample) {
440 // Another thread updated the sample. This path does not take the seqlock
441 // so that blocked readers can make progress without blocking new readers.
442 estimated_base_ns = sample.base_ns +
443 ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
444 time_state.stats_fast_slow_paths++;
445 } else {
446 estimated_base_ns =
447 UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
448 }
449
450 time_state.lock.Unlock();
451
452 return static_cast<int64_t>(estimated_base_ns);
453 }
454
455 // Main part of the algorithm. Locks out readers, updates the approximation
456 // using the new sample from the kernel, and stores the result in last_sample
457 // for readers. Returns the new estimated time.
UpdateLastSample(uint64_t now_cycles,uint64_t now_ns,uint64_t delta_cycles,const struct TimeSample * sample)458 static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
459 uint64_t delta_cycles,
460 const struct TimeSample *sample)
461 ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
462 uint64_t estimated_base_ns = now_ns;
463 uint64_t lock_value =
464 SeqAcquire(&time_state.seq); // acquire seqlock to block readers
465
466 // The 5s in the next if-statement limits the time for which we will trust
467 // the cycle counter and our last sample to give a reasonable result.
468 // Errors in the rate of the source clock can be multiplied by the ratio
469 // between this limit and kMinNSBetweenSamples.
470 if (sample->raw_ns == 0 || // no recent sample, or clock went backwards
471 sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
472 now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
473 // record this sample, and forget any previously known slope.
474 time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
475 time_state.last_sample.base_ns.store(estimated_base_ns,
476 std::memory_order_relaxed);
477 time_state.last_sample.base_cycles.store(now_cycles,
478 std::memory_order_relaxed);
479 time_state.last_sample.nsscaled_per_cycle.store(0,
480 std::memory_order_relaxed);
481 time_state.last_sample.min_cycles_per_sample.store(
482 0, std::memory_order_relaxed);
483 time_state.stats_initializations++;
484 } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
485 sample->base_cycles + 50 < now_cycles) {
486 // Enough time has passed to compute the cycle time.
487 if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate.
488 // Compute time from counter reading, but avoiding overflow
489 // delta_cycles may be larger than on the fast path.
490 uint64_t estimated_scaled_ns;
491 int s = -1;
492 do {
493 s++;
494 estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
495 } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
496 (delta_cycles >> s));
497 estimated_base_ns = sample->base_ns +
498 (estimated_scaled_ns >> (kScale - s));
499 }
500
501 // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
502 // assuming the cycle counter rate stays the same as the last interval.
503 uint64_t ns = now_ns - sample->raw_ns;
504 uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
505
506 uint64_t assumed_next_sample_delta_cycles =
507 SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
508
509 // Estimate low by this much.
510 int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns);
511
512 // We want to set nsscaled_per_cycle so that our estimate of the ns time
513 // at the assumed cycle time is the assumed ns time.
514 // That is, we want to set nsscaled_per_cycle so:
515 // kMinNSBetweenSamples + diff_ns ==
516 // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
517 // But we wish to damp oscillations, so instead correct only most
518 // of our current error, by solving:
519 // kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
520 // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
521 ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) +
522 diff_ns - (diff_ns / 16));
523 uint64_t new_nsscaled_per_cycle =
524 SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
525 if (new_nsscaled_per_cycle != 0 &&
526 diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
527 // record the cycle time measurement
528 time_state.last_sample.nsscaled_per_cycle.store(
529 new_nsscaled_per_cycle, std::memory_order_relaxed);
530 uint64_t new_min_cycles_per_sample =
531 SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
532 time_state.last_sample.min_cycles_per_sample.store(
533 new_min_cycles_per_sample, std::memory_order_relaxed);
534 time_state.stats_calibrations++;
535 } else { // something went wrong; forget the slope
536 time_state.last_sample.nsscaled_per_cycle.store(
537 0, std::memory_order_relaxed);
538 time_state.last_sample.min_cycles_per_sample.store(
539 0, std::memory_order_relaxed);
540 estimated_base_ns = now_ns;
541 time_state.stats_reinitializations++;
542 }
543 time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
544 time_state.last_sample.base_ns.store(estimated_base_ns,
545 std::memory_order_relaxed);
546 time_state.last_sample.base_cycles.store(now_cycles,
547 std::memory_order_relaxed);
548 } else {
549 // have a sample, but no slope; waiting for enough time for a calibration
550 time_state.stats_slow_paths++;
551 }
552
553 SeqRelease(&time_state.seq, lock_value); // release the readers
554
555 return estimated_base_ns;
556 }
557 ABSL_NAMESPACE_END
558 } // namespace absl
559 #endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
560
561 namespace absl {
562 ABSL_NAMESPACE_BEGIN
563 namespace {
564
565 // Returns the maximum duration that SleepOnce() can sleep for.
MaxSleep()566 constexpr absl::Duration MaxSleep() {
567 #ifdef _WIN32
568 // Windows Sleep() takes unsigned long argument in milliseconds.
569 return absl::Milliseconds(
570 std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int)
571 #else
572 return absl::Seconds(std::numeric_limits<time_t>::max());
573 #endif
574 }
575
576 // Sleeps for the given duration.
577 // REQUIRES: to_sleep <= MaxSleep().
SleepOnce(absl::Duration to_sleep)578 void SleepOnce(absl::Duration to_sleep) {
579 #ifdef _WIN32
580 Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1)));
581 #else
582 struct timespec sleep_time = absl::ToTimespec(to_sleep);
583 while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
584 // Ignore signals and wait for the full interval to elapse.
585 }
586 #endif
587 }
588
589 } // namespace
590 ABSL_NAMESPACE_END
591 } // namespace absl
592
593 extern "C" {
594
ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)595 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)(
596 absl::Duration duration) {
597 while (duration > absl::ZeroDuration()) {
598 absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
599 absl::SleepOnce(to_sleep);
600 duration -= to_sleep;
601 }
602 }
603
604 } // extern "C"
605