1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * [email protected].
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * ([email protected]). This product includes software written by Tim
107 * Hudson ([email protected]).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 * ECC cipher suite support in OpenSSL originally developed by
113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114 */
115 /* ====================================================================
116 * Copyright 2005 Nokia. All rights reserved.
117 *
118 * The portions of the attached software ("Contribution") is developed by
119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120 * license.
121 *
122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124 * support (see RFC 4279) to OpenSSL.
125 *
126 * No patent licenses or other rights except those expressly stated in
127 * the OpenSSL open source license shall be deemed granted or received
128 * expressly, by implication, estoppel, or otherwise.
129 *
130 * No assurances are provided by Nokia that the Contribution does not
131 * infringe the patent or other intellectual property rights of any third
132 * party or that the license provides you with all the necessary rights
133 * to make use of the Contribution.
134 *
135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139 * OTHERWISE.
140 */
141
142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143 #define OPENSSL_HEADER_SSL_INTERNAL_H
144
145 #include <openssl/base.h>
146
147 #include <stdlib.h>
148
149 #include <algorithm>
150 #include <bitset>
151 #include <initializer_list>
152 #include <limits>
153 #include <new>
154 #include <type_traits>
155 #include <utility>
156
157 #include <openssl/aead.h>
158 #include <openssl/curve25519.h>
159 #include <openssl/err.h>
160 #include <openssl/hpke.h>
161 #include <openssl/lhash.h>
162 #include <openssl/mem.h>
163 #include <openssl/span.h>
164 #include <openssl/ssl.h>
165 #include <openssl/stack.h>
166
167 #include "../crypto/err/internal.h"
168 #include "../crypto/internal.h"
169 #include "../crypto/lhash/internal.h"
170
171
172 #if defined(OPENSSL_WINDOWS)
173 // Windows defines struct timeval in winsock2.h.
174 OPENSSL_MSVC_PRAGMA(warning(push, 3))
175 #include <winsock2.h>
176 OPENSSL_MSVC_PRAGMA(warning(pop))
177 #else
178 #include <sys/time.h>
179 #endif
180
181
182 BSSL_NAMESPACE_BEGIN
183
184 struct SSL_CONFIG;
185 struct SSL_HANDSHAKE;
186 struct SSL_PROTOCOL_METHOD;
187 struct SSL_X509_METHOD;
188
189 // C++ utilities.
190
191 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
192 // returns nullptr on allocation error. It only implements single-object
193 // allocation and not new T[n].
194 //
195 // Note: unlike |new|, this does not support non-public constructors.
196 template <typename T, typename... Args>
New(Args &&...args)197 T *New(Args &&... args) {
198 void *t = OPENSSL_malloc(sizeof(T));
199 if (t == nullptr) {
200 return nullptr;
201 }
202 return new (t) T(std::forward<Args>(args)...);
203 }
204
205 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
206 //
207 // Note: unlike |delete| this does not support non-public destructors.
208 template <typename T>
Delete(T * t)209 void Delete(T *t) {
210 if (t != nullptr) {
211 t->~T();
212 OPENSSL_free(t);
213 }
214 }
215
216 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
217 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
218 namespace internal {
219 template <typename T>
220 struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> {
221 static void Free(T *t) { Delete(t); }
222 };
223 } // namespace internal
224
225 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
226 // error.
227 template <typename T, typename... Args>
228 UniquePtr<T> MakeUnique(Args &&... args) {
229 return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230 }
231
232 // TODO(davidben): Remove these macros after April 2024, once the C++ runtime
233 // dependency has stuck.
234 #define HAS_VIRTUAL_DESTRUCTOR
235 #define PURE_VIRTUAL = 0
236
237 // Array<T> is an owning array of elements of |T|.
238 template <typename T>
239 class Array {
240 public:
241 // Array's default constructor creates an empty array.
242 Array() {}
243 Array(const Array &) = delete;
244 Array(Array &&other) { *this = std::move(other); }
245
246 ~Array() { Reset(); }
247
248 Array &operator=(const Array &) = delete;
249 Array &operator=(Array &&other) {
250 Reset();
251 other.Release(&data_, &size_);
252 return *this;
253 }
254
255 const T *data() const { return data_; }
256 T *data() { return data_; }
257 size_t size() const { return size_; }
258 bool empty() const { return size_ == 0; }
259
260 const T &operator[](size_t i) const { return data_[i]; }
261 T &operator[](size_t i) { return data_[i]; }
262
263 T *begin() { return data_; }
264 const T *begin() const { return data_; }
265 T *end() { return data_ + size_; }
266 const T *end() const { return data_ + size_; }
267
268 void Reset() { Reset(nullptr, 0); }
269
270 // Reset releases the current contents of the array and takes ownership of the
271 // raw pointer supplied by the caller.
272 void Reset(T *new_data, size_t new_size) {
273 for (size_t i = 0; i < size_; i++) {
274 data_[i].~T();
275 }
276 OPENSSL_free(data_);
277 data_ = new_data;
278 size_ = new_size;
279 }
280
281 // Release releases ownership of the array to a raw pointer supplied by the
282 // caller.
283 void Release(T **out, size_t *out_size) {
284 *out = data_;
285 *out_size = size_;
286 data_ = nullptr;
287 size_ = 0;
288 }
289
290 // Init replaces the array with a newly-allocated array of |new_size|
291 // default-constructed copies of |T|. It returns true on success and false on
292 // error.
293 //
294 // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
295 bool Init(size_t new_size) {
296 Reset();
297 if (new_size == 0) {
298 return true;
299 }
300
301 if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
302 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
303 return false;
304 }
305 data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
306 if (data_ == nullptr) {
307 return false;
308 }
309 size_ = new_size;
310 for (size_t i = 0; i < size_; i++) {
311 new (&data_[i]) T;
312 }
313 return true;
314 }
315
316 // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
317 // true on success and false on error.
318 bool CopyFrom(Span<const T> in) {
319 if (!Init(in.size())) {
320 return false;
321 }
322 std::copy(in.begin(), in.end(), data_);
323 return true;
324 }
325
326 // Shrink shrinks the stored size of the array to |new_size|. It crashes if
327 // the new size is larger. Note this does not shrink the allocation itself.
328 void Shrink(size_t new_size) {
329 if (new_size > size_) {
330 abort();
331 }
332 for (size_t i = new_size; i < size_; i++) {
333 data_[i].~T();
334 }
335 size_ = new_size;
336 }
337
338 private:
339 T *data_ = nullptr;
340 size_t size_ = 0;
341 };
342
343 // GrowableArray<T> is an array that owns elements of |T|, backed by an
344 // Array<T>. When necessary, pushing will automatically trigger a resize.
345 //
346 // Note, for simplicity, this class currently differs from |std::vector| in that
347 // |T| must be efficiently default-constructible. Allocated elements beyond the
348 // end of the array are constructed and destructed.
349 template <typename T>
350 class GrowableArray {
351 public:
352 GrowableArray() = default;
353 GrowableArray(const GrowableArray &) = delete;
354 GrowableArray(GrowableArray &&other) { *this = std::move(other); }
355 ~GrowableArray() {}
356
357 GrowableArray &operator=(const GrowableArray &) = delete;
358 GrowableArray &operator=(GrowableArray &&other) {
359 size_ = other.size_;
360 other.size_ = 0;
361 array_ = std::move(other.array_);
362 return *this;
363 }
364
365 const T *data() const { return array_.data(); }
366 T *data() { return array_.data(); }
367 size_t size() const { return size_; }
368 bool empty() const { return size_ == 0; }
369
370 const T &operator[](size_t i) const { return array_[i]; }
371 T &operator[](size_t i) { return array_[i]; }
372
373 T *begin() { return array_.data(); }
374 const T *begin() const { return array_.data(); }
375 T *end() { return array_.data() + size_; }
376 const T *end() const { return array_.data() + size_; }
377
378 void clear() {
379 size_ = 0;
380 array_.Reset();
381 }
382
383 // Push adds |elem| at the end of the internal array, growing if necessary. It
384 // returns false when allocation fails.
385 bool Push(T elem) {
386 if (!MaybeGrow()) {
387 return false;
388 }
389 array_[size_] = std::move(elem);
390 size_++;
391 return true;
392 }
393
394 // CopyFrom replaces the contents of the array with a copy of |in|. It returns
395 // true on success and false on allocation error.
396 bool CopyFrom(Span<const T> in) {
397 if (!array_.CopyFrom(in)) {
398 return false;
399 }
400 size_ = in.size();
401 return true;
402 }
403
404 private:
405 // If there is no room for one more element, creates a new backing array with
406 // double the size of the old one and copies elements over.
407 bool MaybeGrow() {
408 if (array_.size() == 0) {
409 return array_.Init(kDefaultSize);
410 }
411 // No need to grow if we have room for one more T.
412 if (size_ < array_.size()) {
413 return true;
414 }
415 // Double the array's size if it's safe to do so.
416 if (array_.size() > std::numeric_limits<size_t>::max() / 2) {
417 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
418 return false;
419 }
420 Array<T> new_array;
421 if (!new_array.Init(array_.size() * 2)) {
422 return false;
423 }
424 for (size_t i = 0; i < array_.size(); i++) {
425 new_array[i] = std::move(array_[i]);
426 }
427 array_ = std::move(new_array);
428
429 return true;
430 }
431
432 // |size_| is the number of elements stored in this GrowableArray.
433 size_t size_ = 0;
434 // |array_| is the backing array. Note that |array_.size()| is this
435 // GrowableArray's current capacity and that |size_ <= array_.size()|.
436 Array<T> array_;
437 // |kDefaultSize| is the default initial size of the backing array.
438 static constexpr size_t kDefaultSize = 16;
439 };
440
441 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
442 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
443
444 // GetAllNames helps to implement |*_get_all_*_names| style functions. It
445 // writes at most |max_out| string pointers to |out| and returns the number that
446 // it would have liked to have written. The strings written consist of
447 // |fixed_names_len| strings from |fixed_names| followed by |objects_len|
448 // strings taken by projecting |objects| through |name|.
449 template <typename T, typename Name>
450 inline size_t GetAllNames(const char **out, size_t max_out,
451 Span<const char *const> fixed_names, Name(T::*name),
452 Span<const T> objects) {
453 auto span = bssl::MakeSpan(out, max_out);
454 for (size_t i = 0; !span.empty() && i < fixed_names.size(); i++) {
455 span[0] = fixed_names[i];
456 span = span.subspan(1);
457 }
458 span = span.subspan(0, objects.size());
459 for (size_t i = 0; i < span.size(); i++) {
460 span[i] = objects[i].*name;
461 }
462 return fixed_names.size() + objects.size();
463 }
464
465 // RefCounted is a common base for ref-counted types. This is an instance of the
466 // C++ curiously-recurring template pattern, so a type Foo must subclass
467 // RefCounted<Foo>. It additionally must friend RefCounted<Foo> to allow calling
468 // the destructor.
469 template <typename Derived>
470 class RefCounted {
471 public:
472 RefCounted(const RefCounted &) = delete;
473 RefCounted &operator=(const RefCounted &) = delete;
474
475 // These methods are intentionally named differently from `bssl::UpRef` to
476 // avoid a collision. Only the implementations of `FOO_up_ref` and `FOO_free`
477 // should call these.
478 void UpRefInternal() { CRYPTO_refcount_inc(&references_); }
479 void DecRefInternal() {
480 if (CRYPTO_refcount_dec_and_test_zero(&references_)) {
481 Derived *d = static_cast<Derived *>(this);
482 d->~Derived();
483 OPENSSL_free(d);
484 }
485 }
486
487 protected:
488 // Ensure that only `Derived`, which must inherit from `RefCounted<Derived>`,
489 // can call the constructor. This catches bugs where someone inherited from
490 // the wrong base.
491 class CheckSubClass {
492 private:
493 friend Derived;
494 CheckSubClass() = default;
495 };
496 RefCounted(CheckSubClass) {
497 static_assert(std::is_base_of<RefCounted, Derived>::value,
498 "Derived must subclass RefCounted<Derived>");
499 }
500
501 ~RefCounted() = default;
502
503 private:
504 CRYPTO_refcount_t references_ = 1;
505 };
506
507
508 // Protocol versions.
509 //
510 // Due to DTLS's historical wire version differences, we maintain two notions of
511 // version.
512 //
513 // The "version" or "wire version" is the actual 16-bit value that appears on
514 // the wire. It uniquely identifies a version and is also used at API
515 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
516 // versions are opaque values and may not be compared numerically.
517 //
518 // The "protocol version" identifies the high-level handshake variant being
519 // used. DTLS versions map to the corresponding TLS versions. Protocol versions
520 // are sequential and may be compared numerically.
521
522 // ssl_protocol_version_from_wire sets |*out| to the protocol version
523 // corresponding to wire version |version| and returns true. If |version| is not
524 // a valid TLS or DTLS version, it returns false.
525 //
526 // Note this simultaneously handles both DTLS and TLS. Use one of the
527 // higher-level functions below for most operations.
528 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
529
530 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
531 // minimum and maximum enabled protocol versions, respectively.
532 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
533 uint16_t *out_max_version);
534
535 // ssl_supports_version returns whether |hs| supports |version|.
536 bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version);
537
538 // ssl_method_supports_version returns whether |method| supports |version|.
539 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
540 uint16_t version);
541
542 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
543 // decreasing preference order. The version list is filtered to those whose
544 // protocol version is at least |extra_min_version|.
545 bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb,
546 uint16_t extra_min_version);
547
548 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
549 // and the peer preference list in |peer_versions|. On success, it returns true
550 // and sets |*out_version| to the selected version. Otherwise, it returns false
551 // and sets |*out_alert| to an alert to send.
552 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
553 uint16_t *out_version, const CBS *peer_versions);
554
555 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
556 // call this function before the version is determined.
557 uint16_t ssl_protocol_version(const SSL *ssl);
558
559 // Cipher suites.
560
561 BSSL_NAMESPACE_END
562
563 struct ssl_cipher_st {
564 // name is the OpenSSL name for the cipher.
565 const char *name;
566 // standard_name is the IETF name for the cipher.
567 const char *standard_name;
568 // id is the cipher suite value bitwise OR-d with 0x03000000.
569 uint32_t id;
570
571 // algorithm_* determine the cipher suite. See constants below for the values.
572 uint32_t algorithm_mkey;
573 uint32_t algorithm_auth;
574 uint32_t algorithm_enc;
575 uint32_t algorithm_mac;
576 uint32_t algorithm_prf;
577 };
578
579 BSSL_NAMESPACE_BEGIN
580
581 // Bits for |algorithm_mkey| (key exchange algorithm).
582 #define SSL_kRSA 0x00000001u
583 #define SSL_kECDHE 0x00000002u
584 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
585 #define SSL_kPSK 0x00000004u
586 #define SSL_kGENERIC 0x00000008u
587
588 // Bits for |algorithm_auth| (server authentication).
589 #define SSL_aRSA_SIGN 0x00000001u
590 #define SSL_aRSA_DECRYPT 0x00000002u
591 #define SSL_aECDSA 0x00000004u
592 // SSL_aPSK is set for both PSK and ECDHE_PSK.
593 #define SSL_aPSK 0x00000008u
594 #define SSL_aGENERIC 0x00000010u
595
596 #define SSL_aCERT (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT | SSL_aECDSA)
597
598 // Bits for |algorithm_enc| (symmetric encryption).
599 #define SSL_3DES 0x00000001u
600 #define SSL_AES128 0x00000002u
601 #define SSL_AES256 0x00000004u
602 #define SSL_AES128GCM 0x00000008u
603 #define SSL_AES256GCM 0x00000010u
604 #define SSL_CHACHA20POLY1305 0x00000020u
605
606 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
607
608 // Bits for |algorithm_mac| (symmetric authentication).
609 #define SSL_SHA1 0x00000001u
610 #define SSL_SHA256 0x00000002u
611 // SSL_AEAD is set for all AEADs.
612 #define SSL_AEAD 0x00000004u
613
614 // Bits for |algorithm_prf| (handshake digest).
615 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
616 #define SSL_HANDSHAKE_MAC_SHA256 0x2
617 #define SSL_HANDSHAKE_MAC_SHA384 0x4
618
619 // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384.
620 #define SSL_MAX_MD_SIZE 48
621
622 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
623 // preference groups. For TLS clients, the groups are moot because the server
624 // picks the cipher and groups cannot be expressed on the wire. However, for
625 // servers, the equal-preference groups allow the client's preferences to be
626 // partially respected. (This only has an effect with
627 // SSL_OP_CIPHER_SERVER_PREFERENCE).
628 //
629 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
630 // All elements of a group have the same priority: no ordering is expressed
631 // within a group.
632 //
633 // The values in |ciphers| are in one-to-one correspondence with
634 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
635 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
636 // indicate that the corresponding SSL_CIPHER is not the last element of a
637 // group, or 0 to indicate that it is.
638 //
639 // For example, if |in_group_flags| contains all zeros then that indicates a
640 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
641 // of the group (i.e. they are all in a one-element group).
642 //
643 // For a more complex example, consider:
644 // ciphers: A B C D E F
645 // in_group_flags: 1 1 0 0 1 0
646 //
647 // That would express the following, order:
648 //
649 // A E
650 // B -> D -> F
651 // C
652 struct SSLCipherPreferenceList {
653 static constexpr bool kAllowUniquePtr = true;
654
655 SSLCipherPreferenceList() = default;
656 ~SSLCipherPreferenceList();
657
658 bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
659 Span<const bool> in_group_flags);
660 bool Init(const SSLCipherPreferenceList &);
661
662 void Remove(const SSL_CIPHER *cipher);
663
664 UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
665 bool *in_group_flags = nullptr;
666 };
667
668 // AllCiphers returns an array of all supported ciphers, sorted by id.
