xref: /aosp_15_r20/external/cronet/third_party/protobuf/src/google/protobuf/message.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: [email protected] (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   std::string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != nullptr);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 //     const FieldDescriptor* numbers_field = descriptor->
91 //                                            FindFieldByName("numbers");
92 //     assert(numbers_field != nullptr);
93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 //     // Parse the message.
97 //     foo->ParseFromString(data);
98 //
99 //     // Use the reflection interface to examine the contents.
100 //     const Reflection* reflection = foo->GetReflection();
101 //     assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 //     assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 //     delete foo;
108 //   }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 
114 #include <iosfwd>
115 #include <string>
116 #include <type_traits>
117 #include <vector>
118 
119 #include <google/protobuf/stubs/casts.h>
120 #include <google/protobuf/stubs/common.h>
121 #include <google/protobuf/arena.h>
122 #include <google/protobuf/port.h>
123 #include <google/protobuf/descriptor.h>
124 #include <google/protobuf/generated_message_reflection.h>
125 #include <google/protobuf/generated_message_util.h>
126 #include <google/protobuf/map.h>  // TODO(b/211442718): cleanup
127 #include <google/protobuf/message_lite.h>
128 
129 
130 // Must be included last.
131 #include <google/protobuf/port_def.inc>
132 
133 #ifdef SWIG
134 #error "You cannot SWIG proto headers"
135 #endif
136 
137 namespace google {
138 namespace protobuf {
139 
140 // Defined in this file.
141 class Message;
142 class Reflection;
143 class MessageFactory;
144 
145 // Defined in other files.
146 class AssignDescriptorsHelper;
147 class DynamicMessageFactory;
148 class GeneratedMessageReflectionTestHelper;
149 class MapKey;
150 class MapValueConstRef;
151 class MapValueRef;
152 class MapIterator;
153 class MapReflectionTester;
154 
155 namespace internal {
156 struct DescriptorTable;
157 class MapFieldBase;
158 class SwapFieldHelper;
159 class CachedSize;
160 }  // namespace internal
161 class UnknownFieldSet;  // unknown_field_set.h
162 namespace io {
163 class ZeroCopyInputStream;   // zero_copy_stream.h
164 class ZeroCopyOutputStream;  // zero_copy_stream.h
165 class CodedInputStream;      // coded_stream.h
166 class CodedOutputStream;     // coded_stream.h
167 }  // namespace io
168 namespace python {
169 class MapReflectionFriend;  // scalar_map_container.h
170 class MessageReflectionFriend;
171 }  // namespace python
172 namespace expr {
173 class CelMapReflectionFriend;  // field_backed_map_impl.cc
174 }
175 
176 namespace internal {
177 class MapFieldPrinterHelper;  // text_format.cc
178 }
179 namespace util {
180 class MessageDifferencer;
181 }
182 
183 
184 namespace internal {
185 class ReflectionAccessor;      // message.cc
186 class ReflectionOps;           // reflection_ops.h
187 class MapKeySorter;            // wire_format.cc
188 class WireFormat;              // wire_format.h
189 class MapFieldReflectionTest;  // map_test.cc
190 }  // namespace internal
191 
192 template <typename T>
193 class RepeatedField;  // repeated_field.h
194 
195 template <typename T>
196 class RepeatedPtrField;  // repeated_field.h
197 
198 // A container to hold message metadata.
199 struct Metadata {
200   const Descriptor* descriptor;
201   const Reflection* reflection;
202 };
203 
204 namespace internal {
205 template <class To>
GetPointerAtOffset(Message * message,uint32_t offset)206 inline To* GetPointerAtOffset(Message* message, uint32_t offset) {
207   return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
208 }
209 
210 template <class To>
GetConstPointerAtOffset(const Message * message,uint32_t offset)211 const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) {
212   return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
213                                      offset);
214 }
215 
216 template <class To>
GetConstRefAtOffset(const Message & message,uint32_t offset)217 const To& GetConstRefAtOffset(const Message& message, uint32_t offset) {
218   return *GetConstPointerAtOffset<To>(&message, offset);
219 }
220 
221 bool CreateUnknownEnumValues(const FieldDescriptor* field);
222 
223 // Returns true if "message" is a descendant of "root".
224 PROTOBUF_EXPORT bool IsDescendant(Message& root, const Message& message);
225 }  // namespace internal
226 
227 // Abstract interface for protocol messages.
228 //
229 // See also MessageLite, which contains most every-day operations.  Message
230 // adds descriptors and reflection on top of that.
231 //
232 // The methods of this class that are virtual but not pure-virtual have
233 // default implementations based on reflection.  Message classes which are
234 // optimized for speed will want to override these with faster implementations,
235 // but classes optimized for code size may be happy with keeping them.  See
236 // the optimize_for option in descriptor.proto.
237 //
238 // Users must not derive from this class. Only the protocol compiler and
239 // the internal library are allowed to create subclasses.
240 class PROTOBUF_EXPORT Message : public MessageLite {
241  public:
Message()242   constexpr Message() {}
243 
244   // Basic Operations ------------------------------------------------
245 
246   // Construct a new instance of the same type.  Ownership is passed to the
247   // caller.  (This is also defined in MessageLite, but is defined again here
248   // for return-type covariance.)
New()249   Message* New() const { return New(nullptr); }
250 
251   // Construct a new instance on the arena. Ownership is passed to the caller
252   // if arena is a nullptr.
253   Message* New(Arena* arena) const override = 0;
254 
255   // Make this message into a copy of the given message.  The given message
256   // must have the same descriptor, but need not necessarily be the same class.
257   // By default this is just implemented as "Clear(); MergeFrom(from);".
258   void CopyFrom(const Message& from);
259 
260   // Merge the fields from the given message into this message.  Singular
261   // fields will be overwritten, if specified in from, except for embedded
262   // messages which will be merged.  Repeated fields will be concatenated.
263   // The given message must be of the same type as this message (i.e. the
264   // exact same class).
265   virtual void MergeFrom(const Message& from);
266 
267   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
268   // a nice error message.
269   void CheckInitialized() const;
270 
271   // Slowly build a list of all required fields that are not set.
272   // This is much, much slower than IsInitialized() as it is implemented
273   // purely via reflection.  Generally, you should not call this unless you
274   // have already determined that an error exists by calling IsInitialized().
275   void FindInitializationErrors(std::vector<std::string>* errors) const;
276 
277   // Like FindInitializationErrors, but joins all the strings, delimited by
278   // commas, and returns them.
279   std::string InitializationErrorString() const override;
280 
281   // Clears all unknown fields from this message and all embedded messages.
282   // Normally, if unknown tag numbers are encountered when parsing a message,
283   // the tag and value are stored in the message's UnknownFieldSet and
284   // then written back out when the message is serialized.  This allows servers
285   // which simply route messages to other servers to pass through messages
286   // that have new field definitions which they don't yet know about.  However,
287   // this behavior can have security implications.  To avoid it, call this
288   // method after parsing.
289   //
290   // See Reflection::GetUnknownFields() for more on unknown fields.
291   void DiscardUnknownFields();
292 
293   // Computes (an estimate of) the total number of bytes currently used for
294   // storing the message in memory.  The default implementation calls the
295   // Reflection object's SpaceUsed() method.
