1 // Copyright (c) 2018 Google LLC.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <functional>
16 #include <map>
17 #include <memory>
18 #include <set>
19 #include <utility>
20 #include <vector>
21
22 #include "source/opt/scalar_analysis.h"
23
24 // Simplifies scalar analysis DAGs.
25 //
26 // 1. Given a node passed to SimplifyExpression we first simplify the graph by
27 // calling SimplifyPolynomial. This groups like nodes following basic arithmetic
28 // rules, so multiple adds of the same load instruction could be grouped into a
29 // single multiply of that instruction. SimplifyPolynomial will traverse the DAG
30 // and build up an accumulator buffer for each class of instruction it finds.
31 // For example take the loop:
32 // for (i=0, i<N; i++) { i+B+23+4+B+C; }
33 // In this example the expression "i+B+23+4+B+C" has four classes of
34 // instruction, induction variable i, the two value unknowns B and C, and the
35 // constants. The accumulator buffer is then used to rebuild the graph using
36 // the accumulation of each type. This example would then be folded into
37 // i+2*B+C+27.
38 //
39 // This new graph contains a single add node (or if only one type found then
40 // just that node) with each of the like terms (or multiplication node) as a
41 // child.
42 //
43 // 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take
44 // RecurrentAddExpressions which are with respect to the same loop and fold them
45 // into a single new RecurrentAddExpression with respect to that same loop. An
46 // expression can have multiple RecurrentAddExpression's with respect to
47 // different loops in the case of nested loops. These expressions cannot be
48 // folded further. For example:
49 //
50 // for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k)
51 //
52 // The 'j' and 'k' are RecurrentAddExpression with respect to the second loop
53 // and 'i' to the first. If 'j' and 'k' are used in an expression together then
54 // they will be folded into a new RecurrentAddExpression with respect to the
55 // second loop in that expression.
56 //
57 //
58 // 3. If the DAG now only contains a single RecurrentAddExpression we can now
59 // perform a final optimization SimplifyRecurrentAddExpression. This will
60 // transform the entire DAG into a RecurrentAddExpression. Additions to the
61 // RecurrentAddExpression are added to the offset field and multiplications to
62 // the coefficient.
63 //
64
65 namespace spvtools {
66 namespace opt {
67
68 // Implementation of the functions which are used to simplify the graph. Graphs
69 // of unknowns, multiplies, additions, and constants can be turned into a linear
70 // add node with each term as a child. For instance a large graph built from, X
71 // + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the
72 // children X*3, -Y*2, and the constant 3. Graphs containing a recurrent
73 // expression will be simplified to represent the entire graph around a single
74 // recurrent expression. So for an induction variable (i=0, i++) if you add 1 to
75 // i in an expression we can rewrite the graph of that expression to be a single
76 // recurrent expression of (i=1,i++).
77 class SENodeSimplifyImpl {
78 public:
SENodeSimplifyImpl(ScalarEvolutionAnalysis * analysis,SENode * node_to_simplify)79 SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis,
80 SENode* node_to_simplify)
81 : analysis_(*analysis),
82 node_(node_to_simplify),
83 constant_accumulator_(0) {}
84
85 // Return the result of the simplification.
86 SENode* Simplify();
87
88 private:
89 // Recursively descend through the graph to build up the accumulator objects
90 // which are used to flatten the graph. |child| is the node currently being
91 // traversed and the |negation| flag is used to signify that this operation
92 // was preceded by a unary negative operation and as such the result should be
93 // negated.
94 void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child,
95 bool negation);
96
97 // Given a |multiply| node add to the accumulators for the term type within
98 // the |multiply| expression. Will return true if the accumulators could be
99 // calculated successfully. If the |multiply| is in any form other than
100 // unknown*constant then we return false. |negation| signifies that the
101 // operation was preceded by a unary negative.
102 bool AccumulatorsFromMultiply(SENode* multiply, bool negation);
103
104 SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent,
105 int64_t coefficient_update) const;
106
107 // If the graph contains a recurrent expression, ie, an expression with the
108 // loop iterations as a term in the expression, then the whole expression
109 // can be rewritten to be a recurrent expression.