669 Span<const SSL_CIPHER> AllCiphers();
670
671 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
672 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
673 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
674 // respectively. The MAC key length is zero except for legacy block and stream
675 // ciphers. It returns true on success and false on error.
676 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
677 size_t *out_mac_secret_len,
678 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
679 uint16_t version, bool is_dtls);
680
681 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
682 // |cipher|.
683 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
684 const SSL_CIPHER *cipher);
685
686 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
687 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
688 // true on success and false on failure. If |strict| is true, nonsense will be
689 // rejected. If false, nonsense will be silently ignored. An empty result is
690 // considered an error regardless of |strict|. |has_aes_hw| indicates if the
691 // list should be ordered based on having support for AES in hardware or not.
692 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
693 const bool has_aes_hw, const char *rule_str,
694 bool strict);
695
696 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
697 // values suitable for use with |key| in TLS 1.2 and below. |sign_ok| indicates
698 // whether |key| may be used for signing.
699 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok);
700
701 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
702 // server and, optionally, the client with a certificate.
703 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
704
705 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
706 // ServerKeyExchange message.
707 //
708 // This function may return false while still allowing |cipher| an optional
709 // ServerKeyExchange. This is the case for plain PSK ciphers.
710 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
711
712 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
713 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
714 // it returns zero.
715 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
716
717 // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
718 // available from |cipher_suites| compatible with |version| and |policy|. It
719 // returns NULL if there isn't a compatible cipher. |has_aes_hw| indicates if
720 // the choice should be made as if support for AES in hardware is available.
721 const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw,
722 uint16_t version,
723 enum ssl_compliance_policy_t policy);
724
725 // ssl_tls13_cipher_meets_policy returns true if |cipher_id| is acceptable given
726 // |policy|.
727 bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id,
728 enum ssl_compliance_policy_t policy);
729
730 // ssl_cipher_is_deprecated returns true if |cipher| is deprecated.
731 OPENSSL_EXPORT bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher);
732
733
734 // Transcript layer.
735
736 // SSLTranscript maintains the handshake transcript as a combination of a
737 // buffer and running hash.
738 class SSLTranscript {
739 public:
740 SSLTranscript();
741 ~SSLTranscript();
742
743 SSLTranscript(SSLTranscript &&other) = default;
744 SSLTranscript &operator=(SSLTranscript &&other) = default;
745
746 // Init initializes the handshake transcript. If called on an existing
747 // transcript, it resets the transcript and hash. It returns true on success
748 // and false on failure.
749 bool Init();
750
751 // InitHash initializes the handshake hash based on the PRF and contents of
752 // the handshake transcript. Subsequent calls to |Update| will update the
753 // rolling hash. It returns one on success and zero on failure. It is an error
754 // to call this function after the handshake buffer is released. This may be
755 // called multiple times to change the hash function.
756 bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
757
758 // UpdateForHelloRetryRequest resets the rolling hash with the
759 // HelloRetryRequest construction. It returns true on success and false on
760 // failure. It is an error to call this function before the handshake buffer
761 // is released.
762 bool UpdateForHelloRetryRequest();
763
764 // CopyToHashContext initializes |ctx| with |digest| and the data thus far in
765 // the transcript. It returns true on success and false on failure. If the
766 // handshake buffer is still present, |digest| may be any supported digest.
767 // Otherwise, |digest| must match the transcript hash.
768 bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const;
769
770 Span<const uint8_t> buffer() const {
771 return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
772 buffer_->length);
773 }
774
775 // FreeBuffer releases the handshake buffer. Subsequent calls to
776 // |Update| will not update the handshake buffer.
777 void FreeBuffer();
778
779 // DigestLen returns the length of the PRF hash.
780 size_t DigestLen() const;
781
782 // Digest returns the PRF hash. For TLS 1.1 and below, this is
783 // |EVP_md5_sha1|.
784 const EVP_MD *Digest() const;
785
786 // Update adds |in| to the handshake buffer and handshake hash, whichever is
787 // enabled. It returns true on success and false on failure.
788 bool Update(Span<const uint8_t> in);
789
790 // GetHash writes the handshake hash to |out| which must have room for at
791 // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
792 // the number of bytes written. Otherwise, it returns false.
793 bool GetHash(uint8_t *out, size_t *out_len) const;
794
795 // GetFinishedMAC computes the MAC for the Finished message into the bytes
796 // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
797 // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
798 // on failure.
799 bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
800 bool from_server) const;
801
802 private:
803 // buffer_, if non-null, contains the handshake transcript.
804 UniquePtr<BUF_MEM> buffer_;
805 // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
806 ScopedEVP_MD_CTX hash_;
807 };
808
809 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
810 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
811 // to form the seed parameter. It returns true on success and false on failure.
812 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
813 Span<const uint8_t> secret, Span<const char> label,
814 Span<const uint8_t> seed1, Span<const uint8_t> seed2);
815
816
817 // Encryption layer.
818
819 // SSLAEADContext contains information about an AEAD that is being used to
820 // encrypt an SSL connection.
821 class SSLAEADContext {
822 public:
823 SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
824 ~SSLAEADContext();
825 static constexpr bool kAllowUniquePtr = true;
826
827 SSLAEADContext(const SSLAEADContext &&) = delete;
828 SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
829
830 // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
831 static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
832
833 // Create creates an |SSLAEADContext| using the supplied key material. It
834 // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
835 // resulting object, depending on |direction|. |version| is the normalized
836 // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
837 static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
838 uint16_t version, bool is_dtls,
839 const SSL_CIPHER *cipher,
840 Span<const uint8_t> enc_key,
841 Span<const uint8_t> mac_key,
842 Span<const uint8_t> fixed_iv);
843
844 // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
845 // given cipher and version. The resulting object can be queried for various
846 // properties but cannot encrypt or decrypt data.
847 static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
848 uint16_t version, const SSL_CIPHER *cipher);
849
850 // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
851 // cipher, to make version-specific determinations in the record layer prior
852 // to a cipher being selected.
853 void SetVersionIfNullCipher(uint16_t version);
854
855 // ProtocolVersion returns the protocol version associated with this
856 // SSLAEADContext. It can only be called once |version_| has been set to a
857 // valid value.
858 uint16_t ProtocolVersion() const;
859
860 // RecordVersion returns the record version that should be used with this
861 // SSLAEADContext for record construction and crypto.
862 uint16_t RecordVersion() const;
863
864 const SSL_CIPHER *cipher() const { return cipher_; }
865
866 // is_null_cipher returns true if this is the null cipher.
867 bool is_null_cipher() const { return !cipher_; }
868
869 // ExplicitNonceLen returns the length of the explicit nonce.
870 size_t ExplicitNonceLen() const;
871
872 // MaxOverhead returns the maximum overhead of calling |Seal|.
873 size_t MaxOverhead() const;
874
875 // SuffixLen calculates the suffix length written by |SealScatter| and writes
876 // it to |*out_suffix_len|. It returns true on success and false on error.
877 // |in_len| and |extra_in_len| should equal the argument of the same names
878 // passed to |SealScatter|.
879 bool SuffixLen(size_t *out_suffix_len, size_t in_len,
880 size_t extra_in_len) const;
881
882 // CiphertextLen calculates the total ciphertext length written by
883 // |SealScatter| and writes it to |*out_len|. It returns true on success and
884 // false on error. |in_len| and |extra_in_len| should equal the argument of
885 // the same names passed to |SealScatter|.
886 bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
887
888 // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
889 // to the plaintext in |in| and returns true. Otherwise, it returns
890 // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
891 bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
892 uint64_t seqnum, Span<const uint8_t> header, Span<uint8_t> in);
893
894 // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
895 // result to |out|. It returns true on success and false on error.
896 //
897 // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
898 bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
899 uint16_t record_version, uint64_t seqnum,
900 Span<const uint8_t> header, const uint8_t *in, size_t in_len);
901
902 // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
903 // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
904 // success and zero on error.
905 //
906 // On successful return, exactly |ExplicitNonceLen| bytes are written to
907 // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
908 // |out_suffix|.
909 //
910 // |extra_in| may point to an additional plaintext buffer. If present,
911 // |extra_in_len| additional bytes are encrypted and authenticated, and the
912 // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
913 // be used to size |out_suffix| accordingly.
914 //
915 // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
916 // alias anything.
917 bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
918 uint8_t type, uint16_t record_version, uint64_t seqnum,
919 Span<const uint8_t> header, const uint8_t *in, size_t in_len,
920 const uint8_t *extra_in, size_t extra_in_len);
921
922 bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
923
924 private:
925 // GetAdditionalData returns the additional data, writing into |storage| if
926 // necessary.
927 Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
928 uint16_t record_version,
929 uint64_t seqnum, size_t plaintext_len,
930 Span<const uint8_t> header);
931
932 const SSL_CIPHER *cipher_;
933 ScopedEVP_AEAD_CTX ctx_;
934 // fixed_nonce_ contains any bytes of the nonce that are fixed for all
935 // records.
936 uint8_t fixed_nonce_[12];
937 uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
938 // version_ is the wire version that should be used with this AEAD.
939 uint16_t version_;
940 // is_dtls_ is whether DTLS is being used with this AEAD.
941 bool is_dtls_;
942 // variable_nonce_included_in_record_ is true if the variable nonce
943 // for a record is included as a prefix before the ciphertext.
944 bool variable_nonce_included_in_record_ : 1;
945 // random_variable_nonce_ is true if the variable nonce is
946 // randomly generated, rather than derived from the sequence
947 // number.
948 bool random_variable_nonce_ : 1;
949 // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
950 // variable nonce rather than prepended.
951 bool xor_fixed_nonce_ : 1;
952 // omit_length_in_ad_ is true if the length should be omitted in the
953 // AEAD's ad parameter.
954 bool omit_length_in_ad_ : 1;
955 // ad_is_header_ is true if the AEAD's ad parameter is the record header.
956 bool ad_is_header_ : 1;
957 };
958
959
960 // DTLS replay bitmap.
961
962 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
963 // replayed packets. It should be initialized by zeroing every field.
964 struct DTLS1_BITMAP {
965 // map is a bitset of sequence numbers that have been seen. Bit i corresponds
966 // to |max_seq_num - i|.
967 std::bitset<256> map;
968 // max_seq_num is the largest sequence number seen so far as a 64-bit
969 // integer.
970 uint64_t max_seq_num = 0;
971 };
972
973
974 // Record layer.
975
976 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
977 // of a record for |ssl|.
978 //
979 // TODO(davidben): Expose this as part of public API once the high-level
980 // buffer-free APIs are available.
981 size_t ssl_record_prefix_len(const SSL *ssl);
982
983 enum ssl_open_record_t {
984 ssl_open_record_success,
985 ssl_open_record_discard,
986 ssl_open_record_partial,
987 ssl_open_record_close_notify,
988 ssl_open_record_error,
989 };
990
991 // tls_open_record decrypts a record from |in| in-place.
992 //
993 // If the input did not contain a complete record, it returns
994 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
995 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
996 // will consume at least that many bytes.
997 //
998 // Otherwise, it sets |*out_consumed| to the number of bytes of input
999 // consumed. Note that input may be consumed on all return codes if a record was
1000 // decrypted.
1001 //
1002 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
1003 // record type and |*out| to the record body in |in|. Note that |*out| may be
1004 // empty.
1005 //
1006 // If a record was successfully processed but should be discarded, it returns
1007 // |ssl_open_record_discard|.
1008 //
1009 // If a record was successfully processed but is a close_notify, it returns
1010 // |ssl_open_record_close_notify|.
1011 //
1012 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
1013 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
1014 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
1015 Span<uint8_t> *out, size_t *out_consumed,
1016 uint8_t *out_alert, Span<uint8_t> in);
1017
1018 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
1019 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
1020 // zero. The caller should read one packet and try again.
1021 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
1022 Span<uint8_t> *out,
1023 size_t *out_consumed,
1024 uint8_t *out_alert, Span<uint8_t> in);
1025
1026 // ssl_seal_align_prefix_len returns the length of the prefix before the start
1027 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
1028 // use this to align buffers.
1029 //
1030 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
1031 // record and is the offset into second record's ciphertext. Thus sealing a
1032 // small record may result in a smaller output than this value.
1033 //
1034 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
1035 // mess.
1036 size_t ssl_seal_align_prefix_len(const SSL *ssl);
1037
1038 // tls_seal_record seals a new record of type |type| and body |in| and writes it
1039 // to |out|. At most |max_out| bytes will be written. It returns true on success
1040 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
1041 // 1/n-1 record splitting and may write two records concatenated.
1042 //
1043 // For a large record, the bulk of the ciphertext will begin
1044 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
1045 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
1046 // bytes to |out|.
1047 //
1048 // |in| and |out| may not alias.
1049 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1050 uint8_t type, const uint8_t *in, size_t in_len);
1051
1052 enum dtls1_use_epoch_t {
1053 dtls1_use_previous_epoch,
1054 dtls1_use_current_epoch,
1055 };
1056
1057 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
1058 // record.
1059 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1060
1061 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
1062 // front of the plaintext when sealing a record in-place.
1063 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1064
1065 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
1066 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
1067 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
1068 // ahead of |out|.
1069 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1070 uint8_t type, const uint8_t *in, size_t in_len,
1071 enum dtls1_use_epoch_t use_epoch);
1072
1073 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
1074 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
1075 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
1076 // appropriate.
1077 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
1078 Span<const uint8_t> in);
1079
1080
1081 // Private key operations.
1082
1083 // ssl_private_key_* perform the corresponding operation on
1084 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
1085 // call the corresponding function or |complete| depending on whether there is a
1086 // pending operation. Otherwise, they implement the operation with
1087 // |EVP_PKEY|.
1088
1089 enum ssl_private_key_result_t ssl_private_key_sign(
1090 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
1091 uint16_t sigalg, Span<const uint8_t> in);
1092
1093 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
1094 uint8_t *out,
1095 size_t *out_len,
1096 size_t max_out,
1097 Span<const uint8_t> in);
1098
1099 // ssl_pkey_supports_algorithm returns whether |pkey| may be used to sign
1100 // |sigalg|.
1101 bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
1102 uint16_t sigalg);
1103
1104 // ssl_public_key_verify verifies that the |signature| is valid for the public
1105 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
1106 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
1107 uint16_t sigalg, EVP_PKEY *pkey,
1108 Span<const uint8_t> in);
1109
1110
1111 // Key shares.
1112
1113 // SSLKeyShare abstracts over KEM-like constructions, for use with TLS 1.2 ECDHE
1114 // cipher suites and the TLS 1.3 key_share extension.
1115 //
1116 // TODO(davidben): This class is named SSLKeyShare after the TLS 1.3 key_share
1117 // extension, but it really implements a KEM abstraction. Additionally, we use
1118 // the same type for Encap, which is a one-off, stateless operation, as Generate
1119 // and Decap. Slightly tidier would be for Generate to return a new SSLKEMKey
1120 // (or we introduce EVP_KEM and EVP_KEM_KEY), with a Decap method, and for Encap
1121 // to be static function.
1122 class SSLKeyShare {
1123 public:
1124 virtual ~SSLKeyShare() {}
1125 static constexpr bool kAllowUniquePtr = true;
1126 HAS_VIRTUAL_DESTRUCTOR
1127
1128 // Create returns a SSLKeyShare instance for use with group |group_id| or
1129 // nullptr on error.
1130 static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
1131
1132 // GroupID returns the group ID.
1133 virtual uint16_t GroupID() const PURE_VIRTUAL;
1134
1135 // Generate generates a keypair and writes the public key to |out_public_key|.
1136 // It returns true on success and false on error.
1137 virtual bool Generate(CBB *out_public_key) PURE_VIRTUAL;
1138
1139 // Encap generates an ephemeral, symmetric secret and encapsulates it with
1140 // |peer_key|. On success, it returns true, writes the encapsulated secret to
1141 // |out_ciphertext|, and sets |*out_secret| to the shared secret. On failure,
1142 // it returns false and sets |*out_alert| to an alert to send to the peer.
1143 virtual bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret,
1144 uint8_t *out_alert,
1145 Span<const uint8_t> peer_key) PURE_VIRTUAL;
1146
1147 // Decap decapsulates the symmetric secret in |ciphertext|. On success, it
1148 // returns true and sets |*out_secret| to the shared secret. On failure, it
1149 // returns false and sets |*out_alert| to an alert to send to the peer.
1150 virtual bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert,
1151 Span<const uint8_t> ciphertext) PURE_VIRTUAL;
1152
1153 // SerializePrivateKey writes the private key to |out|, returning true if
1154 // successful and false otherwise. It should be called after |Generate|.
1155 virtual bool SerializePrivateKey(CBB *out) { return false; }
1156
1157 // DeserializePrivateKey initializes the state of the key exchange from |in|,
1158 // returning true if successful and false otherwise.
1159 virtual bool DeserializePrivateKey(CBS *in) { return false; }
1160 };
1161
1162 struct NamedGroup {
1163 int nid;
1164 uint16_t group_id;
1165 const char name[32], alias[32];
1166 };
1167
1168 // NamedGroups returns all supported groups.
1169 Span<const NamedGroup> NamedGroups();
1170
1171 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1172 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1173 // false.
1174 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1175
1176 // ssl_name_to_group_id looks up the group corresponding to the |name| string of
1177 // length |len|. On success, it sets |*out_group_id| to the group ID and returns
1178 // true. Otherwise, it returns false.
1179 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1180
1181 // ssl_group_id_to_nid returns the NID corresponding to |group_id| or
1182 // |NID_undef| if unknown.
1183 int ssl_group_id_to_nid(uint16_t group_id);
1184
1185
1186 // Handshake messages.
1187
1188 struct SSLMessage {
1189 bool is_v2_hello;
1190 uint8_t type;
1191 CBS body;
1192 // raw is the entire serialized handshake message, including the TLS or DTLS
1193 // message header.