296   //
297   // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
298   // using reflection (rather than the generated code implementation for
299   // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
300   // fields defined for the proto.
301   virtual size_t SpaceUsedLong() const;
302 
303   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed()304   int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
305 
306   // Debugging & Testing----------------------------------------------
307 
308   // Generates a human-readable form of this message for debugging purposes.
309   // Note that the format and content of a debug string is not guaranteed, may
310   // change without notice, and should not be depended on. Code that does
311   // anything except display a string to assist in debugging should use
312   // TextFormat instead.
313   std::string DebugString() const;
314   // Like DebugString(), but with less whitespace.
315   std::string ShortDebugString() const;
316   // Like DebugString(), but do not escape UTF-8 byte sequences.
317   std::string Utf8DebugString() const;
318   // Convenience function useful in GDB.  Prints DebugString() to stdout.
319   void PrintDebugString() const;
320 
321   // Reflection-based methods ----------------------------------------
322   // These methods are pure-virtual in MessageLite, but Message provides
323   // reflection-based default implementations.
324 
325   std::string GetTypeName() const override;
326   void Clear() override;
327 
328   // Returns whether all required fields have been set. Note that required
329   // fields no longer exist starting in proto3.
330   bool IsInitialized() const override;
331 
332   void CheckTypeAndMergeFrom(const MessageLite& other) override;
333   // Reflective parser
334   const char* _InternalParse(const char* ptr,
335                              internal::ParseContext* ctx) override;
336   size_t ByteSizeLong() const override;
337   uint8_t* _InternalSerialize(uint8_t* target,
338                               io::EpsCopyOutputStream* stream) const override;
339 
340  private:
341   // This is called only by the default implementation of ByteSize(), to
342   // update the cached size.  If you override ByteSize(), you do not need
343   // to override this.  If you do not override ByteSize(), you MUST override
344   // this; the default implementation will crash.
345   //
346   // The method is private because subclasses should never call it; only
347   // override it.  Yes, C++ lets you do that.  Crazy, huh?
348   virtual void SetCachedSize(int size) const;
349 
350  public:
351   // Introspection ---------------------------------------------------
352 
353 
354   // Get a non-owning pointer to a Descriptor for this message's type.  This
355   // describes what fields the message contains, the types of those fields, etc.
356   // This object remains property of the Message.
GetDescriptor()357   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
358 
359   // Get a non-owning pointer to the Reflection interface for this Message,
360   // which can be used to read and modify the fields of the Message dynamically
361   // (in other words, without knowing the message type at compile time).  This
362   // object remains property of the Message.
GetReflection()363   const Reflection* GetReflection() const { return GetMetadata().reflection; }
364 
365  protected:
366   // Get a struct containing the metadata for the Message, which is used in turn
367   // to implement GetDescriptor() and GetReflection() above.
368   virtual Metadata GetMetadata() const = 0;
369 
370   struct ClassData {
371     // Note: The order of arguments (to, then from) is chosen so that the ABI
372     // of this function is the same as the CopyFrom method.  That is, the
373     // hidden "this" parameter comes first.
374     void (*copy_to_from)(Message& to, const Message& from_msg);
375     void (*merge_to_from)(Message& to, const Message& from_msg);
376   };
377   // GetClassData() returns a pointer to a ClassData struct which
378   // exists in global memory and is unique to each subclass.  This uniqueness
379   // property is used in order to quickly determine whether two messages are
380   // of the same type.
381   // TODO(jorg): change to pure virtual
GetClassData()382   virtual const ClassData* GetClassData() const { return nullptr; }
383 
384   // CopyWithSourceCheck calls Clear() and then MergeFrom(), and in debug
385   // builds, checks that calling Clear() on the destination message doesn't
386   // alter the source.  It assumes the messages are known to be of the same
387   // type, and thus uses GetClassData().
388   static void CopyWithSourceCheck(Message& to, const Message& from);
389 
390   // Fail if "from" is a descendant of "to" as such copy is not allowed.
391   static void FailIfCopyFromDescendant(Message& to, const Message& from);
392 
393   inline explicit Message(Arena* arena, bool is_message_owned = false)
MessageLite(arena,is_message_owned)394       : MessageLite(arena, is_message_owned) {}
395   size_t ComputeUnknownFieldsSize(size_t total_size,
396                                   internal::CachedSize* cached_size) const;
397   size_t MaybeComputeUnknownFieldsSize(size_t total_size,
398                                        internal::CachedSize* cached_size) const;
399 
400 
401  protected:
402   static uint64_t GetInvariantPerBuild(uint64_t salt);
403 
404  private:
405   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
406 };
407 
408 namespace internal {
409 // Forward-declare interfaces used to implement RepeatedFieldRef.
410 // These are protobuf internals that users shouldn't care about.
411 class RepeatedFieldAccessor;
412 }  // namespace internal
413 
414 // Forward-declare RepeatedFieldRef templates. The second type parameter is
415 // used for SFINAE tricks. Users should ignore it.
416 template <typename T, typename Enable = void>
417 class RepeatedFieldRef;
418 
419 template <typename T, typename Enable = void>
420 class MutableRepeatedFieldRef;
421 
422 // This interface contains methods that can be used to dynamically access
423 // and modify the fields of a protocol message.  Their semantics are
424 // similar to the accessors the protocol compiler generates.
425 //
426 // To get the Reflection for a given Message, call Message::GetReflection().
427 //
428 // This interface is separate from Message only for efficiency reasons;
429 // the vast majority of implementations of Message will share the same
430 // implementation of Reflection (GeneratedMessageReflection,
431 // defined in generated_message.h), and all Messages of a particular class
432 // should share the same Reflection object (though you should not rely on
433 // the latter fact).
434 //
435 // There are several ways that these methods can be used incorrectly.  For
436 // example, any of the following conditions will lead to undefined
437 // results (probably assertion failures):
438 // - The FieldDescriptor is not a field of this message type.
439 // - The method called is not appropriate for the field's type.  For
440 //   each field type in FieldDescriptor::TYPE_*, there is only one
441 //   Get*() method, one Set*() method, and one Add*() method that is
442 //   valid for that type.  It should be obvious which (except maybe
443 //   for TYPE_BYTES, which are represented using strings in C++).
444 // - A Get*() or Set*() method for singular fields is called on a repeated
445 //   field.
446 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
447 //   field.
448 // - The Message object passed to any method is not of the right type for
449 //   this Reflection object (i.e. message.GetReflection() != reflection).
450 //
451 // You might wonder why there is not any abstract representation for a field
452 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
453 // returns "const Field&", where "Field" is some class with accessors like
454 // "GetInt32Value()".  The problem is that someone would have to deal with
455 // allocating these Field objects.  For generated message classes, having to
456 // allocate space for an additional object to wrap every field would at least
457 // double the message's memory footprint, probably worse.  Allocating the
458 // objects on-demand, on the other hand, would be expensive and prone to
459 // memory leaks.  So, instead we ended up with this flat interface.
460 class PROTOBUF_EXPORT Reflection final {
461  public:
462   // Get the UnknownFieldSet for the message.  This contains fields which
463   // were seen when the Message was parsed but were not recognized according
464   // to the Message's definition.