110 SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node);
111
112 // Simplify the whole graph by linking like terms together in a single flat
113 // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a
114 // ValueUnknown node (i.e, a load) or a recurrent expression.
115 SENode* SimplifyPolynomial();
116
117 // Each recurrent expression is an expression with respect to a specific loop.
118 // If we have two different recurrent terms with respect to the same loop in a
119 // single expression then we can fold those terms into a single new term.
120 // For instance:
121 //
122 // induction i = 0, i++
123 // temp = i*10
124 // array[i+temp]
125 //
126 // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can
127 // become Rec(0,11).
128 SENode* FoldRecurrentAddExpressions(SENode*);
129
130 // We can eliminate recurrent expressions which have a coefficient of zero by
131 // replacing them with their offset value. We are able to do this because a
132 // recurrent expression represents the equation coefficient*iterations +
133 // offset.
134 SENode* EliminateZeroCoefficientRecurrents(SENode* node);
135
136 // A reference the analysis which requested the simplification.
137 ScalarEvolutionAnalysis& analysis_;
138
139 // The node being simplified.
140 SENode* node_;
141
142 // An accumulator of the net result of all the constant operations performed
143 // in a graph.
144 int64_t constant_accumulator_;
145
146 // An accumulator for each of the non constant terms in the graph.
147 std::map<SENode*, int64_t> accumulators_;
148 };
149
150 // From a |multiply| build up the accumulator objects.
AccumulatorsFromMultiply(SENode * multiply,bool negation)151 bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply,
152 bool negation) {
153 if (multiply->GetChildren().size() != 2 ||
154 multiply->GetType() != SENode::Multiply)
155 return false;
156
157 SENode* operand_1 = multiply->GetChild(0);
158 SENode* operand_2 = multiply->GetChild(1);
159
160 SENode* value_unknown = nullptr;
161 SENode* constant = nullptr;
162
163 // Work out which operand is the unknown value.
164 if (operand_1->GetType() == SENode::ValueUnknown ||
165 operand_1->GetType() == SENode::RecurrentAddExpr)
166 value_unknown = operand_1;
167 else if (operand_2->GetType() == SENode::ValueUnknown ||
168 operand_2->GetType() == SENode::RecurrentAddExpr)
169 value_unknown = operand_2;
170
171 // Work out which operand is the constant coefficient.
172 if (operand_1->GetType() == SENode::Constant)
173 constant = operand_1;
174 else if (operand_2->GetType() == SENode::Constant)
175 constant = operand_2;
176
177 // If the expression is not a variable multiplied by a constant coefficient,
178 // exit out.
179 if (!(value_unknown && constant)) {
180 return false;
181 }
182
183 int64_t sign = negation ? -1 : 1;
184
185 auto iterator = accumulators_.find(value_unknown);
186 int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign;
187 // Add the result of the multiplication to the accumulators.
188 if (iterator != accumulators_.end()) {
189 (*iterator).second += new_value;
190 } else {
191 accumulators_.insert({value_unknown, new_value});
192 }
193
194 return true;
195 }
196
Simplify()197 SENode* SENodeSimplifyImpl::Simplify() {
198 // We only handle graphs with an addition, multiplication, or negation, at the
199 // root.
200 if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply &&
201 node_->GetType() != SENode::Negative)
202 return node_;
203
204 SENode* simplified_polynomial = SimplifyPolynomial();
205
206 SERecurrentNode* recurrent_expr = nullptr;
207 node_ = simplified_polynomial;
208
209 // Fold recurrent expressions which are with respect to the same loop into a
210 // single recurrent expression.
211 simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial);
212
213 simplified_polynomial =
214 EliminateZeroCoefficientRecurrents(simplified_polynomial);
215
216 // Traverse the immediate children of the new node to find the recurrent
217 // expression. If there is more than one there is nothing further we can do.
218 for (SENode* child : simplified_polynomial->GetChildren()) {
219 if (child->GetType() == SENode::RecurrentAddExpr) {
220 recurrent_expr = child->AsSERecurrentNode();
221 }
222 }
223
224 // We need to count the number of unique recurrent expressions in the DAG to
225 // ensure there is only one.