1194 CBS raw;
1195 };
1196
1197 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1198 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
1199 // client's second leg in a full handshake when client certificates, NPN, and
1200 // Channel ID, are all enabled.
1201 #define SSL_MAX_HANDSHAKE_FLIGHT 7
1202
1203 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1204 extern const uint8_t kTLS12DowngradeRandom[8];
1205 extern const uint8_t kTLS13DowngradeRandom[8];
1206 extern const uint8_t kJDK11DowngradeRandom[8];
1207
1208 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
1209 // in a handshake message for |ssl|.
1210 size_t ssl_max_handshake_message_len(const SSL *ssl);
1211
1212 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1213 // data into handshake buffer.
1214 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1215
1216 // tls_has_unprocessed_handshake_data returns whether there is buffered
1217 // handshake data that has not been consumed by |get_message|.
1218 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1219
1220 // tls_append_handshake_data appends |data| to the handshake buffer. It returns
1221 // true on success and false on allocation failure.
1222 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1223
1224 // dtls_has_unprocessed_handshake_data behaves like
1225 // |tls_has_unprocessed_handshake_data| for DTLS.
1226 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1227
1228 // tls_flush_pending_hs_data flushes any handshake plaintext data.
1229 bool tls_flush_pending_hs_data(SSL *ssl);
1230
1231 struct DTLS_OUTGOING_MESSAGE {
1232 DTLS_OUTGOING_MESSAGE() {}
1233 DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1234 DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1235
1236 void Clear();
1237
1238 Array<uint8_t> data;
1239 uint16_t epoch = 0;
1240 bool is_ccs = false;
1241 };
1242
1243 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
1244 void dtls_clear_outgoing_messages(SSL *ssl);
1245
1246
1247 // Callbacks.
1248
1249 // ssl_do_info_callback calls |ssl|'s info callback, if set.
1250 void ssl_do_info_callback(const SSL *ssl, int type, int value);
1251
1252 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
1253 void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1254 Span<const uint8_t> in);
1255
1256
1257 // Transport buffers.
1258
1259 class SSLBuffer {
1260 public:
1261 SSLBuffer() {}
1262 ~SSLBuffer() { Clear(); }
1263
1264 SSLBuffer(const SSLBuffer &) = delete;
1265 SSLBuffer &operator=(const SSLBuffer &) = delete;
1266
1267 uint8_t *data() { return buf_ + offset_; }
1268 size_t size() const { return size_; }
1269 bool empty() const { return size_ == 0; }
1270 size_t cap() const { return cap_; }
1271
1272 Span<uint8_t> span() { return MakeSpan(data(), size()); }
1273
1274 Span<uint8_t> remaining() {
1275 return MakeSpan(data() + size(), cap() - size());
1276 }
1277
1278 // Clear releases the buffer.
1279 void Clear();
1280
1281 // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1282 // that data written after |header_len| is aligned to a
1283 // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1284 // on error.
1285 bool EnsureCap(size_t header_len, size_t new_cap);
1286
1287 // DidWrite extends the buffer by |len|. The caller must have filled in to
1288 // this point.
1289 void DidWrite(size_t len);
1290
1291 // Consume consumes |len| bytes from the front of the buffer. The memory
1292 // consumed will remain valid until the next call to |DiscardConsumed| or
1293 // |Clear|.
1294 void Consume(size_t len);
1295
1296 // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1297 // is now empty, it releases memory used by it.
1298 void DiscardConsumed();
1299
1300 private:
1301 // buf_ is the memory allocated for this buffer.
1302 uint8_t *buf_ = nullptr;
1303 // offset_ is the offset into |buf_| which the buffer contents start at.
1304 uint16_t offset_ = 0;
1305 // size_ is the size of the buffer contents from |buf_| + |offset_|.
1306 uint16_t size_ = 0;
1307 // cap_ is how much memory beyond |buf_| + |offset_| is available.
1308 uint16_t cap_ = 0;
1309 // inline_buf_ is a static buffer for short reads.
1310 uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH];
1311 // buf_allocated_ is true if |buf_| points to allocated data and must be freed
1312 // or false if it points into |inline_buf_|.
1313 bool buf_allocated_ = false;
1314 };
1315
1316 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1317 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
1318 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1319 // success, zero on EOF, and a negative number on error.
1320 //
1321 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1322 // non-empty.
1323 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1324
1325 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1326 // to a record-processing function. If |ret| is a success or if the caller
1327 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1328 // 0.
1329 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1330 size_t consumed, uint8_t alert);
1331
1332 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1333 // one on success and <= 0 on error. For DTLS, whether or not the write
1334 // succeeds, the write buffer will be cleared.
1335 int ssl_write_buffer_flush(SSL *ssl);
1336
1337
1338 // Certificate functions.
1339
1340 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1341 // by a TLS Certificate message. On success, it advances |cbs| and returns
1342 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1343 // to the peer.
1344 //
1345 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1346 // the certificate chain and the leaf certificate's public key
1347 // respectively. Otherwise, both will be set to nullptr.
1348 //
1349 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1350 // SHA-256 hash of the leaf to |out_leaf_sha256|.
1351 bool ssl_parse_cert_chain(uint8_t *out_alert,
1352 UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1353 UniquePtr<EVP_PKEY> *out_pubkey,
1354 uint8_t *out_leaf_sha256, CBS *cbs,
1355 CRYPTO_BUFFER_POOL *pool);
1356
1357 enum ssl_key_usage_t {
1358 key_usage_digital_signature = 0,
1359 key_usage_encipherment = 2,
1360 };
1361
1362 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1363 // and returns true if doesn't specify a key usage or, if it does, if it
1364 // includes |bit|. Otherwise it pushes to the error queue and returns false.
1365 OPENSSL_EXPORT bool ssl_cert_check_key_usage(const CBS *in,
1366 enum ssl_key_usage_t bit);
1367
1368 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1369 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1370 // nullptr and pushes to the error queue.
1371 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1372
1373 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1374 // TLS CertificateRequest message. On success, it returns a newly-allocated
1375 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1376 // sets |*out_alert| to an alert to send to the peer.
1377 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1378 uint8_t *out_alert,
1379 CBS *cbs);
1380
1381 // ssl_has_client_CAs returns there are configured CAs.
1382 bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1383
1384 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1385 // used by a TLS CertificateRequest message. It returns true on success and
1386 // false on error.
1387 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1388
1389 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1390 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1391 // an error on the error queue.
1392 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1393 const CRYPTO_BUFFER *leaf);
1394
1395
1396 // TLS 1.3 key derivation.
1397
1398 // tls13_init_key_schedule initializes the handshake hash and key derivation
1399 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
1400 // selected at this point. It returns true on success and false on error.
1401 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1402
1403 // tls13_init_early_key_schedule initializes the handshake hash and key
1404 // derivation state from |session| for use with 0-RTT. It returns one on success
1405 // and zero on error.
1406 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
1407 const SSL_SESSION *session);
1408
1409 // tls13_advance_key_schedule incorporates |in| into the key schedule with
1410 // HKDF-Extract. It returns true on success and false on error.
1411 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in);
1412
1413 // tls13_set_traffic_key sets the read or write traffic keys to
1414 // |traffic_secret|. The version and cipher suite are determined from |session|.
1415 // It returns true on success and false on error.
1416 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1417 enum evp_aead_direction_t direction,
1418 const SSL_SESSION *session,
1419 Span<const uint8_t> traffic_secret);
1420
1421 // tls13_derive_early_secret derives the early traffic secret. It returns true
1422 // on success and false on error.
1423 bool tls13_derive_early_secret(SSL_HANDSHAKE *hs);
1424
1425 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
1426 // returns true on success and false on error.
1427 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1428
1429 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
1430 // returns true on success and false on error.
1431 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1432
1433 // tls13_derive_application_secrets derives the initial application data traffic
1434 // and exporter secrets based on the handshake transcripts and |master_secret|.
1435 // It returns true on success and false on error.
1436 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1437
1438 // tls13_derive_resumption_secret derives the |resumption_secret|.
1439 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1440
1441 // tls13_export_keying_material provides an exporter interface to use the
1442 // |exporter_secret|.
1443 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1444 Span<const uint8_t> secret,
1445 Span<const char> label,
1446 Span<const uint8_t> context);
1447
1448 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
1449 // the integrity of the Finished message, and stores the result in |out| and
1450 // length in |out_len|. |is_server| is true if this is for the Server Finished
1451 // and false for the Client Finished.
1452 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1453 bool is_server);
1454
1455 // tls13_derive_session_psk calculates the PSK for this session based on the
1456 // resumption master secret and |nonce|. It returns true on success, and false
1457 // on failure.
1458 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1459
1460 // tls13_write_psk_binder calculates the PSK binder value over |transcript| and
1461 // |msg|, and replaces the last bytes of |msg| with the resulting value. It
1462 // returns true on success, and false on failure. If |out_binder_len| is
1463 // non-NULL, it sets |*out_binder_len| to the length of the value computed.
1464 bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
1465 const SSLTranscript &transcript, Span<uint8_t> msg,
1466 size_t *out_binder_len);
1467
1468 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1469 // to the binders has a valid signature using the value of |session|'s
1470 // resumption secret. It returns true on success, and false on failure.
1471 bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
1472 const SSL_SESSION *session, const SSLMessage &msg,
1473 CBS *binders);
1474
1475
1476 // Encrypted ClientHello.
1477
1478 struct ECHConfig {
1479 static constexpr bool kAllowUniquePtr = true;
1480 // raw contains the serialized ECHConfig.
1481 Array<uint8_t> raw;
1482 // The following fields alias into |raw|.
1483 Span<const uint8_t> public_key;
1484 Span<const uint8_t> public_name;
1485 Span<const uint8_t> cipher_suites;
1486 uint16_t kem_id = 0;
1487 uint8_t maximum_name_length = 0;
1488 uint8_t config_id = 0;
1489 };
1490
1491 class ECHServerConfig {
1492 public:
1493 static constexpr bool kAllowUniquePtr = true;
1494 ECHServerConfig() = default;
1495 ECHServerConfig(const ECHServerConfig &other) = delete;
1496 ECHServerConfig &operator=(ECHServerConfig &&) = delete;
1497
1498 // Init parses |ech_config| as an ECHConfig and saves a copy of |key|.
1499 // It returns true on success and false on error.
1500 bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key,
1501 bool is_retry_config);
1502
1503 // SetupContext sets up |ctx| for a new connection, given the specified
1504 // HPKE ciphersuite and encapsulated KEM key. It returns true on success and
1505 // false on error. This function may only be called on an initialized object.
1506 bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id,
1507 Span<const uint8_t> enc) const;
1508
1509 const ECHConfig &ech_config() const { return ech_config_; }
1510 bool is_retry_config() const { return is_retry_config_; }
1511
1512 private:
1513 ECHConfig ech_config_;
1514 ScopedEVP_HPKE_KEY key_;
1515 bool is_retry_config_ = false;
1516 };
1517
1518 enum ssl_client_hello_type_t {
1519 ssl_client_hello_unencrypted,
1520 ssl_client_hello_inner,
1521 ssl_client_hello_outer,
1522 };
1523
1524 // ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension.
1525 #define ECH_CLIENT_OUTER 0
1526 #define ECH_CLIENT_INNER 1
1527
1528 // ssl_decode_client_hello_inner recovers the full ClientHelloInner from the
1529 // EncodedClientHelloInner |encoded_client_hello_inner| by replacing its
1530 // outer_extensions extension with the referenced extensions from the
1531 // ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered
1532 // ClientHelloInner to |out_client_hello_inner|. It returns true on success and
1533 // false on failure.
1534 //
1535 // This function is exported for fuzzing.
1536 OPENSSL_EXPORT bool ssl_decode_client_hello_inner(
1537 SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner,
1538 Span<const uint8_t> encoded_client_hello_inner,
1539 const SSL_CLIENT_HELLO *client_hello_outer);
1540
1541 // ssl_client_hello_decrypt attempts to decrypt and decode the |payload|. It
1542 // writes the result to |*out|. |payload| must point into |client_hello_outer|.
1543 // It returns true on success and false on error. On error, it sets
1544 // |*out_is_decrypt_error| to whether the failure was due to a bad ciphertext.
1545 bool ssl_client_hello_decrypt(SSL_HANDSHAKE *hs, uint8_t *out_alert,
1546 bool *out_is_decrypt_error, Array<uint8_t> *out,
1547 const SSL_CLIENT_HELLO *client_hello_outer,
1548 Span<const uint8_t> payload);
1549
1550 #define ECH_CONFIRMATION_SIGNAL_LEN 8
1551
1552 // ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH
1553 // confirmation signal in a ServerHello message, including the handshake header.
1554 size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl);
1555
1556 // ssl_ech_accept_confirmation computes the server's ECH acceptance signal,
1557 // writing it to |out|. The transcript portion is the concatenation of
1558 // |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from
1559 // |offset| in |msg| are replaced with zeros before hashing. This function
1560 // returns true on success, and false on failure.
1561 bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out,
1562 Span<const uint8_t> client_random,
1563 const SSLTranscript &transcript, bool is_hrr,
1564 Span<const uint8_t> msg, size_t offset);
1565
1566 // ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH
1567 // public name and false otherwise. It is exported for testing.
1568 OPENSSL_EXPORT bool ssl_is_valid_ech_public_name(
1569 Span<const uint8_t> public_name);
1570
1571 // ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid
1572 // ECHConfigList structure and false otherwise.
1573 bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list);
1574
1575 // ssl_select_ech_config selects an ECHConfig and associated parameters to offer
1576 // on the client and updates |hs|. It returns true on success, whether an
1577 // ECHConfig was found or not, and false on internal error. On success, the
1578 // encapsulated key is written to |out_enc| and |*out_enc_len| is set to the
1579 // number of bytes written. If the function did not select an ECHConfig, the
1580 // encapsulated key is the empty string.
1581 bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc,
1582 size_t *out_enc_len);
1583
1584 // ssl_ech_extension_body_length returns the length of the body of a ClientHello
1585 // ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of
1586 // length |enc_len|. The result does not include the four-byte extension header.
1587 size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len,
1588 size_t in_len);
1589
1590 // ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the
1591 // inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc|
1592 // is the encapsulated key to include in the extension. It returns true on
1593 // success and false on error. If not offering ECH, |enc| is ignored and the
1594 // function will compute a GREASE ECH extension if necessary, and otherwise
1595 // return success while doing nothing.
1596 //
1597 // Encrypting the ClientHelloInner incorporates all extensions in the
1598 // ClientHelloOuter, so all other state necessary for |ssl_add_client_hello|
1599 // must already be computed.
1600 bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc);
1601
1602
1603 // Credentials.
1604
1605 enum class SSLCredentialType {
1606 kX509,
1607 kDelegated,
1608 };
1609
1610 BSSL_NAMESPACE_END
1611
1612 // SSL_CREDENTIAL is exported to C, so it must be defined outside the namespace.
1613 struct ssl_credential_st : public bssl::RefCounted<ssl_credential_st> {
1614 explicit ssl_credential_st(bssl::SSLCredentialType type);
1615 ssl_credential_st(const ssl_credential_st &) = delete;
1616 ssl_credential_st &operator=(const ssl_credential_st &) = delete;
1617
1618 // Dup returns a copy of the credential, or nullptr on error. The |ex_data|
1619 // values are not copied. This is only used on the default credential, whose
1620 // |ex_data| is inaccessible.
1621 bssl::UniquePtr<SSL_CREDENTIAL> Dup() const;
1622
1623 // ClearCertAndKey erases any certificate and private key on the credential.
1624 void ClearCertAndKey();
1625
1626 // UsesX509 returns true if the credential type uses an X.509 certificate.
1627 bool UsesX509() const;
1628
1629 // UsesPrivateKey returns true if the credential type uses an asymmetric
1630 // private key.
1631 bool UsesPrivateKey() const;
1632
1633 // IsComplete returns whether all required fields in the credential have been
1634 // filled in.
1635 bool IsComplete() const;
1636
1637 // SetLeafCert sets the leaf certificate to |leaf|, leaving the remaining
1638 // certificates unmodified. It returns true on success and false on error. If
1639 // |discard_key_on_mismatch| is true and the private key is inconsistent with
1640 // the new leaf certificate, it is silently discarded.
1641 bool SetLeafCert(bssl::UniquePtr<CRYPTO_BUFFER> leaf,
1642 bool discard_key_on_mismatch);
1643
1644 // ClearIntermediateCerts clears intermediate certificates in the certificate
1645 // chain, while preserving the leaf.
1646 void ClearIntermediateCerts();
1647
1648 // AppendIntermediateCert appends |cert| to the certificate chain. If there is
1649 // no leaf certificate configured, it leaves a placeholder null in |chain|. It
1650 // returns one on success and zero on error.
1651 bool AppendIntermediateCert(bssl::UniquePtr<CRYPTO_BUFFER> cert);
1652
1653 // type is the credential type and determines which other fields apply.
1654 bssl::SSLCredentialType type;
1655
1656 // pubkey is the cached public key of the credential. Unlike |privkey|, it is
1657 // always present and is extracted from the certificate, delegated credential,
1658 // etc.
1659 bssl::UniquePtr<EVP_PKEY> pubkey;
1660
1661 // privkey is the private key of the credential. It may be omitted in favor of
1662 // |key_method|.
1663 bssl::UniquePtr<EVP_PKEY> privkey;
1664
1665 // key_method, if non-null, is a set of callbacks to call for private key
1666 // operations.
1667 const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
1668
1669 // sigalgs, if non-empty, is the set of signature algorithms supported by the
1670 // private key in decreasing order of preference. If empty, the default list
1671 // is used.