465   const UnknownFieldSet& GetUnknownFields(const Message& message) const;
466   // Get a mutable pointer to the UnknownFieldSet for the message.  This
467   // contains fields which were seen when the Message was parsed but were not
468   // recognized according to the Message's definition.
469   UnknownFieldSet* MutableUnknownFields(Message* message) const;
470 
471   // Estimate the amount of memory used by the message object.
472   size_t SpaceUsedLong(const Message& message) const;
473 
474   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed(const Message & message)475   int SpaceUsed(const Message& message) const {
476     return internal::ToIntSize(SpaceUsedLong(message));
477   }
478 
479   // Check if the given non-repeated field is set.
480   bool HasField(const Message& message, const FieldDescriptor* field) const;
481 
482   // Get the number of elements of a repeated field.
483   int FieldSize(const Message& message, const FieldDescriptor* field) const;
484 
485   // Clear the value of a field, so that HasField() returns false or
486   // FieldSize() returns zero.
487   void ClearField(Message* message, const FieldDescriptor* field) const;
488 
489   // Check if the oneof is set. Returns true if any field in oneof
490   // is set, false otherwise.
491   bool HasOneof(const Message& message,
492                 const OneofDescriptor* oneof_descriptor) const;
493 
494   void ClearOneof(Message* message,
495                   const OneofDescriptor* oneof_descriptor) const;
496 
497   // Returns the field descriptor if the oneof is set. nullptr otherwise.
498   const FieldDescriptor* GetOneofFieldDescriptor(
499       const Message& message, const OneofDescriptor* oneof_descriptor) const;
500 
501   // Removes the last element of a repeated field.
502   // We don't provide a way to remove any element other than the last
503   // because it invites inefficient use, such as O(n^2) filtering loops
504   // that should have been O(n).  If you want to remove an element other
505   // than the last, the best way to do it is to re-arrange the elements
506   // (using Swap()) so that the one you want removed is at the end, then
507   // call RemoveLast().
508   void RemoveLast(Message* message, const FieldDescriptor* field) const;
509   // Removes the last element of a repeated message field, and returns the
510   // pointer to the caller.  Caller takes ownership of the returned pointer.
511   PROTOBUF_NODISCARD Message* ReleaseLast(Message* message,
512                                           const FieldDescriptor* field) const;
513 
514   // Similar to ReleaseLast() without internal safety and ownershp checks. This
515   // method should only be used when the objects are on the same arena or paired
516   // with a call to `UnsafeArenaAddAllocatedMessage`.
517   Message* UnsafeArenaReleaseLast(Message* message,
518                                   const FieldDescriptor* field) const;
519 
520   // Swap the complete contents of two messages.
521   void Swap(Message* message1, Message* message2) const;
522 
523   // Swap fields listed in fields vector of two messages.
524   void SwapFields(Message* message1, Message* message2,
525                   const std::vector<const FieldDescriptor*>& fields) const;
526 
527   // Swap two elements of a repeated field.
528   void SwapElements(Message* message, const FieldDescriptor* field, int index1,
529                     int index2) const;
530 
531   // Swap without internal safety and ownership checks. This method should only
532   // be used when the objects are on the same arena.
533   void UnsafeArenaSwap(Message* lhs, Message* rhs) const;
534 
535   // SwapFields without internal safety and ownership checks. This method should
536   // only be used when the objects are on the same arena.
537   void UnsafeArenaSwapFields(
538       Message* lhs, Message* rhs,
539       const std::vector<const FieldDescriptor*>& fields) const;
540 
541   // List all fields of the message which are currently set, except for unknown
542   // fields, but including extension known to the parser (i.e. compiled in).
543   // Singular fields will only be listed if HasField(field) would return true
544   // and repeated fields will only be listed if FieldSize(field) would return
545   // non-zero.  Fields (both normal fields and extension fields) will be listed
546   // ordered by field number.
547   // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
548   // access to fields/extensions unknown to the parser.
549   void ListFields(const Message& message,
550                   std::vector<const FieldDescriptor*>* output) const;
551 
552   // Singular field getters ------------------------------------------
553   // These get the value of a non-repeated field.  They return the default
554   // value for fields that aren't set.
555 
556   int32_t GetInt32(const Message& message, const FieldDescriptor* field) const;
557   int64_t GetInt64(const Message& message, const FieldDescriptor* field) const;
558   uint32_t GetUInt32(const Message& message,
559                      const FieldDescriptor* field) const;
560   uint64_t GetUInt64(const Message& message,
561                      const FieldDescriptor* field) const;
562   float GetFloat(const Message& message, const FieldDescriptor* field) const;
563   double GetDouble(const Message& message, const FieldDescriptor* field) const;
564   bool GetBool(const Message& message, const FieldDescriptor* field) const;
565   std::string GetString(const Message& message,
566                         const FieldDescriptor* field) const;
567   const EnumValueDescriptor* GetEnum(const Message& message,
568                                      const FieldDescriptor* field) const;
569 
570   // GetEnumValue() returns an enum field's value as an integer rather than
571   // an EnumValueDescriptor*. If the integer value does not correspond to a
572   // known value descriptor, a new value descriptor is created. (Such a value
573   // will only be present when the new unknown-enum-value semantics are enabled
574   // for a message.)
575   int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
576 
577   // See MutableMessage() for the meaning of the "factory" parameter.
578   const Message& GetMessage(const Message& message,
579                             const FieldDescriptor* field,
580                             MessageFactory* factory = nullptr) const;
581 
582   // Get a string value without copying, if possible.
583   //
584   // GetString() necessarily returns a copy of the string.  This can be
585   // inefficient when the std::string is already stored in a std::string object
586   // in the underlying message.  GetStringReference() will return a reference to
587   // the underlying std::string in this case.  Otherwise, it will copy the
588   // string into *scratch and return that.
589   //
590   // Note:  It is perfectly reasonable and useful to write code like:
591   //     str = reflection->GetStringReference(message, field, &str);
592   //   This line would ensure that only one copy of the string is made
593   //   regardless of the field's underlying representation.  When initializing
594   //   a newly-constructed string, though, it's just as fast and more
595   //   readable to use code like:
596   //     std::string str = reflection->GetString(message, field);
597   const std::string& GetStringReference(const Message& message,
598                                         const FieldDescriptor* field,
599                                         std::string* scratch) const;
600 
601 
602   // Singular field mutators -----------------------------------------
603   // These mutate the value of a non-repeated field.
604 
605   void SetInt32(Message* message, const FieldDescriptor* field,
606                 int32_t value) const;
607   void SetInt64(Message* message, const FieldDescriptor* field,
608                 int64_t value) const;
609   void SetUInt32(Message* message, const FieldDescriptor* field,
610                  uint32_t value) const;
611   void SetUInt64(Message* message, const FieldDescriptor* field,
612                  uint64_t value) const;
613   void SetFloat(Message* message, const FieldDescriptor* field,
614                 float value) const;
615   void SetDouble(Message* message, const FieldDescriptor* field,
616                  double value) const;
617   void SetBool(Message* message, const FieldDescriptor* field,
618                bool value) const;
619   void SetString(Message* message, const FieldDescriptor* field,
620                  std::string value) const;
621   void SetEnum(Message* message, const FieldDescriptor* field,
622                const EnumValueDescriptor* value) const;
623   // Set an enum field's value with an integer rather than EnumValueDescriptor.