1672 //
1673 // In delegated credentials, this field is not configurable and is instead
1674 // computed from the dc_cert_verify_algorithm field.
1675 bssl::Array<uint16_t> sigalgs;
1676
1677 // chain contains the certificate chain, with the leaf at the beginning. The
1678 // first element of |chain| may be nullptr to indicate that the leaf
1679 // certificate has not yet been set.
1680 // If |chain| != nullptr -> len(chain) >= 1
1681 // If |chain[0]| == nullptr -> len(chain) >= 2.
1682 // |chain[1..]| != nullptr
1683 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
1684
1685 // dc is the DelegatedCredential structure, if this is a delegated credential.
1686 bssl::UniquePtr<CRYPTO_BUFFER> dc;
1687
1688 // dc_algorithm is the signature scheme of the signature over the delegated
1689 // credential itself, made by the end-entity certificate's public key.
1690 uint16_t dc_algorithm = 0;
1691
1692 // Signed certificate timestamp list to be sent to the client, if requested
1693 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
1694
1695 // OCSP response to be sent to the client, if requested.
1696 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
1697
1698 CRYPTO_EX_DATA ex_data;
1699
1700 private:
1701 friend RefCounted;
1702 ~ssl_credential_st();
1703 };
1704
1705 BSSL_NAMESPACE_BEGIN
1706
1707 // ssl_get_credential_list computes |hs|'s credential list. On success, it
1708 // writes it to |*out| and returns true. Otherwise, it returns false. The
1709 // credential list may be empty, in which case this function will successfully
1710 // return an empty array.
1711 //
1712 // The pointers in the result are only valid until |hs| is next mutated.
1713 bool ssl_get_credential_list(SSL_HANDSHAKE *hs, Array<SSL_CREDENTIAL *> *out);
1714
1715
1716 // Handshake functions.
1717
1718 enum ssl_hs_wait_t {
1719 ssl_hs_error,
1720 ssl_hs_ok,
1721 ssl_hs_read_server_hello,
1722 ssl_hs_read_message,
1723 ssl_hs_flush,
1724 ssl_hs_certificate_selection_pending,
1725 ssl_hs_handoff,
1726 ssl_hs_handback,
1727 ssl_hs_x509_lookup,
1728 ssl_hs_private_key_operation,
1729 ssl_hs_pending_session,
1730 ssl_hs_pending_ticket,
1731 ssl_hs_early_return,
1732 ssl_hs_early_data_rejected,
1733 ssl_hs_read_end_of_early_data,
1734 ssl_hs_read_change_cipher_spec,
1735 ssl_hs_certificate_verify,
1736 ssl_hs_hints_ready,
1737 };
1738
1739 enum ssl_grease_index_t {
1740 ssl_grease_cipher = 0,
1741 ssl_grease_group,
1742 ssl_grease_extension1,
1743 ssl_grease_extension2,
1744 ssl_grease_version,
1745 ssl_grease_ticket_extension,
1746 ssl_grease_ech_config_id,
1747 ssl_grease_last_index = ssl_grease_ech_config_id,
1748 };
1749
1750 enum tls12_server_hs_state_t {
1751 state12_start_accept = 0,
1752 state12_read_client_hello,
1753 state12_read_client_hello_after_ech,
1754 state12_cert_callback,
1755 state12_tls13,
1756 state12_select_parameters,
1757 state12_send_server_hello,
1758 state12_send_server_certificate,
1759 state12_send_server_key_exchange,
1760 state12_send_server_hello_done,
1761 state12_read_client_certificate,
1762 state12_verify_client_certificate,
1763 state12_read_client_key_exchange,
1764 state12_read_client_certificate_verify,
1765 state12_read_change_cipher_spec,
1766 state12_process_change_cipher_spec,
1767 state12_read_next_proto,
1768 state12_read_channel_id,
1769 state12_read_client_finished,
1770 state12_send_server_finished,
1771 state12_finish_server_handshake,
1772 state12_done,
1773 };
1774
1775 enum tls13_server_hs_state_t {
1776 state13_select_parameters = 0,
1777 state13_select_session,
1778 state13_send_hello_retry_request,
1779 state13_read_second_client_hello,
1780 state13_send_server_hello,
1781 state13_send_server_certificate_verify,
1782 state13_send_server_finished,
1783 state13_send_half_rtt_ticket,
1784 state13_read_second_client_flight,
1785 state13_process_end_of_early_data,
1786 state13_read_client_encrypted_extensions,
1787 state13_read_client_certificate,
1788 state13_read_client_certificate_verify,
1789 state13_read_channel_id,
1790 state13_read_client_finished,
1791 state13_send_new_session_ticket,
1792 state13_done,
1793 };
1794
1795 // handback_t lists the points in the state machine where a handback can occur.
1796 // These are the different points at which key material is no longer needed.
1797 enum handback_t {
1798 handback_after_session_resumption = 0,
1799 handback_after_ecdhe = 1,
1800 handback_after_handshake = 2,
1801 handback_tls13 = 3,
1802 handback_max_value = handback_tls13,
1803 };
1804
1805 // SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See
1806 // |SSL_request_handshake_hints| and related functions.
1807 struct SSL_HANDSHAKE_HINTS {
1808 static constexpr bool kAllowUniquePtr = true;
1809
1810 Array<uint8_t> server_random_tls12;
1811 Array<uint8_t> server_random_tls13;
1812
1813 uint16_t key_share_group_id = 0;
1814 Array<uint8_t> key_share_ciphertext;
1815 Array<uint8_t> key_share_secret;
1816
1817 uint16_t signature_algorithm = 0;
1818 Array<uint8_t> signature_input;
1819 Array<uint8_t> signature_spki;
1820 Array<uint8_t> signature;
1821
1822 Array<uint8_t> decrypted_psk;
1823 bool ignore_psk = false;
1824
1825 uint16_t cert_compression_alg_id = 0;
1826 Array<uint8_t> cert_compression_input;
1827 Array<uint8_t> cert_compression_output;
1828
1829 uint16_t ecdhe_group_id = 0;
1830 Array<uint8_t> ecdhe_public_key;
1831 Array<uint8_t> ecdhe_private_key;
1832
1833 Array<uint8_t> decrypted_ticket;
1834 bool renew_ticket = false;
1835 bool ignore_ticket = false;
1836 };
1837
1838 struct SSL_HANDSHAKE {
1839 explicit SSL_HANDSHAKE(SSL *ssl);
1840 ~SSL_HANDSHAKE();
1841 static constexpr bool kAllowUniquePtr = true;
1842
1843 // ssl is a non-owning pointer to the parent |SSL| object.
1844 SSL *ssl;
1845
1846 // config is a non-owning pointer to the handshake configuration.
1847 SSL_CONFIG *config;
1848
1849 // wait contains the operation the handshake is currently blocking on or
1850 // |ssl_hs_ok| if none.
1851 enum ssl_hs_wait_t wait = ssl_hs_ok;
1852
1853 // state is the internal state for the TLS 1.2 and below handshake. Its
1854 // values depend on |do_handshake| but the starting state is always zero.
1855 int state = 0;
1856
1857 // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1858 // depend on |do_handshake| but the starting state is always zero.
1859 int tls13_state = 0;
1860
1861 // min_version is the minimum accepted protocol version, taking account both
1862 // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1863 uint16_t min_version = 0;
1864
1865 // max_version is the maximum accepted protocol version, taking account both
1866 // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1867 uint16_t max_version = 0;
1868
1869 private:
1870 size_t hash_len_ = 0;
1871 uint8_t secret_[SSL_MAX_MD_SIZE] = {0};
1872 uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0};
1873 uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1874 uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1875 uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1876 uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1877 uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0};
1878
1879 public:
1880 void ResizeSecrets(size_t hash_len);
1881
1882 // GetClientHello, on the server, returns either the normal ClientHello
1883 // message or the ClientHelloInner if it has been serialized to
1884 // |ech_client_hello_buf|. This function should only be called when the
1885 // current message is a ClientHello. It returns true on success and false on
1886 // error.
1887 //
1888 // Note that fields of the returned |out_msg| and |out_client_hello| point
1889 // into a handshake-owned buffer, so their lifetimes should not exceed this
1890 // SSL_HANDSHAKE.
1891 bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello);
1892
1893 Span<uint8_t> secret() { return MakeSpan(secret_, hash_len_); }
1894 Span<const uint8_t> secret() const {
1895 return MakeConstSpan(secret_, hash_len_);
1896 }
1897 Span<uint8_t> early_traffic_secret() {
1898 return MakeSpan(early_traffic_secret_, hash_len_);
1899 }
1900 Span<uint8_t> client_handshake_secret() {
1901 return MakeSpan(client_handshake_secret_, hash_len_);
1902 }
1903 Span<uint8_t> server_handshake_secret() {
1904 return MakeSpan(server_handshake_secret_, hash_len_);
1905 }
1906 Span<uint8_t> client_traffic_secret_0() {
1907 return MakeSpan(client_traffic_secret_0_, hash_len_);
1908 }
1909 Span<uint8_t> server_traffic_secret_0() {
1910 return MakeSpan(server_traffic_secret_0_, hash_len_);
1911 }
1912 Span<uint8_t> expected_client_finished() {
1913 return MakeSpan(expected_client_finished_, hash_len_);
1914 }
1915
1916 union {
1917 // sent is a bitset where the bits correspond to elements of kExtensions
1918 // in extensions.cc. Each bit is set if that extension was sent in a
1919 // ClientHello. It's not used by servers.
1920 uint32_t sent = 0;
1921 // received is a bitset, like |sent|, but is used by servers to record
1922 // which extensions were received from a client.
1923 uint32_t received;
1924 } extensions;
1925
1926 // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for
1927 // the ClientHelloInner.
1928 uint32_t inner_extensions_sent = 0;
1929
1930 // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1931 UniquePtr<ERR_SAVE_STATE> error;
1932
1933 // key_shares are the current key exchange instances. The second is only used
1934 // as a client if we believe that we should offer two key shares in a
1935 // ClientHello.
1936 UniquePtr<SSLKeyShare> key_shares[2];
1937
1938 // transcript is the current handshake transcript.
1939 SSLTranscript transcript;
1940
1941 // inner_transcript, on the client, is the handshake transcript for the
1942 // ClientHelloInner handshake. It is moved to |transcript| if the server
1943 // accepts ECH.
1944 SSLTranscript inner_transcript;
1945
1946 // inner_client_random is the ClientHello random value used with
1947 // ClientHelloInner.
1948 uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0};
1949
1950 // cookie is the value of the cookie in HelloRetryRequest, or empty if none
1951 // was received.
1952 Array<uint8_t> cookie;
1953
1954 // dtls_cookie is the value of the cookie in DTLS HelloVerifyRequest. If
1955 // empty, either none was received or HelloVerifyRequest contained an empty
1956 // cookie.
1957 Array<uint8_t> dtls_cookie;
1958
1959 // ech_client_outer contains the outer ECH extension to send in the
1960 // ClientHello, excluding the header and type byte.
1961 Array<uint8_t> ech_client_outer;
1962
1963 // ech_retry_configs, on the client, contains the retry configs from the
1964 // server as a serialized ECHConfigList.
1965 Array<uint8_t> ech_retry_configs;
1966
1967 // ech_client_hello_buf, on the server, contains the bytes of the
1968 // reconstructed ClientHelloInner message.
1969 Array<uint8_t> ech_client_hello_buf;
1970
1971 // key_share_bytes is the key_share extension that the client should send.
1972 Array<uint8_t> key_share_bytes;
1973
1974 // key_share_ciphertext, for servers, is encapsulated shared secret to be sent
1975 // to the client in the TLS 1.3 key_share extension.
1976 Array<uint8_t> key_share_ciphertext;
1977
1978 // peer_sigalgs are the signature algorithms that the peer supports. These are
1979 // taken from the contents of the signature algorithms extension for a server
1980 // or from the CertificateRequest for a client.
1981 Array<uint16_t> peer_sigalgs;
1982
1983 // peer_supported_group_list contains the supported group IDs advertised by
1984 // the peer. This is only set on the server's end. The server does not
1985 // advertise this extension to the client.
1986 Array<uint16_t> peer_supported_group_list;
1987
1988 // peer_delegated_credential_sigalgs are the signature algorithms the peer
1989 // supports with delegated credentials, or empty if the peer does not support
1990 // delegated credentials.
1991 Array<uint16_t> peer_delegated_credential_sigalgs;
1992
1993 // peer_key is the peer's ECDH key for a TLS 1.2 client.
1994 Array<uint8_t> peer_key;
1995
1996 // extension_permutation is the permutation to apply to ClientHello
1997 // extensions. It maps indices into the |kExtensions| table into other
1998 // indices.
1999 Array<uint8_t> extension_permutation;
2000
2001 // cert_compression_alg_id, for a server, contains the negotiated certificate
2002 // compression algorithm for this client. It is only valid if
2003 // |cert_compression_negotiated| is true.
2004 uint16_t cert_compression_alg_id;
2005
2006 // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is
2007 // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is
2008 // initialized if |selected_ech_config| is not nullptr.
2009 ScopedEVP_HPKE_CTX ech_hpke_ctx;
2010
2011 // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
2012 // parameters. It has client and server randoms prepended for signing
2013 // convenience.
2014 Array<uint8_t> server_params;
2015
2016 // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
2017 // server when using a TLS 1.2 PSK key exchange.
2018 UniquePtr<char> peer_psk_identity_hint;
2019
2020 // ca_names, on the client, contains the list of CAs received in a
2021 // CertificateRequest message.
2022 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
2023
2024 // cached_x509_ca_names contains a cache of parsed versions of the elements of
2025 // |ca_names|. This pointer is left non-owning so only
2026 // |ssl_crypto_x509_method| needs to link against crypto/x509.
2027 STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
2028
2029 // certificate_types, on the client, contains the set of certificate types
2030 // received in a CertificateRequest message.
2031 Array<uint8_t> certificate_types;
2032
2033 // credential is the credential we are using for the handshake.
2034 UniquePtr<SSL_CREDENTIAL> credential;
2035
2036 // peer_pubkey is the public key parsed from the peer's leaf certificate.
2037 UniquePtr<EVP_PKEY> peer_pubkey;
2038
2039 // new_session is the new mutable session being established by the current
2040 // handshake. It should not be cached.
2041 UniquePtr<SSL_SESSION> new_session;
2042
2043 // early_session is the session corresponding to the current 0-RTT state on
2044 // the client if |in_early_data| is true.
2045 UniquePtr<SSL_SESSION> early_session;
2046
2047 // ssl_ech_keys, for servers, is the set of ECH keys to use with this
2048 // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as
2049 // |SSL_CTX| rotates keys.
2050 UniquePtr<SSL_ECH_KEYS> ech_keys;
2051
2052 // selected_ech_config, for clients, is the ECHConfig the client uses to offer
2053 // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx|
2054 // will be initialized.
2055 UniquePtr<ECHConfig> selected_ech_config;
2056
2057 // new_cipher is the cipher being negotiated in this handshake.
2058 const SSL_CIPHER *new_cipher = nullptr;
2059
2060 // key_block is the record-layer key block for TLS 1.2 and earlier.
2061 Array<uint8_t> key_block;
2062
2063 // hints contains the handshake hints for this connection. If
2064 // |hints_requested| is true, this field is non-null and contains the pending
2065 // hints to filled as the predicted handshake progresses. Otherwise, this
2066 // field, if non-null, contains hints configured by the caller and will
2067 // influence the handshake on match.
2068 UniquePtr<SSL_HANDSHAKE_HINTS> hints;
2069
2070 // ech_is_inner, on the server, indicates whether the ClientHello contained an
2071 // inner ECH extension.
2072 bool ech_is_inner : 1;
2073
2074 // ech_authenticated_reject, on the client, indicates whether an ECH rejection
2075 // handshake has been authenticated.
2076 bool ech_authenticated_reject : 1;
2077
2078 // scts_requested is true if the SCT extension is in the ClientHello.
2079 bool scts_requested : 1;
2080
2081 // handshake_finalized is true once the handshake has completed, at which
2082 // point accessors should use the established state.
2083 bool handshake_finalized : 1;
2084
2085 // accept_psk_mode stores whether the client's PSK mode is compatible with our
2086 // preferences.
2087 bool accept_psk_mode : 1;
2088
2089 // cert_request is true if a client certificate was requested.
2090 bool cert_request : 1;
2091
2092 // certificate_status_expected is true if OCSP stapling was negotiated and the
2093 // server is expected to send a CertificateStatus message. (This is used on
2094 // both the client and server sides.)
2095 bool certificate_status_expected : 1;
2096
2097 // ocsp_stapling_requested is true if a client requested OCSP stapling.
2098 bool ocsp_stapling_requested : 1;
2099
2100 // should_ack_sni is used by a server and indicates that the SNI extension
2101 // should be echoed in the ServerHello.
2102 bool should_ack_sni : 1;
2103
2104 // in_false_start is true if there is a pending client handshake in False
2105 // Start. The client may write data at this point.
2106 bool in_false_start : 1;
2107
2108 // in_early_data is true if there is a pending handshake that has progressed
2109 // enough to send and receive early data.
2110 bool in_early_data : 1;
2111
2112 // early_data_offered is true if the client sent the early_data extension.
2113 bool early_data_offered : 1;
2114
2115 // can_early_read is true if application data may be read at this point in the
2116 // handshake.
2117 bool can_early_read : 1;
2118
2119 // can_early_write is true if application data may be written at this point in
2120 // the handshake.
2121 bool can_early_write : 1;
2122
2123 // next_proto_neg_seen is one of NPN was negotiated.
2124 bool next_proto_neg_seen : 1;
2125
2126 // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
2127 // or received.
2128 bool ticket_expected : 1;
2129
2130 // extended_master_secret is true if the extended master secret extension is
2131 // negotiated in this handshake.