624   // For proto3 this is just setting the enum field to the value specified, for
625   // proto2 it's more complicated. If value is a known enum value the field is
626   // set as usual. If the value is unknown then it is added to the unknown field
627   // set. Note this matches the behavior of parsing unknown enum values.
628   // If multiple calls with unknown values happen than they are all added to the
629   // unknown field set in order of the calls.
630   void SetEnumValue(Message* message, const FieldDescriptor* field,
631                     int value) const;
632 
633   // Get a mutable pointer to a field with a message type.  If a MessageFactory
634   // is provided, it will be used to construct instances of the sub-message;
635   // otherwise, the default factory is used.  If the field is an extension that
636   // does not live in the same pool as the containing message's descriptor (e.g.
637   // it lives in an overlay pool), then a MessageFactory must be provided.
638   // If you have no idea what that meant, then you probably don't need to worry
639   // about it (don't provide a MessageFactory).  WARNING:  If the
640   // FieldDescriptor is for a compiled-in extension, then
641   // factory->GetPrototype(field->message_type()) MUST return an instance of
642   // the compiled-in class for this type, NOT DynamicMessage.
643   Message* MutableMessage(Message* message, const FieldDescriptor* field,
644                           MessageFactory* factory = nullptr) const;
645 
646   // Replaces the message specified by 'field' with the already-allocated object
647   // sub_message, passing ownership to the message.  If the field contained a
648   // message, that message is deleted.  If sub_message is nullptr, the field is
649   // cleared.
650   void SetAllocatedMessage(Message* message, Message* sub_message,
651                            const FieldDescriptor* field) const;
652 
653   // Similar to `SetAllocatedMessage`, but omits all internal safety and
654   // ownership checks.  This method should only be used when the objects are on
655   // the same arena or paired with a call to `UnsafeArenaReleaseMessage`.
656   void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
657                                       const FieldDescriptor* field) const;
658 
659   // Releases the message specified by 'field' and returns the pointer,
660   // ReleaseMessage() will return the message the message object if it exists.
661   // Otherwise, it may or may not return nullptr.  In any case, if the return
662   // value is non-null, the caller takes ownership of the pointer.
663   // If the field existed (HasField() is true), then the returned pointer will
664   // be the same as the pointer returned by MutableMessage().
665   // This function has the same effect as ClearField().
666   PROTOBUF_NODISCARD Message* ReleaseMessage(
667       Message* message, const FieldDescriptor* field,
668       MessageFactory* factory = nullptr) const;
669 
670   // Similar to `ReleaseMessage`, but omits all internal safety and ownership
671   // checks.  This method should only be used when the objects are on the same
672   // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
673   Message* UnsafeArenaReleaseMessage(Message* message,
674                                      const FieldDescriptor* field,
675                                      MessageFactory* factory = nullptr) const;
676 
677 
678   // Repeated field getters ------------------------------------------
679   // These get the value of one element of a repeated field.
680 
681   int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
682                            int index) const;
683   int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
684                            int index) const;
685   uint32_t GetRepeatedUInt32(const Message& message,
686                              const FieldDescriptor* field, int index) const;
687   uint64_t GetRepeatedUInt64(const Message& message,
688                              const FieldDescriptor* field, int index) const;
689   float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
690                          int index) const;
691   double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
692                            int index) const;
693   bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
694                        int index) const;
695   std::string GetRepeatedString(const Message& message,
696                                 const FieldDescriptor* field, int index) const;
697   const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
698                                              const FieldDescriptor* field,
699                                              int index) const;
700   // GetRepeatedEnumValue() returns an enum field's value as an integer rather
701   // than an EnumValueDescriptor*. If the integer value does not correspond to a
702   // known value descriptor, a new value descriptor is created. (Such a value
703   // will only be present when the new unknown-enum-value semantics are enabled
704   // for a message.)
705   int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
706                            int index) const;
707   const Message& GetRepeatedMessage(const Message& message,
708                                     const FieldDescriptor* field,
709                                     int index) const;
710 
711   // See GetStringReference(), above.
712   const std::string& GetRepeatedStringReference(const Message& message,
713                                                 const FieldDescriptor* field,
714                                                 int index,
715                                                 std::string* scratch) const;
716 
717 
718   // Repeated field mutators -----------------------------------------
719   // These mutate the value of one element of a repeated field.
720 
721   void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
722                         int index, int32_t value) const;
723   void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
724                         int index, int64_t value) const;
725   void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
726                          int index, uint32_t value) const;
727   void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
728                          int index, uint64_t value) const;
729   void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
730                         int index, float value) const;
731   void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
732                          int index, double value) const;
733   void SetRepeatedBool(Message* message, const FieldDescriptor* field,
734                        int index, bool value) const;
735   void SetRepeatedString(Message* message, const FieldDescriptor* field,
736                          int index, std::string value) const;
737   void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
738                        int index, const EnumValueDescriptor* value) const;
739   // Set an enum field's value with an integer rather than EnumValueDescriptor.
740   // For proto3 this is just setting the enum field to the value specified, for
741   // proto2 it's more complicated. If value is a known enum value the field is
742   // set as usual. If the value is unknown then it is added to the unknown field
743   // set. Note this matches the behavior of parsing unknown enum values.
744   // If multiple calls with unknown values happen than they are all added to the
745   // unknown field set in order of the calls.
746   void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
747                             int index, int value) const;
748   // Get a mutable pointer to an element of a repeated field with a message
749   // type.
750   Message* MutableRepeatedMessage(Message* message,
751                                   const FieldDescriptor* field,
752                                   int index) const;
753 
754 
755   // Repeated field adders -------------------------------------------
756   // These add an element to a repeated field.
757 
758   void AddInt32(Message* message, const FieldDescriptor* field,
759                 int32_t value) const;
760   void AddInt64(Message* message, const FieldDescriptor* field,
761                 int64_t value) const;
762   void AddUInt32(Message* message, const FieldDescriptor* field,
763                  uint32_t value) const;
764   void AddUInt64(Message* message, const FieldDescriptor* field,
765                  uint64_t value) const;
766   void AddFloat(Message* message, const FieldDescriptor* field,
767                 float value) const;
768   void AddDouble(Message* message, const FieldDescriptor* field,
769                  double value) const;
770   void AddBool(Message* message, const FieldDescriptor* field,
771                bool value) const;
772   void AddString(Message* message, const FieldDescriptor* field,
773                  std::string value) const;
774   void AddEnum(Message* message, const FieldDescriptor* field,
775                const EnumValueDescriptor* value) const;
776   // Add an integer value to a repeated enum field rather than
777   // EnumValueDescriptor. For proto3 this is just setting the enum field to the
778   // value specified, for proto2 it's more complicated. If value is a known enum
779   // value the field is set as usual. If the value is unknown then it is added
780   // to the unknown field set. Note this matches the behavior of parsing unknown
781   // enum values. If multiple calls with unknown values happen than they are all
782   // added to the unknown field set in order of the calls.
783   void AddEnumValue(Message* message, const FieldDescriptor* field,
784                     int value) const;
785   // See MutableMessage() for comments on the "factory" parameter.
786   Message* AddMessage(Message* message, const FieldDescriptor* field,
787                       MessageFactory* factory = nullptr) const;
788 
789   // Appends an already-allocated object 'new_entry' to the repeated field
790   // specified by 'field' passing ownership to the message.