2132 bool extended_master_secret : 1;
2133
2134 // pending_private_key_op is true if there is a pending private key operation
2135 // in progress.
2136 bool pending_private_key_op : 1;
2137
2138 // handback indicates that a server should pause the handshake after
2139 // finishing operations that require private key material, in such a way that
2140 // |SSL_get_error| returns |SSL_ERROR_HANDBACK|. It is set by
2141 // |SSL_apply_handoff|.
2142 bool handback : 1;
2143
2144 // hints_requested indicates the caller has requested handshake hints. Only
2145 // the first round-trip of the handshake will complete, after which the
2146 // |hints| structure can be serialized.
2147 bool hints_requested : 1;
2148
2149 // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
2150 bool cert_compression_negotiated : 1;
2151
2152 // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
2153 // which implemented TLS 1.3 incorrectly.
2154 bool apply_jdk11_workaround : 1;
2155
2156 // can_release_private_key is true if the private key will no longer be used
2157 // in this handshake.
2158 bool can_release_private_key : 1;
2159
2160 // channel_id_negotiated is true if Channel ID should be used in this
2161 // handshake.
2162 bool channel_id_negotiated : 1;
2163
2164 // client_version is the value sent or received in the ClientHello version.
2165 uint16_t client_version = 0;
2166
2167 // early_data_read is the amount of early data that has been read by the
2168 // record layer.
2169 uint16_t early_data_read = 0;
2170
2171 // early_data_written is the amount of early data that has been written by the
2172 // record layer.
2173 uint16_t early_data_written = 0;
2174
2175 // signature_algorithm is the signature algorithm to be used in signing with
2176 // the selected credential, or zero if not applicable or not yet selected.
2177 uint16_t signature_algorithm = 0;
2178
2179 // ech_config_id is the ECH config sent by the client.
2180 uint8_t ech_config_id = 0;
2181
2182 // session_id is the session ID in the ClientHello.
2183 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
2184 uint8_t session_id_len = 0;
2185
2186 // grease_seed is the entropy for GREASE values.
2187 uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
2188 };
2189
2190 // kMaxTickets is the maximum number of tickets to send immediately after the
2191 // handshake. We use a one-byte ticket nonce, and there is no point in sending
2192 // so many tickets.
2193 constexpr size_t kMaxTickets = 16;
2194
2195 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
2196
2197 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
2198 // one. Otherwise, it sends an alert and returns zero.
2199 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
2200
2201 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
2202 // on error. It sets |out_early_return| to one if we've completed the handshake
2203 // early.
2204 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
2205
2206 // The following are implementations of |do_handshake| for the client and
2207 // server.
2208 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
2209 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
2210 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
2211 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
2212
2213 // The following functions return human-readable representations of the TLS
2214 // handshake states for debugging.
2215 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
2216 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
2217 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
2218 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
2219
2220 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The
2221 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
2222 // |SSL_KEY_UPDATE_NOT_REQUESTED|.
2223 bool tls13_add_key_update(SSL *ssl, int update_requested);
2224
2225 // tls13_post_handshake processes a post-handshake message. It returns true on
2226 // success and false on failure.
2227 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
2228
2229 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2230 bool allow_anonymous);
2231 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2232
2233 // tls13_process_finished processes |msg| as a Finished message from the
2234 // peer. If |use_saved_value| is true, the verify_data is compared against
2235 // |hs->expected_client_finished| rather than computed fresh.
2236 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2237 bool use_saved_value);
2238
2239 bool tls13_add_certificate(SSL_HANDSHAKE *hs);
2240
2241 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
2242 // handshake. If it returns |ssl_private_key_retry|, it should be called again
2243 // to retry when the signing operation is completed.
2244 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
2245
2246 bool tls13_add_finished(SSL_HANDSHAKE *hs);
2247 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
2248 bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl,
2249 CBS *body);
2250
2251 // ssl_setup_extension_permutation computes a ClientHello extension permutation
2252 // for |hs|, if applicable. It returns true on success and false on error.
2253 bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs);
2254
2255 // ssl_setup_key_shares computes client key shares and saves them in |hs|. It
2256 // returns true on success and false on failure. If |override_group_id| is zero,
2257 // it offers the default groups, including GREASE. If it is non-zero, it offers
2258 // a single key share of the specified group.
2259 bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id);
2260
2261 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
2262 Array<uint8_t> *out_secret,
2263 uint8_t *out_alert, CBS *contents);
2264 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
2265 Span<const uint8_t> *out_peer_key,
2266 uint8_t *out_alert,
2267 const SSL_CLIENT_HELLO *client_hello);
2268 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2269
2270 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
2271 uint8_t *out_alert,
2272 CBS *contents);
2273 bool ssl_ext_pre_shared_key_parse_clienthello(
2274 SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
2275 uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert,
2276 const SSL_CLIENT_HELLO *client_hello, CBS *contents);
2277 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2278
2279 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
2280 // returns whether it's valid.
2281 bool ssl_is_sct_list_valid(const CBS *contents);
2282
2283 // ssl_write_client_hello_without_extensions writes a ClientHello to |out|,
2284 // up to the extensions field. |type| determines the type of ClientHello to
2285 // write. If |omit_session_id| is true, the session ID is empty.
2286 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
2287 CBB *cbb,
2288 ssl_client_hello_type_t type,
2289 bool empty_session_id);
2290
2291 // ssl_add_client_hello constructs a ClientHello and adds it to the outgoing
2292 // flight. It returns true on success and false on error.
2293 bool ssl_add_client_hello(SSL_HANDSHAKE *hs);
2294
2295 struct ParsedServerHello {
2296 CBS raw;
2297 uint16_t legacy_version = 0;
2298 CBS random;
2299 CBS session_id;
2300 uint16_t cipher_suite = 0;
2301 uint8_t compression_method = 0;
2302 CBS extensions;
2303 };
2304
2305 // ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes
2306 // the result to |*out| and returns true. Otherwise, it returns false and sets
2307 // |*out_alert| to an alert to send to the peer.
2308 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
2309 const SSLMessage &msg);
2310
2311 enum ssl_cert_verify_context_t {
2312 ssl_cert_verify_server,
2313 ssl_cert_verify_client,
2314 ssl_cert_verify_channel_id,
2315 };
2316
2317 // tls13_get_cert_verify_signature_input generates the message to be signed for
2318 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
2319 // type of signature. It sets |*out| to a newly allocated buffer containing the
2320 // result. This function returns true on success and false on failure.
2321 bool tls13_get_cert_verify_signature_input(
2322 SSL_HANDSHAKE *hs, Array<uint8_t> *out,
2323 enum ssl_cert_verify_context_t cert_verify_context);
2324
2325 // ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list.
2326 bool ssl_is_valid_alpn_list(Span<const uint8_t> in);
2327
2328 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
2329 // selection for |hs->ssl|'s client preferences.
2330 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
2331 Span<const uint8_t> protocol);
2332
2333 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
2334 // true on successful negotiation or if nothing was negotiated. It returns false
2335 // and sets |*out_alert| to an alert on error.
2336 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2337 const SSL_CLIENT_HELLO *client_hello);
2338
2339 // ssl_get_local_application_settings looks up the configured ALPS value for
2340 // |protocol|. If found, it sets |*out_settings| to the value and returns true.
2341 // Otherwise, it returns false.
2342 bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs,
2343 Span<const uint8_t> *out_settings,
2344 Span<const uint8_t> protocol);
2345
2346 // ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns
2347 // true on successful negotiation or if nothing was negotiated. It returns false
2348 // and sets |*out_alert| to an alert on error.
2349 bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2350 const SSL_CLIENT_HELLO *client_hello);
2351
2352 struct SSLExtension {
2353 SSLExtension(uint16_t type_arg, bool allowed_arg = true)
2354 : type(type_arg), allowed(allowed_arg), present(false) {
2355 CBS_init(&data, nullptr, 0);
2356 }
2357
2358 uint16_t type;
2359 bool allowed;
2360 bool present;
2361 CBS data;
2362 };
2363
2364 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
2365 // it. It writes the parsed extensions to pointers in |extensions|. On success,
2366 // it fills in the |present| and |data| fields and returns true. Otherwise, it
2367 // sets |*out_alert| to an alert to send and returns false. Unknown extensions
2368 // are rejected unless |ignore_unknown| is true.
2369 bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
2370 std::initializer_list<SSLExtension *> extensions,
2371 bool ignore_unknown);
2372
2373 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
2374 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
2375 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
2376 // session.
2377 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs,
2378 bool send_alert);
2379
2380 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
2381
2382 // ssl_send_finished adds a Finished message to the current flight of messages.
2383 // It returns true on success and false on error.
2384 bool ssl_send_finished(SSL_HANDSHAKE *hs);
2385
2386 // ssl_send_tls12_certificate adds a TLS 1.2 Certificate message to the current
2387 // flight of messages. It returns true on success and false on error.
2388 bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs);
2389
2390 // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current
2391 // handshake. Note, in TLS 1.2 resumptions, this session is immutable.
2392 const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs);
2393
2394 // ssl_done_writing_client_hello is called after the last ClientHello is written
2395 // by |hs|. It releases some memory that is no longer needed.
2396 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs);
2397
2398
2399 // SSLKEYLOGFILE functions.
2400
2401 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
2402 // |ssl|. It returns true on success and false on failure.
2403 bool ssl_log_secret(const SSL *ssl, const char *label,
2404 Span<const uint8_t> secret);
2405
2406
2407 // ClientHello functions.
2408
2409 // ssl_client_hello_init parses |body| as a ClientHello message, excluding the
2410 // message header, and writes the result to |*out|. It returns true on success
2411 // and false on error. This function is exported for testing.
2412 OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
2413 Span<const uint8_t> body);
2414
2415 bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs,
2416 SSL_CLIENT_HELLO *out);
2417
2418 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
2419 CBS *out, uint16_t extension_type);
2420
2421 bool ssl_client_cipher_list_contains_cipher(
2422 const SSL_CLIENT_HELLO *client_hello, uint16_t id);
2423
2424
2425 // GREASE.
2426
2427 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
2428 // connection, the values for each index will be deterministic. This allows the
2429 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
2430 // advertised in both supported_groups and key_shares.
2431 uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs,
2432 enum ssl_grease_index_t index);
2433
2434
2435 // Signature algorithms.
2436
2437 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
2438 // algorithms and saves them on |hs|. It returns true on success and false on
2439 // error.
2440 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
2441
2442 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
2443 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
2444 // success and false if |pkey| may not be used at those versions.
2445 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
2446
2447 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
2448 // with |cred| based on the peer's preferences and the algorithms supported. It
2449 // returns true on success and false on error.
2450 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs,
2451 const SSL_CREDENTIAL *cred, uint16_t *out);
2452
2453 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
2454 // peer signature to |out|. It returns true on success and false on error.
2455 bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out);
2456
2457 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
2458 // signature. It returns true on success and false on error, setting
2459 // |*out_alert| to an alert to send.
2460 bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert,
2461 uint16_t sigalg);
2462
2463
2464 // Underdocumented functions.
2465 //
2466 // Functions below here haven't been touched up and may be underdocumented.
2467
2468 #define TLSEXT_CHANNEL_ID_SIZE 128
2469
2470 // From RFC 4492, used in encoding the curve type in ECParameters
2471 #define NAMED_CURVE_TYPE 3
2472
2473 struct CERT {
2474 static constexpr bool kAllowUniquePtr = true;
2475
2476 explicit CERT(const SSL_X509_METHOD *x509_method);
2477 ~CERT();
2478
2479 bool is_valid() const { return default_credential != nullptr; }
2480
2481 // credentials is the list of credentials to select between. Elements of this
2482 // array immutable.
2483 GrowableArray<UniquePtr<SSL_CREDENTIAL>> credentials;
2484
2485 // default_credential is the credential configured by the legacy,
2486 // non-credential-based APIs. If IsComplete() returns true, it is appended to
2487 // the list of credentials.
2488 UniquePtr<SSL_CREDENTIAL> default_credential;
2489
2490 // x509_method contains pointers to functions that might deal with |X509|
2491 // compatibility, or might be a no-op, depending on the application.
2492 const SSL_X509_METHOD *x509_method = nullptr;
2493
2494 // x509_chain may contain a parsed copy of |chain[1..]| from the default
2495 // credential. This is only used as a cache in order to implement “get0”
2496 // functions that return a non-owning pointer to the certificate chain.
2497 STACK_OF(X509) *x509_chain = nullptr;
2498
2499 // x509_leaf may contain a parsed copy of the first element of |chain| from
2500 // the default credential. This is only used as a cache in order to implement
2501 // “get0” functions that return a non-owning pointer to the certificate chain.
2502 X509 *x509_leaf = nullptr;
2503
2504 // x509_stash contains the last |X509| object append to the default
2505 // credential's chain. This is a workaround for some third-party code that
2506 // continue to use an |X509| object even after passing ownership with an
2507 // “add0” function.
2508 X509 *x509_stash = nullptr;
2509
2510 // Certificate setup callback: if set is called whenever a
2511 // certificate may be required (client or server). the callback
2512 // can then examine any appropriate parameters and setup any
2513 // certificates required. This allows advanced applications
2514 // to select certificates on the fly: for example based on
2515 // supported signature algorithms or curves.
2516 int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
2517 void *cert_cb_arg = nullptr;
2518
2519 // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
2520 // store is used instead.
2521 X509_STORE *verify_store = nullptr;
2522
2523 // sid_ctx partitions the session space within a shared session cache or
2524 // ticket key. Only sessions with a matching value will be accepted.
2525 uint8_t sid_ctx_length = 0;
2526 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
2527 };
2528
2529 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
2530 struct SSL_PROTOCOL_METHOD {
2531 bool is_dtls;
2532 bool (*ssl_new)(SSL *ssl);
2533 void (*ssl_free)(SSL *ssl);
2534 // get_message sets |*out| to the current handshake message and returns true
2535 // if one has been received. It returns false if more input is needed.
2536 bool (*get_message)(const SSL *ssl, SSLMessage *out);
2537 // next_message is called to release the current handshake message.
2538 void (*next_message)(SSL *ssl);
2539 // has_unprocessed_handshake_data returns whether there is buffered
2540 // handshake data that has not been consumed by |get_message|.
2541 bool (*has_unprocessed_handshake_data)(const SSL *ssl);
2542 // Use the |ssl_open_handshake| wrapper.
2543 ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
2544 uint8_t *out_alert, Span<uint8_t> in);
2545 // Use the |ssl_open_change_cipher_spec| wrapper.
2546 ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
2547 uint8_t *out_alert,
2548 Span<uint8_t> in);
2549 // Use the |ssl_open_app_data| wrapper.
2550 ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
2551 size_t *out_consumed, uint8_t *out_alert,
2552 Span<uint8_t> in);
2553 // write_app_data encrypts and writes |in| as application data. On success, it
2554 // returns one and sets |*out_bytes_written| to the number of bytes of |in|
2555 // written. Otherwise, it returns <= 0 and sets |*out_needs_handshake| to
2556 // whether the operation failed because the caller needs to drive the
2557 // handshake.
2558 int (*write_app_data)(SSL *ssl, bool *out_needs_handshake,
2559 size_t *out_bytes_written, Span<const uint8_t> in);
2560 int (*dispatch_alert)(SSL *ssl);
2561 // init_message begins a new handshake message of type |type|. |cbb| is the
2562 // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
2563 // the caller should write to. It returns true on success and false on error.
2564 bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2565 // finish_message finishes a handshake message. It sets |*out_msg| to the
2566 // serialized message. It returns true on success and false on error.
2567 bool (*finish_message)(const SSL *ssl, CBB *cbb,
2568 bssl::Array<uint8_t> *out_msg);
2569 // add_message adds a handshake message to the pending flight. It returns
2570 // true on success and false on error.
2571 bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
2572 // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
2573 // flight. It returns true on success and false on error.
2574 bool (*add_change_cipher_spec)(SSL *ssl);
2575 // flush_flight flushes the pending flight to the transport. It returns one on
2576 // success and <= 0 on error.
2577 int (*flush_flight)(SSL *ssl);
2578 // on_handshake_complete is called when the handshake is complete.
2579 void (*on_handshake_complete)(SSL *ssl);
2580 // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and
2581 // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2582 // is the original secret. This function returns true on success and false on
2583 // error.
2584 bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level,
2585 UniquePtr<SSLAEADContext> aead_ctx,
2586 Span<const uint8_t> secret_for_quic);
2587 // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and
2588 // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2589 // is the original secret. This function returns true on success and false on
2590 // error.
2591 bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level,
2592 UniquePtr<SSLAEADContext> aead_ctx,
2593 Span<const uint8_t> secret_for_quic);
2594 };
2595
2596 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
2597
2598 // ssl_open_handshake processes a record from |in| for reading a handshake
2599 // message.
2600 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2601 uint8_t *out_alert, Span<uint8_t> in);
2602
2603 // ssl_open_change_cipher_spec processes a record from |in| for reading a
2604 // ChangeCipherSpec.
2605 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2606 uint8_t *out_alert,
2607 Span<uint8_t> in);
2608
2609 // ssl_open_app_data processes a record from |in| for reading application data.
2610 // On success, it returns |ssl_open_record_success| and sets |*out| to the
2611 // input. If it encounters a post-handshake message, it returns
2612 // |ssl_open_record_discard|. The caller should then retry, after processing any
2613 // messages received with |get_message|.
2614 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2615 size_t *out_consumed, uint8_t *out_alert,
2616 Span<uint8_t> in);
2617
2618 struct SSL_X509_METHOD {
2619 // check_client_CA_list returns one if |names| is a good list of X.509
2620 // distinguished names and zero otherwise. This is used to ensure that we can
2621 // reject unparsable values at handshake time when using crypto/x509.
2622 bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2623
2624 // cert_clear frees and NULLs all X509 certificate-related state.