791   void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
792                            Message* new_entry) const;
793 
794   // Similar to AddAllocatedMessage() without internal safety and ownership
795   // checks. This method should only be used when the objects are on the same
796   // arena or paired with a call to `UnsafeArenaReleaseLast`.
797   void UnsafeArenaAddAllocatedMessage(Message* message,
798                                       const FieldDescriptor* field,
799                                       Message* new_entry) const;
800 
801 
802   // Get a RepeatedFieldRef object that can be used to read the underlying
803   // repeated field. The type parameter T must be set according to the
804   // field's cpp type. The following table shows the mapping from cpp type
805   // to acceptable T.
806   //
807   //   field->cpp_type()      T
808   //   CPPTYPE_INT32        int32_t
809   //   CPPTYPE_UINT32       uint32_t
810   //   CPPTYPE_INT64        int64_t
811   //   CPPTYPE_UINT64       uint64_t
812   //   CPPTYPE_DOUBLE       double
813   //   CPPTYPE_FLOAT        float
814   //   CPPTYPE_BOOL         bool
815   //   CPPTYPE_ENUM         generated enum type or int32_t
816   //   CPPTYPE_STRING       std::string
817   //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
818   //
819   // A RepeatedFieldRef object can be copied and the resulted object will point
820   // to the same repeated field in the same message. The object can be used as
821   // long as the message is not destroyed.
822   //
823   // Note that to use this method users need to include the header file
824   // "reflection.h" (which defines the RepeatedFieldRef class templates).
825   template <typename T>
826   RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
827                                           const FieldDescriptor* field) const;
828 
829   // Like GetRepeatedFieldRef() but return an object that can also be used
830   // manipulate the underlying repeated field.
831   template <typename T>
832   MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
833       Message* message, const FieldDescriptor* field) const;
834 
835   // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
836   // access. The following repeated field accessors will be removed in the
837   // future.
838   //
839   // Repeated field accessors  -------------------------------------------------
840   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
841   // access to the data in a RepeatedField.  The methods below provide aggregate
842   // access by exposing the RepeatedField object itself with the Message.
843   // Applying these templates to inappropriate types will lead to an undefined
844   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
845   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
846   //
847   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
848 
849   // DEPRECATED. Please use GetRepeatedFieldRef().
850   //
851   // for T = Cord and all protobuf scalar types except enums.
852   template <typename T>
853   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedField(const Message & msg,const FieldDescriptor * d)854   const RepeatedField<T>& GetRepeatedField(const Message& msg,
855                                            const FieldDescriptor* d) const {
856     return GetRepeatedFieldInternal<T>(msg, d);
857   }
858 
859   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
860   //
861   // for T = Cord and all protobuf scalar types except enums.
862   template <typename T>
863   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedField(Message * msg,const FieldDescriptor * d)864   RepeatedField<T>* MutableRepeatedField(Message* msg,
865                                          const FieldDescriptor* d) const {
866     return MutableRepeatedFieldInternal<T>(msg, d);
867   }
868 
869   // DEPRECATED. Please use GetRepeatedFieldRef().
870   //
871   // for T = std::string, google::protobuf::internal::StringPieceField
872   //         google::protobuf::Message & descendants.
873   template <typename T>
874   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedPtrField(const Message & msg,const FieldDescriptor * d)875   const RepeatedPtrField<T>& GetRepeatedPtrField(
876       const Message& msg, const FieldDescriptor* d) const {
877     return GetRepeatedPtrFieldInternal<T>(msg, d);
878   }
879 
880   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
881   //
882   // for T = std::string, google::protobuf::internal::StringPieceField
883   //         google::protobuf::Message & descendants.
884   template <typename T>
885   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedPtrField(Message * msg,const FieldDescriptor * d)886   RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
887                                                const FieldDescriptor* d) const {
888     return MutableRepeatedPtrFieldInternal<T>(msg, d);
889   }
890 
891   // Extensions ----------------------------------------------------------------
892 
893   // Try to find an extension of this message type by fully-qualified field
894   // name.  Returns nullptr if no extension is known for this name or number.
895   const FieldDescriptor* FindKnownExtensionByName(
896       const std::string& name) const;
897 
898   // Try to find an extension of this message type by field number.
899   // Returns nullptr if no extension is known for this name or number.
900   const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
901 
902   // Feature Flags -------------------------------------------------------------
903 
904   // Does this message support storing arbitrary integer values in enum fields?
905   // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
906   // take arbitrary integer values, and the legacy GetEnum() getter will
907   // dynamically create an EnumValueDescriptor for any integer value without
908   // one. If |false|, setting an unknown enum value via the integer-based
909   // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
910   //
911   // Generic code that uses reflection to handle messages with enum fields
912   // should check this flag before using the integer-based setter, and either
913   // downgrade to a compatible value or use the UnknownFieldSet if not. For
914   // example:
915   //
916   //   int new_value = GetValueFromApplicationLogic();
917   //   if (reflection->SupportsUnknownEnumValues()) {
918   //     reflection->SetEnumValue(message, field, new_value);
919   //   } else {
920   //     if (field_descriptor->enum_type()->
921   //             FindValueByNumber(new_value) != nullptr) {
922   //       reflection->SetEnumValue(message, field, new_value);
923   //     } else if (emit_unknown_enum_values) {
924   //       reflection->MutableUnknownFields(message)->AddVarint(
925   //           field->number(), new_value);
926   //     } else {
927   //       // convert value to a compatible/default value.
928   //       new_value = CompatibleDowngrade(new_value);
929   //       reflection->SetEnumValue(message, field, new_value);
930   //     }
931   //   }
932   bool SupportsUnknownEnumValues() const;
933 
934   // Returns the MessageFactory associated with this message.  This can be
935   // useful for determining if a message is a generated message or not, for
936   // example:
937   //   if (message->GetReflection()->GetMessageFactory() ==
938   //       google::protobuf::MessageFactory::generated_factory()) {
939   //     // This is a generated message.
940   //   }
941   // It can also be used to create more messages of this type, though
942   // Message::New() is an easier way to accomplish this.
943   MessageFactory* GetMessageFactory() const;
944 
945  private:
946   template <typename T>
947   const RepeatedField<T>& GetRepeatedFieldInternal(
948       const Message& message, const FieldDescriptor* field) const;
949   template <typename T>
950   RepeatedField<T>* MutableRepeatedFieldInternal(
951       Message* message, const FieldDescriptor* field) const;
952   template <typename T>
953   const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
954       const Message& message, const FieldDescriptor* field) const;
955   template <typename T>
956   RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
957       Message* message, const FieldDescriptor* field) const;
958   // Obtain a pointer to a Repeated Field Structure and do some type checking:
959   //   on field->cpp_type(),
960   //   on field->field_option().ctype() (if ctype >= 0)
961   //   of field->message_type() (if message_type != nullptr).
962   // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
963   void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
964                                 FieldDescriptor::CppType, int ctype,
965                                 const Descriptor* message_type) const;
966 
967   const void* GetRawRepeatedField(const Message& message,
968                                   const FieldDescriptor* field,
969                                   FieldDescriptor::CppType cpptype, int ctype,
970                                   const Descriptor* message_type) const;
971 
972   // The following methods are used to implement (Mutable)RepeatedFieldRef.