2625 void (*cert_clear)(CERT *cert);
2626 // cert_free frees all X509-related state.
2627 void (*cert_free)(CERT *cert);
2628 // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2629 // from |cert|.
2630 // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2631 void (*cert_dup)(CERT *new_cert, const CERT *cert);
2632 void (*cert_flush_cached_chain)(CERT *cert);
2633 // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2634 // from |cert|.
2635 void (*cert_flush_cached_leaf)(CERT *cert);
2636
2637 // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2638 // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2639 // true on success or false on error.
2640 bool (*session_cache_objects)(SSL_SESSION *session);
2641 // session_dup duplicates any needed fields from |session| to |new_session|.
2642 // It returns true on success or false on error.
2643 bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2644 // session_clear frees any X509-related state from |session|.
2645 void (*session_clear)(SSL_SESSION *session);
2646 // session_verify_cert_chain verifies the certificate chain in |session|,
2647 // sets |session->verify_result| and returns true on success or false on
2648 // error.
2649 bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2650 uint8_t *out_alert);
2651
2652 // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2653 void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2654 // ssl_new does any necessary initialisation of |hs|. It returns true on
2655 // success or false on error.
2656 bool (*ssl_new)(SSL_HANDSHAKE *hs);
2657 // ssl_free frees anything created by |ssl_new|.
2658 void (*ssl_config_free)(SSL_CONFIG *cfg);
2659 // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2660 void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2661 // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2662 // necessary. On success, it updates |ssl|'s certificate configuration as
2663 // needed and returns true. Otherwise, it returns false.
2664 bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2665 // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2666 // success or false on error.
2667 bool (*ssl_ctx_new)(SSL_CTX *ctx);
2668 // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2669 void (*ssl_ctx_free)(SSL_CTX *ctx);
2670 // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2671 void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2672 };
2673
2674 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2675 // crypto/x509.
2676 extern const SSL_X509_METHOD ssl_crypto_x509_method;
2677
2678 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2679 // crypto/x509.
2680 extern const SSL_X509_METHOD ssl_noop_x509_method;
2681
2682 struct TicketKey {
2683 static constexpr bool kAllowUniquePtr = true;
2684
2685 uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2686 uint8_t hmac_key[16] = {0};
2687 uint8_t aes_key[16] = {0};
2688 // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2689 // current key should be superseded by a new key, or the time when a previous
2690 // key should be dropped. If zero, then the key should not be automatically
2691 // rotated.
2692 uint64_t next_rotation_tv_sec = 0;
2693 };
2694
2695 struct CertCompressionAlg {
2696 static constexpr bool kAllowUniquePtr = true;
2697
2698 ssl_cert_compression_func_t compress = nullptr;
2699 ssl_cert_decompression_func_t decompress = nullptr;
2700 uint16_t alg_id = 0;
2701 };
2702
2703 BSSL_NAMESPACE_END
2704
2705 DEFINE_LHASH_OF(SSL_SESSION)
2706
2707 BSSL_NAMESPACE_BEGIN
2708
2709 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
2710 // whether it is alive or has been shutdown via close_notify or fatal alert.
2711 enum ssl_shutdown_t {
2712 ssl_shutdown_none = 0,
2713 ssl_shutdown_close_notify = 1,
2714 ssl_shutdown_error = 2,
2715 };
2716
2717 enum ssl_ech_status_t {
2718 // ssl_ech_none indicates ECH was not offered, or we have not gotten far
2719 // enough in the handshake to determine the status.
2720 ssl_ech_none,
2721 // ssl_ech_accepted indicates the server accepted ECH.
2722 ssl_ech_accepted,
2723 // ssl_ech_rejected indicates the server was offered ECH but rejected it.
2724 ssl_ech_rejected,
2725 };
2726
2727 struct SSL3_STATE {
2728 static constexpr bool kAllowUniquePtr = true;
2729
2730 SSL3_STATE();
2731 ~SSL3_STATE();
2732
2733 uint64_t read_sequence = 0;
2734 uint64_t write_sequence = 0;
2735
2736 uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2737 uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2738
2739 // read_buffer holds data from the transport to be processed.
2740 SSLBuffer read_buffer;
2741 // write_buffer holds data to be written to the transport.
2742 SSLBuffer write_buffer;
2743
2744 // pending_app_data is the unconsumed application data. It points into
2745 // |read_buffer|.
2746 Span<uint8_t> pending_app_data;
2747
2748 // unreported_bytes_written is the number of bytes successfully written to the
2749 // transport, but not yet reported to the caller. The next |SSL_write| will
2750 // skip this many bytes from the input. This is used if
2751 // |SSL_MODE_ENABLE_PARTIAL_WRITE| is disabled, in which case |SSL_write| only
2752 // reports bytes written when the full caller input is written.
2753 size_t unreported_bytes_written = 0;
2754
2755 // pending_write, if |has_pending_write| is true, is the caller-supplied data
2756 // corresponding to the current pending write. This is used to check the
2757 // caller retried with a compatible buffer.
2758 Span<const uint8_t> pending_write;
2759
2760 // pending_write_type, if |has_pending_write| is true, is the record type
2761 // for the current pending write.
2762 //
2763 // TODO(davidben): Remove this when alerts are moved out of this write path.
2764 uint8_t pending_write_type = 0;
2765
2766 // read_shutdown is the shutdown state for the read half of the connection.
2767 enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2768
2769 // write_shutdown is the shutdown state for the write half of the connection.
2770 enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2771
2772 // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2773 // the receive half of the connection.
2774 UniquePtr<ERR_SAVE_STATE> read_error;
2775
2776 int total_renegotiations = 0;
2777
2778 // This holds a variable that indicates what we were doing when a 0 or -1 is
2779 // returned. This is needed for non-blocking IO so we know what request
2780 // needs re-doing when in SSL_accept or SSL_connect
2781 int rwstate = SSL_ERROR_NONE;
2782
2783 enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2784 enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2785
2786 // early_data_skipped is the amount of early data that has been skipped by the
2787 // record layer.
2788 uint16_t early_data_skipped = 0;
2789
2790 // empty_record_count is the number of consecutive empty records received.
2791 uint8_t empty_record_count = 0;
2792
2793 // warning_alert_count is the number of consecutive warning alerts
2794 // received.
2795 uint8_t warning_alert_count = 0;
2796
2797 // key_update_count is the number of consecutive KeyUpdates received.
2798 uint8_t key_update_count = 0;
2799
2800 // ech_status indicates whether ECH was accepted by the server.
2801 ssl_ech_status_t ech_status = ssl_ech_none;
2802
2803 // skip_early_data instructs the record layer to skip unexpected early data
2804 // messages when 0RTT is rejected.
2805 bool skip_early_data : 1;
2806
2807 // have_version is true if the connection's final version is known. Otherwise
2808 // the version has not been negotiated yet.
2809 bool have_version : 1;
2810
2811 // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2812 // and future messages should use the record layer.
2813 bool v2_hello_done : 1;
2814
2815 // is_v2_hello is true if the current handshake message was derived from a
2816 // V2ClientHello rather than received from the peer directly.
2817 bool is_v2_hello : 1;
2818
2819 // has_message is true if the current handshake message has been returned
2820 // at least once by |get_message| and false otherwise.
2821 bool has_message : 1;
2822
2823 // initial_handshake_complete is true if the initial handshake has
2824 // completed.
2825 bool initial_handshake_complete : 1;
2826
2827 // session_reused indicates whether a session was resumed.
2828 bool session_reused : 1;
2829
2830 bool send_connection_binding : 1;
2831
2832 // channel_id_valid is true if, on the server, the client has negotiated a
2833 // Channel ID and the |channel_id| field is filled in.
2834 bool channel_id_valid : 1;
2835
2836 // key_update_pending is true if we have a KeyUpdate acknowledgment
2837 // outstanding.
2838 bool key_update_pending : 1;
2839
2840 // early_data_accepted is true if early data was accepted by the server.
2841 bool early_data_accepted : 1;
2842
2843 // alert_dispatch is true there is an alert in |send_alert| to be sent.
2844 bool alert_dispatch : 1;
2845
2846 // renegotiate_pending is whether the read half of the channel is blocked on a
2847 // HelloRequest.
2848 bool renegotiate_pending : 1;
2849
2850 // used_hello_retry_request is whether the handshake used a TLS 1.3
2851 // HelloRetryRequest message.
2852 bool used_hello_retry_request : 1;
2853
2854 // was_key_usage_invalid is whether the handshake succeeded despite using a
2855 // TLS mode which was incompatible with the leaf certificate's keyUsage
2856 // extension.
2857 bool was_key_usage_invalid : 1;
2858
2859 // hs_buf is the buffer of handshake data to process.
2860 UniquePtr<BUF_MEM> hs_buf;
2861
2862 // pending_hs_data contains the pending handshake data that has not yet
2863 // been encrypted to |pending_flight|. This allows packing the handshake into
2864 // fewer records.
2865 UniquePtr<BUF_MEM> pending_hs_data;
2866
2867 // pending_flight is the pending outgoing flight. This is used to flush each
2868 // handshake flight in a single write. |write_buffer| must be written out
2869 // before this data.
2870 UniquePtr<BUF_MEM> pending_flight;
2871
2872 // pending_flight_offset is the number of bytes of |pending_flight| which have
2873 // been successfully written.
2874 uint32_t pending_flight_offset = 0;
2875
2876 // ticket_age_skew is the difference, in seconds, between the client-sent
2877 // ticket age and the server-computed value in TLS 1.3 server connections
2878 // which resumed a session.
2879 int32_t ticket_age_skew = 0;
2880
2881 // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2882 enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2883
2884 // aead_read_ctx is the current read cipher state.
2885 UniquePtr<SSLAEADContext> aead_read_ctx;
2886
2887 // aead_write_ctx is the current write cipher state.
2888 UniquePtr<SSLAEADContext> aead_write_ctx;
2889
2890 // hs is the handshake state for the current handshake or NULL if there isn't
2891 // one.
2892 UniquePtr<SSL_HANDSHAKE> hs;
2893
2894 uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2895 uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2896 uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0};
2897 uint8_t write_traffic_secret_len = 0;
2898 uint8_t read_traffic_secret_len = 0;
2899 uint8_t exporter_secret_len = 0;
2900
2901 // Connection binding to prevent renegotiation attacks
2902 uint8_t previous_client_finished[12] = {0};
2903 uint8_t previous_client_finished_len = 0;
2904 uint8_t previous_server_finished_len = 0;
2905 uint8_t previous_server_finished[12] = {0};
2906
2907 uint8_t send_alert[2] = {0};
2908
2909 // established_session is the session established by the connection. This
2910 // session is only filled upon the completion of the handshake and is
2911 // immutable.
2912 UniquePtr<SSL_SESSION> established_session;
2913
2914 // Next protocol negotiation. For the client, this is the protocol that we
2915 // sent in NextProtocol and is set when handling ServerHello extensions.
2916 //
2917 // For a server, this is the client's selected_protocol from NextProtocol and
2918 // is set when handling the NextProtocol message, before the Finished
2919 // message.
2920 Array<uint8_t> next_proto_negotiated;
2921
2922 // ALPN information
2923 // (we are in the process of transitioning from NPN to ALPN.)
2924
2925 // In a server these point to the selected ALPN protocol after the
2926 // ClientHello has been processed. In a client these contain the protocol
2927 // that the server selected once the ServerHello has been processed.
2928 Array<uint8_t> alpn_selected;
2929
2930 // hostname, on the server, is the value of the SNI extension.
2931 UniquePtr<char> hostname;
2932
2933 // For a server:
2934 // If |channel_id_valid| is true, then this contains the
2935 // verified Channel ID from the client: a P256 point, (x,y), where
2936 // each are big-endian values.
2937 uint8_t channel_id[64] = {0};
2938
2939 // Contains the QUIC transport params received by the peer.
2940 Array<uint8_t> peer_quic_transport_params;
2941
2942 // srtp_profile is the selected SRTP protection profile for
2943 // DTLS-SRTP.
2944 const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2945 };
2946
2947 // lengths of messages
2948 #define DTLS1_RT_HEADER_LENGTH 13
2949
2950 #define DTLS1_HM_HEADER_LENGTH 12
2951
2952 #define DTLS1_CCS_HEADER_LENGTH 1
2953
2954 #define DTLS1_AL_HEADER_LENGTH 2
2955
2956 struct hm_header_st {
2957 uint8_t type;
2958 uint32_t msg_len;
2959 uint16_t seq;
2960 uint32_t frag_off;
2961 uint32_t frag_len;
2962 };
2963
2964 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2965 struct hm_fragment {
2966 static constexpr bool kAllowUniquePtr = true;
2967
2968 hm_fragment() {}
2969 hm_fragment(const hm_fragment &) = delete;
2970 hm_fragment &operator=(const hm_fragment &) = delete;
2971
2972 ~hm_fragment();
2973
2974 // type is the type of the message.
2975 uint8_t type = 0;
2976 // seq is the sequence number of this message.
2977 uint16_t seq = 0;
2978 // msg_len is the length of the message body.
2979 uint32_t msg_len = 0;
2980 // data is a pointer to the message, including message header. It has length
2981 // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2982 uint8_t *data = nullptr;
2983 // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2984 // the message have been received. It is NULL if the message is complete.
2985 uint8_t *reassembly = nullptr;
2986 };
2987
2988 struct OPENSSL_timeval {
2989 uint64_t tv_sec;
2990 uint32_t tv_usec;
2991 };
2992
2993 struct DTLS1_STATE {
2994 static constexpr bool kAllowUniquePtr = true;
2995
2996 DTLS1_STATE();
2997 ~DTLS1_STATE();
2998
2999 // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
3000 // the peer in this epoch.
3001 bool has_change_cipher_spec : 1;
3002
3003 // outgoing_messages_complete is true if |outgoing_messages| has been
3004 // completed by an attempt to flush it. Future calls to |add_message| and
3005 // |add_change_cipher_spec| will start a new flight.
3006 bool outgoing_messages_complete : 1;
3007
3008 // flight_has_reply is true if the current outgoing flight is complete and has
3009 // processed at least one message. This is used to detect whether we or the
3010 // peer sent the final flight.
3011 bool flight_has_reply : 1;
3012
3013 // The current data and handshake epoch. This is initially undefined, and
3014 // starts at zero once the initial handshake is completed.
3015 uint16_t r_epoch = 0;
3016 uint16_t w_epoch = 0;
3017
3018 // records being received in the current epoch
3019 DTLS1_BITMAP bitmap;
3020
3021 uint16_t handshake_write_seq = 0;
3022 uint16_t handshake_read_seq = 0;
3023
3024 // save last sequence number for retransmissions
3025 uint64_t last_write_sequence = 0;
3026 UniquePtr<SSLAEADContext> last_aead_write_ctx;
3027
3028 // incoming_messages is a ring buffer of incoming handshake messages that have
3029 // yet to be processed. The front of the ring buffer is message number
3030 // |handshake_read_seq|, at position |handshake_read_seq| %
3031 // |SSL_MAX_HANDSHAKE_FLIGHT|.
3032 UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3033
3034 // outgoing_messages is the queue of outgoing messages from the last handshake
3035 // flight.
3036 DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3037 uint8_t outgoing_messages_len = 0;
3038
3039 // outgoing_written is the number of outgoing messages that have been
3040 // written.
3041 uint8_t outgoing_written = 0;
3042 // outgoing_offset is the number of bytes of the next outgoing message have
3043 // been written.
3044 uint32_t outgoing_offset = 0;
3045
3046 unsigned mtu = 0; // max DTLS packet size
3047
3048 // num_timeouts is the number of times the retransmit timer has fired since
3049 // the last time it was reset.
3050 unsigned num_timeouts = 0;
3051
3052 // Indicates when the last handshake msg or heartbeat sent will
3053 // timeout.
3054 struct OPENSSL_timeval next_timeout = {0, 0};
3055
3056 // timeout_duration_ms is the timeout duration in milliseconds.
3057 unsigned timeout_duration_ms = 0;
3058 };
3059
3060 // An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS.
3061 struct ALPSConfig {
3062 Array<uint8_t> protocol;
3063 Array<uint8_t> settings;
3064 };
3065
3066 // SSL_CONFIG contains configuration bits that can be shed after the handshake
3067 // completes. Objects of this type are not shared; they are unique to a
3068 // particular |SSL|.
3069 //
3070 // See SSL_shed_handshake_config() for more about the conditions under which
3071 // configuration can be shed.
3072 struct SSL_CONFIG {
3073 static constexpr bool kAllowUniquePtr = true;
3074
3075 explicit SSL_CONFIG(SSL *ssl_arg);
3076 ~SSL_CONFIG();
3077
3078 // ssl is a non-owning pointer to the parent |SSL| object.
3079 SSL *const ssl = nullptr;
3080
3081 // conf_max_version is the maximum acceptable version configured by
3082 // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
3083 // and is further constrained by |SSL_OP_NO_*|.
3084 uint16_t conf_max_version = 0;
3085
3086 // conf_min_version is the minimum acceptable version configured by
3087 // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
3088 // and is further constrained by |SSL_OP_NO_*|.
3089 uint16_t conf_min_version = 0;
3090
3091 X509_VERIFY_PARAM *param = nullptr;
3092
3093 // crypto
3094 UniquePtr<SSLCipherPreferenceList> cipher_list;
3095
3096 // This is used to hold the local certificate used (i.e. the server
3097 // certificate for a server or the client certificate for a client).
3098 UniquePtr<CERT> cert;
3099
3100 int (*verify_callback)(int ok,
3101 X509_STORE_CTX *ctx) =
3102 nullptr; // fail if callback returns 0
3103
3104 enum ssl_verify_result_t (*custom_verify_callback)(
3105 SSL *ssl, uint8_t *out_alert) = nullptr;
3106 // Server-only: psk_identity_hint is the identity hint to send in
3107 // PSK-based key exchanges.