973   // A Ref object will store a raw pointer to the repeated field data (obtained
974   // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
975   // RepeatedFieldAccessor) which will be used to access the raw data.
976 
977   // Returns a raw pointer to the repeated field
978   //
979   // "cpp_type" and "message_type" are deduced from the type parameter T passed
980   // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
981   // "message_type" should be set to its descriptor. Otherwise "message_type"
982   // should be set to nullptr. Implementations of this method should check
983   // whether "cpp_type"/"message_type" is consistent with the actual type of the
984   // field. We use 1 routine rather than 2 (const vs mutable) because it is
985   // protected and it doesn't change the message.
986   void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
987                           FieldDescriptor::CppType cpp_type,
988                           const Descriptor* message_type) const;
989 
990   // The returned pointer should point to a singleton instance which implements
991   // the RepeatedFieldAccessor interface.
992   const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
993       const FieldDescriptor* field) const;
994 
995   // Lists all fields of the message which are currently set, except for unknown
996   // fields and stripped fields. See ListFields for details.
997   void ListFieldsOmitStripped(
998       const Message& message,
999       std::vector<const FieldDescriptor*>* output) const;
1000 
IsMessageStripped(const Descriptor * descriptor)1001   bool IsMessageStripped(const Descriptor* descriptor) const {
1002     return schema_.IsMessageStripped(descriptor);
1003   }
1004 
1005   friend class TextFormat;
1006 
1007   void ListFieldsMayFailOnStripped(
1008       const Message& message, bool should_fail,
1009       std::vector<const FieldDescriptor*>* output) const;
1010 
1011   // Returns true if the message field is backed by a LazyField.
1012   //
1013   // A message field may be backed by a LazyField without the user annotation
1014   // ([lazy = true]). While the user-annotated LazyField is lazily verified on
1015   // first touch (i.e. failure on access rather than parsing if the LazyField is
1016   // not initialized), the inferred LazyField is eagerly verified to avoid lazy
1017   // parsing error at the cost of lower efficiency. When reflecting a message
1018   // field, use this API instead of checking field->options().lazy().
IsLazyField(const FieldDescriptor * field)1019   bool IsLazyField(const FieldDescriptor* field) const {
1020     return IsLazilyVerifiedLazyField(field) ||
1021            IsEagerlyVerifiedLazyField(field);
1022   }
1023 
1024   // Returns true if the field is lazy extension. It is meant to allow python
1025   // reparse lazy field until b/157559327 is fixed.
1026   bool IsLazyExtension(const Message& message,
1027                        const FieldDescriptor* field) const;
1028 
1029   bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const;
1030   bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const;
1031 
1032   friend class FastReflectionMessageMutator;
1033   friend bool internal::IsDescendant(Message& root, const Message& message);
1034 
1035   const Descriptor* const descriptor_;
1036   const internal::ReflectionSchema schema_;
1037   const DescriptorPool* const descriptor_pool_;
1038   MessageFactory* const message_factory_;
1039 
1040   // Last non weak field index. This is an optimization when most weak fields
1041   // are at the end of the containing message. If a message proto doesn't
1042   // contain weak fields, then this field equals descriptor_->field_count().
1043   int last_non_weak_field_index_;
1044 
1045   template <typename T, typename Enable>
1046   friend class RepeatedFieldRef;
1047   template <typename T, typename Enable>
1048   friend class MutableRepeatedFieldRef;
1049   friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
1050   friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
1051   friend class DynamicMessageFactory;
1052   friend class GeneratedMessageReflectionTestHelper;
1053   friend class python::MapReflectionFriend;
1054   friend class python::MessageReflectionFriend;
1055   friend class util::MessageDifferencer;
1056 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
1057   friend class expr::CelMapReflectionFriend;
1058   friend class internal::MapFieldReflectionTest;
1059   friend class internal::MapKeySorter;
1060   friend class internal::WireFormat;
1061   friend class internal::ReflectionOps;
1062   friend class internal::SwapFieldHelper;
1063   // Needed for implementing text format for map.
1064   friend class internal::MapFieldPrinterHelper;
1065 
1066   Reflection(const Descriptor* descriptor,
1067              const internal::ReflectionSchema& schema,
1068              const DescriptorPool* pool, MessageFactory* factory);
1069 
1070   // Special version for specialized implementations of string.  We can't
1071   // call MutableRawRepeatedField directly here because we don't have access to
1072   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
1073   // file here is not possible because it would cause a circular include cycle.
1074   // We use 1 routine rather than 2 (const vs mutable) because it is private
1075   // and mutable a repeated string field doesn't change the message.
1076   void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
1077                                  bool is_string) const;
1078 
1079   friend class MapReflectionTester;
1080   // Returns true if key is in map. Returns false if key is not in map field.
1081   bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
1082                       const MapKey& key) const;
1083 
1084   // If key is in map field: Saves the value pointer to val and returns
1085   // false. If key in not in map field: Insert the key into map, saves
1086   // value pointer to val and returns true. Users are able to modify the
1087   // map value by MapValueRef.
1088   bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
1089                               const MapKey& key, MapValueRef* val) const;
1090 
1091   // If key is in map field: Saves the value pointer to val and returns true.
1092   // Returns false if key is not in map field. Users are NOT able to modify
1093   // the value by MapValueConstRef.
1094   bool LookupMapValue(const Message& message, const FieldDescriptor* field,
1095                       const MapKey& key, MapValueConstRef* val) const;
1096   bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
1097                       MapValueRef*) const = delete;
1098 
1099   // Delete and returns true if key is in the map field. Returns false
1100   // otherwise.
1101   bool DeleteMapValue(Message* message, const FieldDescriptor* field,
1102                       const MapKey& key) const;
1103 
1104   // Returns a MapIterator referring to the first element in the map field.
1105   // If the map field is empty, this function returns the same as
1106   // reflection::MapEnd. Mutation to the field may invalidate the iterator.
1107   MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
1108 
1109   // Returns a MapIterator referring to the theoretical element that would
1110   // follow the last element in the map field. It does not point to any
1111   // real element. Mutation to the field may invalidate the iterator.
1112   MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
1113 
1114   // Get the number of <key, value> pair of a map field. The result may be
1115   // different from FieldSize which can have duplicate keys.
1116   int MapSize(const Message& message, const FieldDescriptor* field) const;
1117 
1118   // Help method for MapIterator.