3108 UniquePtr<char> psk_identity_hint;
3109
3110 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3111 unsigned max_identity_len, uint8_t *psk,
3112 unsigned max_psk_len) = nullptr;
3113 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3114 unsigned max_psk_len) = nullptr;
3115
3116 // for server side, keep the list of CA_dn we can use
3117 UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3118
3119 // cached_x509_client_CA is a cache of parsed versions of the elements of
3120 // |client_CA|.
3121 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3122
3123 Array<uint16_t> supported_group_list; // our list
3124
3125 // channel_id_private is the client's Channel ID private key, or null if
3126 // Channel ID should not be offered on this connection.
3127 UniquePtr<EVP_PKEY> channel_id_private;
3128
3129 // For a client, this contains the list of supported protocols in wire
3130 // format.
3131 Array<uint8_t> alpn_client_proto_list;
3132
3133 // alps_configs contains the list of supported protocols to use with ALPS,
3134 // along with their corresponding ALPS values.
3135 GrowableArray<ALPSConfig> alps_configs;
3136
3137 // Contains the QUIC transport params that this endpoint will send.
3138 Array<uint8_t> quic_transport_params;
3139
3140 // Contains the context used to decide whether to accept early data in QUIC.
3141 Array<uint8_t> quic_early_data_context;
3142
3143 // verify_sigalgs, if not empty, is the set of signature algorithms
3144 // accepted from the peer in decreasing order of preference.
3145 Array<uint16_t> verify_sigalgs;
3146
3147 // srtp_profiles is the list of configured SRTP protection profiles for
3148 // DTLS-SRTP.
3149 UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3150
3151 // client_ech_config_list, if not empty, is a serialized ECHConfigList
3152 // structure for the client to use when negotiating ECH.
3153 Array<uint8_t> client_ech_config_list;
3154
3155 // tls13_cipher_policy limits the set of ciphers that can be selected when
3156 // negotiating a TLS 1.3 connection.
3157 enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3158
3159 // verify_mode is a bitmask of |SSL_VERIFY_*| values.
3160 uint8_t verify_mode = SSL_VERIFY_NONE;
3161
3162 // ech_grease_enabled controls whether ECH GREASE may be sent in the
3163 // ClientHello.
3164 bool ech_grease_enabled : 1;
3165
3166 // Enable signed certificate time stamps. Currently client only.
3167 bool signed_cert_timestamps_enabled : 1;
3168
3169 // ocsp_stapling_enabled is only used by client connections and indicates
3170 // whether OCSP stapling will be requested.
3171 bool ocsp_stapling_enabled : 1;
3172
3173 // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means
3174 // that we'll accept Channel IDs from clients. It is ignored on the client.
3175 bool channel_id_enabled : 1;
3176
3177 // If enforce_rsa_key_usage is true, the handshake will fail if the
3178 // keyUsage extension is present and incompatible with the TLS usage.
3179 // This field is not read until after certificate verification.
3180 bool enforce_rsa_key_usage : 1;
3181
3182 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3183 // hash of the peer's certificate and then discard it to save memory and
3184 // session space. Only effective on the server side.
3185 bool retain_only_sha256_of_client_certs : 1;
3186
3187 // handoff indicates that a server should stop after receiving the
3188 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3189 // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
3190 // element of the same name and may be cleared if the handoff is declined.
3191 bool handoff : 1;
3192
3193 // shed_handshake_config indicates that the handshake config (this object!)
3194 // should be freed after the handshake completes.
3195 bool shed_handshake_config : 1;
3196
3197 // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
3198 // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
3199 bool jdk11_workaround : 1;
3200
3201 // QUIC drafts up to and including 32 used a different TLS extension
3202 // codepoint to convey QUIC's transport parameters.
3203 bool quic_use_legacy_codepoint : 1;
3204
3205 // permute_extensions is whether to permute extensions when sending messages.
3206 bool permute_extensions : 1;
3207
3208 // aes_hw_override if set indicates we should override checking for aes
3209 // hardware support, and use the value in aes_hw_override_value instead.
3210 bool aes_hw_override : 1;
3211
3212 // aes_hw_override_value is used for testing to indicate the support or lack
3213 // of support for AES hw. The value is only considered if |aes_hw_override| is
3214 // true.
3215 bool aes_hw_override_value : 1;
3216
3217 // alps_use_new_codepoint if set indicates we use new ALPS extension codepoint
3218 // to negotiate and convey application settings.
3219 bool alps_use_new_codepoint : 1;
3220
3221 // check_client_certificate_type indicates whether the client, in TLS 1.2 and
3222 // below, will check its certificate against the server's requested
3223 // certificate types.
3224 bool check_client_certificate_type : 1;
3225
3226 // check_ecdsa_curve indicates whether the server, in TLS 1.2 and below, will
3227 // check its certificate against the client's supported ECDSA curves.
3228 bool check_ecdsa_curve : 1;
3229 };
3230
3231 // From RFC 8446, used in determining PSK modes.
3232 #define SSL_PSK_DHE_KE 0x1
3233
3234 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
3235 // data that will be accepted. This value should be slightly below
3236 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
3237 static const size_t kMaxEarlyDataAccepted = 14336;
3238
3239 UniquePtr<CERT> ssl_cert_dup(CERT *cert);
3240 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
3241 bool ssl_is_key_type_supported(int key_type);
3242 // ssl_compare_public_and_private_key returns true if |pubkey| is the public
3243 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful
3244 // message on the error queue.
3245 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
3246 const EVP_PKEY *privkey);
3247 bool ssl_get_new_session(SSL_HANDSHAKE *hs);
3248 bool ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out,
3249 const SSL_SESSION *session);
3250 bool ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
3251
3252 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
3253 // error.
3254 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
3255
3256 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
3257 // keyed on session IDs.
3258 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
3259
3260 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
3261 // the parsed data.
3262 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
3263 CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
3264
3265 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
3266 // session for Session-ID resumption. It returns true on success and false on
3267 // error.
3268 OPENSSL_EXPORT bool ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
3269
3270 // ssl_session_is_context_valid returns whether |session|'s session ID context
3271 // matches the one set on |hs|.
3272 bool ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
3273 const SSL_SESSION *session);
3274
3275 // ssl_session_is_time_valid returns true if |session| is still valid and false
3276 // if it has expired.
3277 bool ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
3278
3279 // ssl_session_is_resumable returns whether |session| is resumable for |hs|.
3280 bool ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
3281 const SSL_SESSION *session);
3282
3283 // ssl_session_protocol_version returns the protocol version associated with
3284 // |session|. Note that despite the name, this is not the same as
3285 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
3286 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
3287
3288 // ssl_session_get_digest returns the digest used in |session|.
3289 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
3290
3291 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
3292
3293 // ssl_get_prev_session looks up the previous session based on |client_hello|.
3294 // On success, it sets |*out_session| to the session or nullptr if none was
3295 // found. If the session could not be looked up synchronously, it returns
3296 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
3297 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
3298 // be called again. Otherwise, it returns |ssl_hs_error|.
3299 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
3300 UniquePtr<SSL_SESSION> *out_session,
3301 bool *out_tickets_supported,
3302 bool *out_renew_ticket,
3303 const SSL_CLIENT_HELLO *client_hello);
3304
3305 // The following flags determine which parts of the session are duplicated.
3306 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
3307 #define SSL_SESSION_INCLUDE_TICKET 0x1
3308 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
3309 #define SSL_SESSION_DUP_ALL \
3310 (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
3311
3312 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
3313 // fields in |session| or nullptr on error. The new session is non-resumable and
3314 // must be explicitly marked resumable once it has been filled in.
3315 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
3316 int dup_flags);
3317
3318 // ssl_session_rebase_time updates |session|'s start time to the current time,
3319 // adjusting the timeout so the expiration time is unchanged.
3320 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
3321
3322 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
3323 // |session|'s timeout to |timeout| (measured from the current time). The
3324 // renewal is clamped to the session's auth_timeout.
3325 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
3326 uint32_t timeout);
3327
3328 void ssl_update_cache(SSL *ssl);
3329
3330 void ssl_send_alert(SSL *ssl, int level, int desc);
3331 int ssl_send_alert_impl(SSL *ssl, int level, int desc);
3332 bool tls_get_message(const SSL *ssl, SSLMessage *out);
3333 ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed,
3334 uint8_t *out_alert, Span<uint8_t> in);
3335 void tls_next_message(SSL *ssl);
3336
3337 int tls_dispatch_alert(SSL *ssl);
3338 ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out,
3339 size_t *out_consumed, uint8_t *out_alert,
3340 Span<uint8_t> in);
3341 ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3342 uint8_t *out_alert,
3343 Span<uint8_t> in);
3344 int tls_write_app_data(SSL *ssl, bool *out_needs_handshake,
3345 size_t *out_bytes_written, Span<const uint8_t> in);
3346
3347 bool tls_new(SSL *ssl);
3348 void tls_free(SSL *ssl);
3349
3350 bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3351 bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3352 bool tls_add_message(SSL *ssl, Array<uint8_t> msg);
3353 bool tls_add_change_cipher_spec(SSL *ssl);
3354 int tls_flush_flight(SSL *ssl);
3355
3356 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3357 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3358 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
3359 bool dtls1_add_change_cipher_spec(SSL *ssl);
3360 int dtls1_flush_flight(SSL *ssl);
3361
3362 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
3363 // the pending flight. It returns true on success and false on error.
3364 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
3365
3366 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
3367 // on success and false on allocation failure.
3368 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3369
3370 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
3371 size_t *out_consumed, uint8_t *out_alert,
3372 Span<uint8_t> in);
3373 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3374 uint8_t *out_alert,
3375 Span<uint8_t> in);
3376
3377 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
3378 size_t *out_bytes_written, Span<const uint8_t> in);
3379
3380 // dtls1_write_record sends a record. It returns one on success and <= 0 on
3381 // error.
3382 int dtls1_write_record(SSL *ssl, int type, Span<const uint8_t> in,
3383 enum dtls1_use_epoch_t use_epoch);
3384
3385 int dtls1_retransmit_outgoing_messages(SSL *ssl);
3386 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
3387 CBS *out_body);
3388 bool dtls1_check_timeout_num(SSL *ssl);
3389
3390 void dtls1_start_timer(SSL *ssl);
3391 void dtls1_stop_timer(SSL *ssl);
3392 bool dtls1_is_timer_expired(SSL *ssl);
3393 unsigned int dtls1_min_mtu(void);
3394
3395 bool dtls1_new(SSL *ssl);
3396 void dtls1_free(SSL *ssl);
3397
3398 bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
3399 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
3400 uint8_t *out_alert, Span<uint8_t> in);
3401 void dtls1_next_message(SSL *ssl);
3402 int dtls1_dispatch_alert(SSL *ssl);
3403
3404 // tls1_configure_aead configures either the read or write direction AEAD (as
3405 // determined by |direction|) using the keys generated by the TLS KDF. The
3406 // |key_block_cache| argument is used to store the generated key block, if
3407 // empty. Otherwise it's assumed that the key block is already contained within
3408 // it. It returns true on success or false on error.
3409 bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
3410 Array<uint8_t> *key_block_cache,
3411 const SSL_SESSION *session,
3412 Span<const uint8_t> iv_override);
3413
3414 bool tls1_change_cipher_state(SSL_HANDSHAKE *hs,
3415 evp_aead_direction_t direction);
3416 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
3417 Span<const uint8_t> premaster);
3418
3419 // tls1_get_grouplist returns the locally-configured group preference list.
3420 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
3421
3422 // tls1_check_group_id returns whether |group_id| is consistent with locally-
3423 // configured group preferences.
3424 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
3425
3426 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
3427 // group between client and server preferences and returns true. If none may be
3428 // found, it returns false.
3429 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
3430
3431 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|.
3432 // It returns true on success and false on failure. The |header_len| argument is
3433 // the length of the ClientHello written so far and is used to compute the
3434 // padding length. (It does not include the record header or handshake headers.)
3435 //
3436 // If |type| is |ssl_client_hello_inner|, this function also writes the
3437 // compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be
3438 // nullptr.
3439 //
3440 // On success, the function sets |*out_needs_psk_binder| to whether the last
3441 // ClientHello extension was the pre_shared_key extension and needs a PSK binder
3442 // filled in. The caller should then update |out| and, if applicable,
3443 // |out_encoded| with the binder after completing the whole message.
3444 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded,
3445 bool *out_needs_psk_binder,
3446 ssl_client_hello_type_t type,
3447 size_t header_len);
3448
3449 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
3450 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
3451 const SSL_CLIENT_HELLO *client_hello);
3452 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions);
3453
3454 #define tlsext_tick_md EVP_sha256
3455
3456 // ssl_process_ticket processes a session ticket from the client. It returns
3457 // one of:
3458 // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
3459 // |*out_renew_ticket| is set to whether the ticket should be renewed.
3460 // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
3461 // fresh ticket should be sent, but the given ticket cannot be used.
3462 // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
3463 // Retry later.
3464 // |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
3465 enum ssl_ticket_aead_result_t ssl_process_ticket(
3466 SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
3467 bool *out_renew_ticket, Span<const uint8_t> ticket,
3468 Span<const uint8_t> session_id);
3469
3470 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
3471 // the signature. If the key is valid, it saves the Channel ID and returns true.
3472 // Otherwise, it returns false.
3473 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3474
3475 // tls1_write_channel_id generates a Channel ID message and puts the output in
3476 // |cbb|. |ssl->channel_id_private| must already be set before calling. This
3477 // function returns true on success and false on error.
3478 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
3479
3480 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
3481 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
3482 // true on success and false on failure.
3483 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
3484
3485 // tls1_record_handshake_hashes_for_channel_id records the current handshake
3486 // hashes in |hs->new_session| so that Channel ID resumptions can sign that
3487 // data.
3488 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
3489
3490 // ssl_can_write returns whether |ssl| is allowed to write.
3491 bool ssl_can_write(const SSL *ssl);
3492
3493 // ssl_can_read returns wheter |ssl| is allowed to read.
3494 bool ssl_can_read(const SSL *ssl);
3495
3496 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
3497 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
3498 struct OPENSSL_timeval *out_clock);
3499
3500 // ssl_reset_error_state resets state for |SSL_get_error|.
3501 void ssl_reset_error_state(SSL *ssl);
3502
3503 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
3504 // current state of the error queue.
3505 void ssl_set_read_error(SSL *ssl);
3506
3507 BSSL_NAMESPACE_END
3508
3509
3510 // Opaque C types.
3511 //
3512 // The following types are exported to C code as public typedefs, so they must
3513 // be defined outside of the namespace.
3514
3515 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
3516 // structure to support the legacy version-locked methods.
3517 struct ssl_method_st {
3518 // version, if non-zero, is the only protocol version acceptable to an
3519 // SSL_CTX initialized from this method.
3520 uint16_t version;
3521 // method is the underlying SSL_PROTOCOL_METHOD that initializes the
3522 // SSL_CTX.
3523 const bssl::SSL_PROTOCOL_METHOD *method;
3524 // x509_method contains pointers to functions that might deal with |X509|
3525 // compatibility, or might be a no-op, depending on the application.
3526 const bssl::SSL_X509_METHOD *x509_method;
3527 };
3528
3529 struct ssl_ctx_st : public bssl::RefCounted<ssl_ctx_st> {
3530 explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
3531 ssl_ctx_st(const ssl_ctx_st &) = delete;
3532 ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
3533
3534 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3535 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3536
3537 // lock is used to protect various operations on this object.
3538 CRYPTO_MUTEX lock;
3539
3540 // conf_max_version is the maximum acceptable protocol version configured by
3541 // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
3542 // and is further constrainted by |SSL_OP_NO_*|.
3543 uint16_t conf_max_version = 0;
3544
3545 // conf_min_version is the minimum acceptable protocol version configured by
3546 // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
3547 // and is further constrainted by |SSL_OP_NO_*|.
3548 uint16_t conf_min_version = 0;
3549
3550 // num_tickets is the number of tickets to send immediately after the TLS 1.3
3551 // handshake. TLS 1.3 recommends single-use tickets so, by default, issue two
3552 /// in case the client makes several connections before getting a renewal.
3553 uint8_t num_tickets = 2;
3554
3555 // quic_method is the method table corresponding to the QUIC hooks.
3556 const SSL_QUIC_METHOD *quic_method = nullptr;
3557
3558 bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
3559
3560 X509_STORE *cert_store = nullptr;
3561 LHASH_OF(SSL_SESSION) *sessions = nullptr;
3562 // Most session-ids that will be cached, default is
3563 // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
3564 unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3565 SSL_SESSION *session_cache_head = nullptr;
3566 SSL_SESSION *session_cache_tail = nullptr;
3567
3568 // handshakes_since_cache_flush is the number of successful handshakes since
3569 // the last cache flush.
3570 int handshakes_since_cache_flush = 0;
3571
3572 // This can have one of 2 values, ored together,
3573 // SSL_SESS_CACHE_CLIENT,
3574 // SSL_SESS_CACHE_SERVER,
3575 // Default is SSL_SESSION_CACHE_SERVER, which means only
3576 // SSL_accept which cache SSL_SESSIONS.
3577 int session_cache_mode = SSL_SESS_CACHE_SERVER;
3578
3579 // session_timeout is the default lifetime for new sessions in TLS 1.2 and
3580 // earlier, in seconds.
3581 uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3582
3583 // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
3584 // 1.3, in seconds.
3585 uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
3586
3587 // If this callback is not null, it will be called each time a session id is
3588 // added to the cache. If this function returns 1, it means that the
3589 // callback will do a SSL_SESSION_free() when it has finished using it.