1119   friend class MapIterator;
1120   friend class WireFormatForMapFieldTest;
1121   internal::MapFieldBase* MutableMapData(Message* message,
1122                                          const FieldDescriptor* field) const;
1123 
1124   const internal::MapFieldBase* GetMapData(const Message& message,
1125                                            const FieldDescriptor* field) const;
1126 
1127   template <class T>
1128   const T& GetRawNonOneof(const Message& message,
1129                           const FieldDescriptor* field) const;
1130   template <class T>
1131   T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
1132 
1133   template <typename Type>
1134   const Type& GetRaw(const Message& message,
1135                      const FieldDescriptor* field) const;
1136   template <typename Type>
1137   inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
1138   template <typename Type>
1139   const Type& DefaultRaw(const FieldDescriptor* field) const;
1140 
1141   const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
1142 
1143   inline const uint32_t* GetHasBits(const Message& message) const;
1144   inline uint32_t* MutableHasBits(Message* message) const;
1145   inline uint32_t GetOneofCase(const Message& message,
1146                                const OneofDescriptor* oneof_descriptor) const;
1147   inline uint32_t* MutableOneofCase(
1148       Message* message, const OneofDescriptor* oneof_descriptor) const;
HasExtensionSet(const Message &)1149   inline bool HasExtensionSet(const Message& /* message */) const {
1150     return schema_.HasExtensionSet();
1151   }
1152   const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
1153   internal::ExtensionSet* MutableExtensionSet(Message* message) const;
1154 
1155   const internal::InternalMetadata& GetInternalMetadata(
1156       const Message& message) const;
1157 
1158   internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
1159 
1160   inline bool IsInlined(const FieldDescriptor* field) const;
1161 
1162   inline bool HasBit(const Message& message,
1163                      const FieldDescriptor* field) const;
1164   inline void SetBit(Message* message, const FieldDescriptor* field) const;
1165   inline void ClearBit(Message* message, const FieldDescriptor* field) const;
1166   inline void SwapBit(Message* message1, Message* message2,
1167                       const FieldDescriptor* field) const;
1168 
1169   inline const uint32_t* GetInlinedStringDonatedArray(
1170       const Message& message) const;
1171   inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const;
1172   inline bool IsInlinedStringDonated(const Message& message,
1173                                      const FieldDescriptor* field) const;
1174   inline void SwapInlinedStringDonated(Message* lhs, Message* rhs,
1175                                        const FieldDescriptor* field) const;
1176 
1177   // Shallow-swap fields listed in fields vector of two messages. It is the
1178   // caller's responsibility to make sure shallow swap is safe.
1179   void UnsafeShallowSwapFields(
1180       Message* message1, Message* message2,
1181       const std::vector<const FieldDescriptor*>& fields) const;
1182 
1183   // This function only swaps the field. Should swap corresponding has_bit
1184   // before or after using this function.
1185   void SwapField(Message* message1, Message* message2,
1186                  const FieldDescriptor* field) const;
1187 
1188   // Unsafe but shallow version of SwapField.
1189   void UnsafeShallowSwapField(Message* message1, Message* message2,
1190                               const FieldDescriptor* field) const;
1191 
1192   template <bool unsafe_shallow_swap>
1193   void SwapFieldsImpl(Message* message1, Message* message2,
1194                       const std::vector<const FieldDescriptor*>& fields) const;
1195 
1196   template <bool unsafe_shallow_swap>
1197   void SwapOneofField(Message* lhs, Message* rhs,
1198                       const OneofDescriptor* oneof_descriptor) const;
1199 
1200   inline bool HasOneofField(const Message& message,
1201                             const FieldDescriptor* field) const;
1202   inline void SetOneofCase(Message* message,
1203                            const FieldDescriptor* field) const;
1204   inline void ClearOneofField(Message* message,
1205                               const FieldDescriptor* field) const;
1206 
1207   template <typename Type>
1208   inline const Type& GetField(const Message& message,
1209                               const FieldDescriptor* field) const;
1210   template <typename Type>
1211   inline void SetField(Message* message, const FieldDescriptor* field,
1212                        const Type& value) const;
1213   template <typename Type>
1214   inline Type* MutableField(Message* message,
1215                             const FieldDescriptor* field) const;
1216   template <typename Type>
1217   inline const Type& GetRepeatedField(const Message& message,
1218                                       const FieldDescriptor* field,
1219                                       int index) const;
1220   template <typename Type>
1221   inline const Type& GetRepeatedPtrField(const Message& message,
1222                                          const FieldDescriptor* field,
1223                                          int index) const;
1224   template <typename Type>
1225   inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1226                                int index, Type value) const;
1227   template <typename Type>
1228   inline Type* MutableRepeatedField(Message* message,
1229                                     const FieldDescriptor* field,
1230                                     int index) const;
1231   template <typename Type>
1232   inline void AddField(Message* message, const FieldDescriptor* field,
1233                        const Type& value) const;
1234   template <typename Type>
1235   inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1236 
1237   int GetExtensionNumberOrDie(const Descriptor* type) const;
1238 
1239   // Internal versions of EnumValue API perform no checking. Called after checks
1240   // by public methods.
1241   void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1242                             int value) const;
1243   void SetRepeatedEnumValueInternal(Message* message,
1244                                     const FieldDescriptor* field, int index,
1245                                     int value) const;
1246   void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1247                             int value) const;
1248 
1249   friend inline  // inline so nobody can call this function.
1250       void
1251       RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1252   friend inline const char* ParseLenDelim(int field_number,
1253                                           const FieldDescriptor* field,
1254                                           Message* msg,
1255                                           const Reflection* reflection,
1256                                           const char* ptr,
1257                                           internal::ParseContext* ctx);
1258   friend inline const char* ParsePackedField(const FieldDescriptor* field,
1259                                              Message* msg,
1260                                              const Reflection* reflection,
1261                                              const char* ptr,
1262                                              internal::ParseContext* ctx);
1263 
1264   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1265 };
1266 
1267 // Abstract interface for a factory for message objects.
1268 class PROTOBUF_EXPORT MessageFactory {
1269  public:
MessageFactory()1270   inline MessageFactory() {}
1271   virtual ~MessageFactory();
1272 
1273   // Given a Descriptor, gets or constructs the default (prototype) Message
1274   // of that type.  You can then call that message's New() method to construct
1275   // a mutable message of that type.
1276   //
1277   // Calling this method twice with the same Descriptor returns the same
1278   // object.  The returned object remains property of the factory.  Also, any
1279   // objects created by calling the prototype's New() method share some data
1280   // with the prototype, so these must be destroyed before the MessageFactory
1281   // is destroyed.
1282   //
1283   // The given descriptor must outlive the returned message, and hence must
1284   // outlive the MessageFactory.
1285   //
1286   // Some implementations do not support all types.  GetPrototype() will
1287   // return nullptr if the descriptor passed in is not supported.
1288   //
1289   // This method may or may not be thread-safe depending on the implementation.
1290   // Each implementation should document its own degree thread-safety.
1291   virtual const Message* GetPrototype(const Descriptor* type) = 0;
1292 
1293   // Gets a MessageFactory which supports all generated, compiled-in messages.
1294   // In other words, for any compiled-in type FooMessage, the following is true:
1295   //   MessageFactory::generated_factory()->GetPrototype(
1296   //     FooMessage::descriptor()) == FooMessage::default_instance()
1297   // This factory supports all types which are found in
1298   // DescriptorPool::generated_pool().  If given a descriptor from any other
1299   // pool, GetPrototype() will return nullptr.  (You can also check if a
1300   // descriptor is for a generated message by checking if
1301   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1302   //
1303   // This factory is 100% thread-safe; calling GetPrototype() does not modify
1304   // any shared data.
1305   //
1306   // This factory is a singleton.  The caller must not delete the object.
1307   static MessageFactory* generated_factory();
1308 
1309   // For internal use only:  Registers a .proto file at static initialization
1310   // time, to be placed in generated_factory.  The first time GetPrototype()
1311   // is called with a descriptor from this file, |register_messages| will be
1312   // called, with the file name as the parameter.  It must call
1313   // InternalRegisterGeneratedMessage() (below) to register each message type
1314   // in the file.  This strange mechanism is necessary because descriptors are
1315   // built lazily, so we can't register types by their descriptor until we
1316   // know that the descriptor exists.  |filename| must be a permanent string.