3590 // Otherwise, on 0, it means the callback has finished with it. If
3591 // remove_session_cb is not null, it will be called when a session-id is
3592 // removed from the cache. After the call, OpenSSL will SSL_SESSION_free()
3593 // it.
3594 int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
3595 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
3596 SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
3597 int *copy) = nullptr;
3598
3599 // if defined, these override the X509_verify_cert() calls
3600 int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
3601 void *app_verify_arg = nullptr;
3602
3603 ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
3604 uint8_t *out_alert) = nullptr;
3605
3606 // Default password callback.
3607 pem_password_cb *default_passwd_callback = nullptr;
3608
3609 // Default password callback user data.
3610 void *default_passwd_callback_userdata = nullptr;
3611
3612 // get client cert callback
3613 int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
3614 EVP_PKEY **out_pkey) = nullptr;
3615
3616 CRYPTO_EX_DATA ex_data;
3617
3618 // Default values used when no per-SSL value is defined follow
3619
3620 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3621
3622 // what we put in client cert requests
3623 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3624
3625 // cached_x509_client_CA is a cache of parsed versions of the elements of
3626 // |client_CA|.
3627 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3628
3629
3630 // Default values to use in SSL structures follow (these are copied by
3631 // SSL_new)
3632
3633 uint32_t options = 0;
3634 // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3635 // feature, but require callers opt into it.
3636 uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3637 uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3638
3639 bssl::UniquePtr<bssl::CERT> cert;
3640
3641 // callback that allows applications to peek at protocol messages
3642 void (*msg_callback)(int is_write, int version, int content_type,
3643 const void *buf, size_t len, SSL *ssl,
3644 void *arg) = nullptr;
3645 void *msg_callback_arg = nullptr;
3646
3647 int verify_mode = SSL_VERIFY_NONE;
3648 int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3649 nullptr; // called 'verify_callback' in the SSL
3650
3651 X509_VERIFY_PARAM *param = nullptr;
3652
3653 // select_certificate_cb is called before most ClientHello processing and
3654 // before the decision whether to resume a session is made. See
3655 // |ssl_select_cert_result_t| for details of the return values.
3656 ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3657 nullptr;
3658
3659 // dos_protection_cb is called once the resumption decision for a ClientHello
3660 // has been made. It returns one to continue the handshake or zero to
3661 // abort.
3662 int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3663
3664 // Controls whether to verify certificates when resuming connections. They
3665 // were already verified when the connection was first made, so the default is
3666 // false. For now, this is only respected on clients, not servers.
3667 bool reverify_on_resume = false;
3668
3669 // Maximum amount of data to send in one fragment. actual record size can be
3670 // more than this due to padding and MAC overheads.
3671 uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3672
3673 // TLS extensions servername callback
3674 int (*servername_callback)(SSL *, int *, void *) = nullptr;
3675 void *servername_arg = nullptr;
3676
3677 // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3678 // first handshake and |ticket_key_prev| may be NULL at any time.
3679 // Automatically generated ticket keys are rotated as needed at handshake
3680 // time. Hence, all access must be synchronized through |lock|.
3681 bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3682 bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3683
3684 // Callback to support customisation of ticket key setting
3685 int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3686 EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3687
3688 // Server-only: psk_identity_hint is the default identity hint to send in
3689 // PSK-based key exchanges.
3690 bssl::UniquePtr<char> psk_identity_hint;
3691
3692 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3693 unsigned max_identity_len, uint8_t *psk,
3694 unsigned max_psk_len) = nullptr;
3695 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3696 unsigned max_psk_len) = nullptr;
3697
3698
3699 // Next protocol negotiation information
3700 // (for experimental NPN extension).
3701
3702 // For a server, this contains a callback function by which the set of
3703 // advertised protocols can be provided.
3704 int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3705 unsigned *out_len, void *arg) = nullptr;
3706 void *next_protos_advertised_cb_arg = nullptr;
3707 // For a client, this contains a callback function that selects the
3708 // next protocol from the list provided by the server.
3709 int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3710 const uint8_t *in, unsigned in_len,
3711 void *arg) = nullptr;
3712 void *next_proto_select_cb_arg = nullptr;
3713
3714 // ALPN information
3715 // (we are in the process of transitioning from NPN to ALPN.)
3716
3717 // For a server, this contains a callback function that allows the
3718 // server to select the protocol for the connection.
3719 // out: on successful return, this must point to the raw protocol
3720 // name (without the length prefix).
3721 // outlen: on successful return, this contains the length of |*out|.
3722 // in: points to the client's list of supported protocols in
3723 // wire-format.
3724 // inlen: the length of |in|.
3725 int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3726 const uint8_t *in, unsigned in_len,
3727 void *arg) = nullptr;
3728 void *alpn_select_cb_arg = nullptr;
3729
3730 // For a client, this contains the list of supported protocols in wire
3731 // format.
3732 bssl::Array<uint8_t> alpn_client_proto_list;
3733
3734 // SRTP profiles we are willing to do from RFC 5764
3735 bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3736
3737 // Defined compression algorithms for certificates.
3738 bssl::GrowableArray<bssl::CertCompressionAlg> cert_compression_algs;
3739
3740 // Supported group values inherited by SSL structure
3741 bssl::Array<uint16_t> supported_group_list;
3742
3743 // channel_id_private is the client's Channel ID private key, or null if
3744 // Channel ID should not be offered on this connection.
3745 bssl::UniquePtr<EVP_PKEY> channel_id_private;
3746
3747 // ech_keys contains the server's list of ECHConfig values and associated
3748 // private keys. This list may be swapped out at any time, so all access must
3749 // be synchronized through |lock|.
3750 bssl::UniquePtr<SSL_ECH_KEYS> ech_keys;
3751
3752 // keylog_callback, if not NULL, is the key logging callback. See
3753 // |SSL_CTX_set_keylog_callback|.
3754 void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3755
3756 // current_time_cb, if not NULL, is the function to use to get the current
3757 // time. It sets |*out_clock| to the current time. The |ssl| argument is
3758 // always NULL. See |SSL_CTX_set_current_time_cb|.
3759 void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3760
3761 // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3762 // memory.
3763 CRYPTO_BUFFER_POOL *pool = nullptr;
3764
3765 // ticket_aead_method contains function pointers for opening and sealing
3766 // session tickets.
3767 const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3768
3769 // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3770 // compatibility.
3771 int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3772 void *legacy_ocsp_callback_arg = nullptr;
3773
3774 // tls13_cipher_policy limits the set of ciphers that can be selected when
3775 // negotiating a TLS 1.3 connection.
3776 enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3777
3778 // verify_sigalgs, if not empty, is the set of signature algorithms
3779 // accepted from the peer in decreasing order of preference.
3780 bssl::Array<uint16_t> verify_sigalgs;
3781
3782 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3783 // hash of the peer's certificate and then discard it to save memory and
3784 // session space. Only effective on the server side.
3785 bool retain_only_sha256_of_client_certs : 1;
3786
3787 // quiet_shutdown is true if the connection should not send a close_notify on
3788 // shutdown.
3789 bool quiet_shutdown : 1;
3790
3791 // ocsp_stapling_enabled is only used by client connections and indicates
3792 // whether OCSP stapling will be requested.
3793 bool ocsp_stapling_enabled : 1;
3794
3795 // If true, a client will request certificate timestamps.
3796 bool signed_cert_timestamps_enabled : 1;
3797
3798 // channel_id_enabled is whether Channel ID is enabled. For a server, means
3799 // that we'll accept Channel IDs from clients. For a client, means that we'll
3800 // advertise support.
3801 bool channel_id_enabled : 1;
3802
3803 // grease_enabled is whether GREASE (RFC 8701) is enabled.
3804 bool grease_enabled : 1;
3805
3806 // permute_extensions is whether to permute extensions when sending messages.
3807 bool permute_extensions : 1;
3808
3809 // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3810 // protocols from the peer.
3811 bool allow_unknown_alpn_protos : 1;
3812
3813 // false_start_allowed_without_alpn is whether False Start (if
3814 // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3815 bool false_start_allowed_without_alpn : 1;
3816
3817 // handoff indicates that a server should stop after receiving the
3818 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3819 // returns |SSL_ERROR_HANDOFF|.
3820 bool handoff : 1;
3821
3822 // If enable_early_data is true, early data can be sent and accepted.
3823 bool enable_early_data : 1;
3824
3825 // aes_hw_override if set indicates we should override checking for AES
3826 // hardware support, and use the value in aes_hw_override_value instead.
3827 bool aes_hw_override : 1;
3828
3829 // aes_hw_override_value is used for testing to indicate the support or lack
3830 // of support for AES hardware. The value is only considered if
3831 // |aes_hw_override| is true.
3832 bool aes_hw_override_value : 1;
3833
3834 private:
3835 friend RefCounted;
3836 ~ssl_ctx_st();
3837 };
3838
3839 struct ssl_st {
3840 explicit ssl_st(SSL_CTX *ctx_arg);
3841 ssl_st(const ssl_st &) = delete;
3842 ssl_st &operator=(const ssl_st &) = delete;
3843 ~ssl_st();
3844
3845 // method is the method table corresponding to the current protocol (DTLS or
3846 // TLS).
3847 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3848
3849 // config is a container for handshake configuration. Accesses to this field
3850 // should check for nullptr, since configuration may be shed after the
3851 // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use
3852 // that instead, and skip the null check.)
3853 bssl::UniquePtr<bssl::SSL_CONFIG> config;
3854
3855 // version is the protocol version.
3856 uint16_t version = 0;
3857
3858 uint16_t max_send_fragment = 0;
3859
3860 // There are 2 BIO's even though they are normally both the same. This is so
3861 // data can be read and written to different handlers
3862
3863 bssl::UniquePtr<BIO> rbio; // used by SSL_read
3864 bssl::UniquePtr<BIO> wbio; // used by SSL_write
3865
3866 // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3867 // Otherwise, it returns a value corresponding to what operation is needed to
3868 // progress.
3869 bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3870
3871 bssl::SSL3_STATE *s3 = nullptr; // TLS variables
3872 bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables
3873
3874 // callback that allows applications to peek at protocol messages
3875 void (*msg_callback)(int write_p, int version, int content_type,
3876 const void *buf, size_t len, SSL *ssl,
3877 void *arg) = nullptr;
3878 void *msg_callback_arg = nullptr;
3879
3880 // session info
3881
3882 // initial_timeout_duration_ms is the default DTLS timeout duration in
3883 // milliseconds. It's used to initialize the timer any time it's restarted.
3884 //
3885 // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3886 // second.
3887 unsigned initial_timeout_duration_ms = 1000;
3888
3889 // session is the configured session to be offered by the client. This session
3890 // is immutable.
3891 bssl::UniquePtr<SSL_SESSION> session;
3892
3893 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3894
3895 bssl::UniquePtr<SSL_CTX> ctx;
3896
3897 // session_ctx is the |SSL_CTX| used for the session cache and related
3898 // settings.
3899 bssl::UniquePtr<SSL_CTX> session_ctx;
3900
3901 // extra application data
3902 CRYPTO_EX_DATA ex_data;
3903
3904 uint32_t options = 0; // protocol behaviour
3905 uint32_t mode = 0; // API behaviour
3906 uint32_t max_cert_list = 0;
3907 bssl::UniquePtr<char> hostname;
3908
3909 // quic_method is the method table corresponding to the QUIC hooks.
3910 const SSL_QUIC_METHOD *quic_method = nullptr;
3911
3912 // renegotiate_mode controls how peer renegotiation attempts are handled.
3913 ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3914
3915 // server is true iff the this SSL* is the server half. Note: before the SSL*
3916 // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3917 // the side is not determined. In this state, server is always false.
3918 bool server : 1;
3919
3920 // quiet_shutdown is true if the connection should not send a close_notify on
3921 // shutdown.
3922 bool quiet_shutdown : 1;
3923
3924 // If enable_early_data is true, early data can be sent and accepted.
3925 bool enable_early_data : 1;
3926 };
3927
3928 struct ssl_session_st : public bssl::RefCounted<ssl_session_st> {
3929 explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3930 ssl_session_st(const ssl_session_st &) = delete;
3931 ssl_session_st &operator=(const ssl_session_st &) = delete;
3932
3933 // ssl_version is the (D)TLS version that established the session.
3934 uint16_t ssl_version = 0;
3935
3936 // group_id is the ID of the ECDH group used to establish this session or zero
3937 // if not applicable or unknown.
3938 uint16_t group_id = 0;
3939
3940 // peer_signature_algorithm is the signature algorithm used to authenticate
3941 // the peer, or zero if not applicable or unknown.
3942 uint16_t peer_signature_algorithm = 0;
3943
3944 // secret, in TLS 1.2 and below, is the master secret associated with the
3945 // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to
3946 // the caller, but it stores the resumption secret when stored on |SSL|
3947 // objects.
3948 uint8_t secret_length = 0;
3949 uint8_t secret[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3950
3951 // session_id - valid?
3952 uint8_t session_id_length = 0;
3953 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3954 // this is used to determine whether the session is being reused in
3955 // the appropriate context. It is up to the application to set this,
3956 // via SSL_new
3957 uint8_t sid_ctx_length = 0;
3958 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3959
3960 bssl::UniquePtr<char> psk_identity;
3961
3962 // certs contains the certificate chain from the peer, starting with the leaf
3963 // certificate.
3964 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3965
3966 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3967
3968 // x509_peer is the peer's certificate.
3969 X509 *x509_peer = nullptr;
3970
3971 // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3972 // reasons, when a client (so the peer is a server), the chain includes
3973 // |peer|, but when a server it does not.
3974 STACK_OF(X509) *x509_chain = nullptr;
3975
3976 // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3977 // omits the leaf certificate. This exists because OpenSSL, historically,
3978 // didn't include the leaf certificate in the chain for a server, but did for
3979 // a client. The |x509_chain| always includes it and, if an API call requires
3980 // a chain without, it is stored here.
3981 STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3982
3983 // verify_result is the result of certificate verification in the case of
3984 // non-fatal certificate errors.
3985 long verify_result = X509_V_ERR_INVALID_CALL;
3986
3987 // timeout is the lifetime of the session in seconds, measured from |time|.
3988 // This is renewable up to |auth_timeout|.
3989 uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3990
3991 // auth_timeout is the non-renewable lifetime of the session in seconds,
3992 // measured from |time|.
3993 uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3994
3995 // time is the time the session was issued, measured in seconds from the UNIX
3996 // epoch.
3997 uint64_t time = 0;
3998
3999 const SSL_CIPHER *cipher = nullptr;
4000
4001 CRYPTO_EX_DATA ex_data; // application specific data
4002
4003 // These are used to make removal of session-ids more efficient and to
4004 // implement a maximum cache size.
4005 SSL_SESSION *prev = nullptr, *next = nullptr;
4006
4007 bssl::Array<uint8_t> ticket;
4008
4009 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
4010
4011 // The OCSP response that came with the session.
4012 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
4013
4014 // peer_sha256 contains the SHA-256 hash of the peer's certificate if
4015 // |peer_sha256_valid| is true.
4016 uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
4017
4018 // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
4019 // SHA-2, depending on TLS version) for the original, full handshake that
4020 // created a session. This is used by Channel IDs during resumption.
4021 uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
4022 uint8_t original_handshake_hash_len = 0;
4023
4024 uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds
4025
4026 uint32_t ticket_age_add = 0;
4027
4028 // ticket_max_early_data is the maximum amount of data allowed to be sent as
4029 // early data. If zero, 0-RTT is disallowed.
4030 uint32_t ticket_max_early_data = 0;
4031
4032 // early_alpn is the ALPN protocol from the initial handshake. This is only
4033 // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
4034 // resumptions. For the current connection's ALPN protocol, see
4035 // |alpn_selected| on |SSL3_STATE|.
4036 bssl::Array<uint8_t> early_alpn;
4037
4038 // local_application_settings, if |has_application_settings| is true, is the
4039 // local ALPS value for this connection.
4040 bssl::Array<uint8_t> local_application_settings;
4041
4042 // peer_application_settings, if |has_application_settings| is true, is the
4043 // peer ALPS value for this connection.
4044 bssl::Array<uint8_t> peer_application_settings;
4045
4046 // extended_master_secret is whether the master secret in this session was
4047 // generated using EMS and thus isn't vulnerable to the Triple Handshake
4048 // attack.
4049 bool extended_master_secret : 1;
4050
4051 // peer_sha256_valid is whether |peer_sha256| is valid.
4052 bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid
4053
4054 // not_resumable is used to indicate that session resumption is disallowed.
4055 bool not_resumable : 1;
4056
4057 // ticket_age_add_valid is whether |ticket_age_add| is valid.
4058 bool ticket_age_add_valid : 1;
4059
4060 // is_server is whether this session was created by a server.
4061 bool is_server : 1;
4062
4063 // is_quic indicates whether this session was created using QUIC.
4064 bool is_quic : 1;
4065
4066 // has_application_settings indicates whether ALPS was negotiated in this
4067 // session.
4068 bool has_application_settings : 1;
4069
4070 // quic_early_data_context is used to determine whether early data must be
4071 // rejected when performing a QUIC handshake.
4072 bssl::Array<uint8_t> quic_early_data_context;
4073
4074 private:
4075 friend RefCounted;
4076 ~ssl_session_st();
4077 };
4078
4079 struct ssl_ech_keys_st : public bssl::RefCounted<ssl_ech_keys_st> {
4080 ssl_ech_keys_st() : RefCounted(CheckSubClass()) {}
4081
4082 bssl::GrowableArray<bssl::UniquePtr<bssl::ECHServerConfig>> configs;
4083
4084 private:
4085 friend RefCounted;
4086 ~ssl_ech_keys_st() = default;
4087 };
4088
4089 #endif // OPENSSL_HEADER_SSL_INTERNAL_H
4090