1317   static void InternalRegisterGeneratedFile(
1318       const google::protobuf::internal::DescriptorTable* table);
1319 
1320   // For internal use only:  Registers a message type.  Called only by the
1321   // functions which are registered with InternalRegisterGeneratedFile(),
1322   // above.
1323   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1324                                                const Message* prototype);
1325 
1326 
1327  private:
1328   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1329 };
1330 
1331 #define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
1332   template <>                                                      \
1333   PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
1334   Reflection::GetRepeatedFieldInternal<TYPE>(                      \
1335       const Message& message, const FieldDescriptor* field) const; \
1336                                                                    \
1337   template <>                                                      \
1338   PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
1339   Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
1340       Message * message, const FieldDescriptor* field) const;
1341 
1342 DECLARE_GET_REPEATED_FIELD(int32_t)
DECLARE_GET_REPEATED_FIELD(int64_t)1343 DECLARE_GET_REPEATED_FIELD(int64_t)
1344 DECLARE_GET_REPEATED_FIELD(uint32_t)
1345 DECLARE_GET_REPEATED_FIELD(uint64_t)
1346 DECLARE_GET_REPEATED_FIELD(float)
1347 DECLARE_GET_REPEATED_FIELD(double)
1348 DECLARE_GET_REPEATED_FIELD(bool)
1349 
1350 #undef DECLARE_GET_REPEATED_FIELD
1351 
1352 // Tries to downcast this message to a generated message type.  Returns nullptr
1353 // if this class is not an instance of T.  This works even if RTTI is disabled.
1354 //
1355 // This also has the effect of creating a strong reference to T that will
1356 // prevent the linker from stripping it out at link time.  This can be important
1357 // if you are using a DynamicMessageFactory that delegates to the generated
1358 // factory.
1359 template <typename T>
1360 const T* DynamicCastToGenerated(const Message* from) {
1361   // Compile-time assert that T is a generated type that has a
1362   // default_instance() accessor, but avoid actually calling it.
1363   const T& (*get_default_instance)() = &T::default_instance;
1364   (void)get_default_instance;
1365 
1366   // Compile-time assert that T is a subclass of google::protobuf::Message.
1367   const Message* unused = static_cast<T*>(nullptr);
1368   (void)unused;
1369 
1370 #if PROTOBUF_RTTI
1371   return dynamic_cast<const T*>(from);
1372 #else
1373   bool ok = from != nullptr &&
1374             T::default_instance().GetReflection() == from->GetReflection();
1375   return ok ? down_cast<const T*>(from) : nullptr;
1376 #endif
1377 }
1378 
1379 template <typename T>
DynamicCastToGenerated(Message * from)1380 T* DynamicCastToGenerated(Message* from) {
1381   const Message* message_const = from;
1382   return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1383 }
1384 
1385 // Call this function to ensure that this message's reflection is linked into
1386 // the binary:
1387 //
1388 //   google::protobuf::LinkMessageReflection<pkg::FooMessage>();
1389 //
1390 // This will ensure that the following lookup will succeed:
1391 //
1392 //   DescriptorPool::generated_pool()->FindMessageTypeByName("pkg.FooMessage");
1393 //
1394 // As a side-effect, it will also guarantee that anything else from the same
1395 // .proto file will also be available for lookup in the generated pool.
1396 //
1397 // This function does not actually register the message, so it does not need
1398 // to be called before the lookup.  However it does need to occur in a function
1399 // that cannot be stripped from the binary (ie. it must be reachable from main).
1400 //
1401 // Best practice is to call this function as close as possible to where the
1402 // reflection is actually needed.  This function is very cheap to call, so you
1403 // should not need to worry about its runtime overhead except in the tightest
1404 // of loops (on x86-64 it compiles into two "mov" instructions).
1405 template <typename T>
LinkMessageReflection()1406 void LinkMessageReflection() {
1407   internal::StrongReference(T::default_instance);
1408 }
1409 
1410 // =============================================================================
1411 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
1412 // specializations for <std::string>, <StringPieceField> and <Message> and
1413 // handle everything else with the default template which will match any type
1414 // having a method with signature "static const google::protobuf::Descriptor*
1415 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1416 
1417 template <>
1418 inline const RepeatedPtrField<std::string>&
1419 Reflection::GetRepeatedPtrFieldInternal<std::string>(
1420     const Message& message, const FieldDescriptor* field) const {
1421   return *static_cast<RepeatedPtrField<std::string>*>(
1422       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1423 }
1424 
1425 template <>
1426 inline RepeatedPtrField<std::string>*
1427 Reflection::MutableRepeatedPtrFieldInternal<std::string>(
1428     Message* message, const FieldDescriptor* field) const {
1429   return static_cast<RepeatedPtrField<std::string>*>(
1430       MutableRawRepeatedString(message, field, true));
1431 }
1432 
1433 
1434 // -----
1435 
1436 template <>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1437 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
1438     const Message& message, const FieldDescriptor* field) const {
1439   return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1440       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1441 }
1442 
1443 template <>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1444 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
1445     Message* message, const FieldDescriptor* field) const {
1446   return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1447       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1448 }
1449 
1450 template <typename PB>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1451 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
1452     const Message& message, const FieldDescriptor* field) const {
1453   return *static_cast<const RepeatedPtrField<PB>*>(
1454       GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1455                           PB::default_instance().GetDescriptor()));
1456 }
1457 
1458 template <typename PB>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1459 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
1460     Message* message, const FieldDescriptor* field) const {
1461   return static_cast<RepeatedPtrField<PB>*>(
1462       MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1463                               -1, PB::default_instance().GetDescriptor()));
1464 }
1465 
1466 template <typename Type>
DefaultRaw(const FieldDescriptor * field)1467 const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
1468   return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
1469 }
1470 
GetOneofCase(const Message & message,const OneofDescriptor * oneof_descriptor)1471 uint32_t Reflection::GetOneofCase(
1472     const Message& message, const OneofDescriptor* oneof_descriptor) const {
1473   GOOGLE_DCHECK(!oneof_descriptor->is_synthetic());
1474   return internal::GetConstRefAtOffset<uint32_t>(
1475       message, schema_.GetOneofCaseOffset(oneof_descriptor));
1476 }
1477 
HasOneofField(const Message & message,const FieldDescriptor * field)1478 bool Reflection::HasOneofField(const Message& message,
1479                                const FieldDescriptor* field) const {
1480   return (GetOneofCase(message, field->containing_oneof()) ==
1481           static_cast<uint32_t>(field->number()));
1482 }
1483 
1484 template <typename Type>
GetRaw(const Message & message,const FieldDescriptor * field)1485 const Type& Reflection::GetRaw(const Message& message,
1486                                const FieldDescriptor* field) const {
1487   GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field))
1488       << "Field = " << field->full_name();
1489   return internal::GetConstRefAtOffset<Type>(message,
1490                                              schema_.GetFieldOffset(field));
1491 }
1492 }  // namespace protobuf
1493 }  // namespace google
1494 
1495 #include <google/protobuf/port_undef.inc>
1496 
1497 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
1498