226 for (auto child_iterator = simplified_polynomial->graph_begin();
227 child_iterator != simplified_polynomial->graph_end(); ++child_iterator) {
228 if (child_iterator->GetType() == SENode::RecurrentAddExpr &&
229 recurrent_expr != child_iterator->AsSERecurrentNode()) {
230 return simplified_polynomial;
231 }
232 }
233
234 if (recurrent_expr) {
235 return SimplifyRecurrentAddExpression(recurrent_expr);
236 }
237
238 return simplified_polynomial;
239 }
240
241 // Traverse the graph to build up the accumulator objects.
GatherAccumulatorsFromChildNodes(SENode * new_node,SENode * child,bool negation)242 void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node,
243 SENode* child,
244 bool negation) {
245 int32_t sign = negation ? -1 : 1;
246
247 if (child->GetType() == SENode::Constant) {
248 // Collect all the constants and add them together.
249 constant_accumulator_ +=
250 child->AsSEConstantNode()->FoldToSingleValue() * sign;
251
252 } else if (child->GetType() == SENode::ValueUnknown ||
253 child->GetType() == SENode::RecurrentAddExpr) {
254 // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X
255 // and create a new node of count*X after. X can either be a ValueUnknown or
256 // a RecurrentAddExpr. The count for each X is stored in the accumulators_
257 // map.
258
259 auto iterator = accumulators_.find(child);
260 // If we've encountered this term before add to the accumulator for it.
261 if (iterator == accumulators_.end())
262 accumulators_.insert({child, sign});
263 else
264 iterator->second += sign;
265
266 } else if (child->GetType() == SENode::Multiply) {
267 if (!AccumulatorsFromMultiply(child, negation)) {
268 new_node->AddChild(child);
269 }
270
271 } else if (child->GetType() == SENode::Add) {
272 for (SENode* next_child : *child) {
273 GatherAccumulatorsFromChildNodes(new_node, next_child, negation);
274 }
275
276 } else if (child->GetType() == SENode::Negative) {
277 SENode* negated_node = child->GetChild(0);
278 GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation);
279 } else {
280 // If we can't work out how to fold the expression just add it back into
281 // the graph.
282 new_node->AddChild(child);
283 }
284 }
285
UpdateCoefficient(SERecurrentNode * recurrent,int64_t coefficient_update) const286 SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient(
287 SERecurrentNode* recurrent, int64_t coefficient_update) const {
288 std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode(
289 recurrent->GetParentAnalysis(), recurrent->GetLoop())};
290
291 SENode* new_coefficient = analysis_.CreateMultiplyNode(
292 recurrent->GetCoefficient(),
293 analysis_.CreateConstant(coefficient_update));
294
295 // See if the node can be simplified.
296 SENode* simplified = analysis_.SimplifyExpression(new_coefficient);
297 if (simplified->GetType() != SENode::CanNotCompute)
298 new_coefficient = simplified;
299
300 if (coefficient_update < 0) {
301 new_recurrent_node->AddOffset(
302 analysis_.CreateNegation(recurrent->GetOffset()));
303 } else {
304 new_recurrent_node->AddOffset(recurrent->GetOffset());
305 }
306
307 new_recurrent_node->AddCoefficient(new_coefficient);
308
309 return analysis_.GetCachedOrAdd(std::move(new_recurrent_node))
310 ->AsSERecurrentNode();
311 }
312
313 // Simplify all the terms in the polynomial function.
SimplifyPolynomial()314 SENode* SENodeSimplifyImpl::SimplifyPolynomial() {
315 std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())};
316
317 // Traverse the graph and gather the accumulators from it.
318 GatherAccumulatorsFromChildNodes(new_add.get(), node_, false);
319
320 // Fold all the constants into a single constant node.
321 if (constant_accumulator_ != 0) {
322 new_add->AddChild(analysis_.CreateConstant(constant_accumulator_));
323 }
324
325 for (auto& pair : accumulators_) {
326 SENode* term = pair.first;
327 int64_t count = pair.second;
328
329 // We can eliminate the term completely.
330 if (count == 0) continue;
331
332 if (count == 1) {
333 new_add->AddChild(term);
334 } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) {
335 // If the count is -1 we can just add a negative version of that node,
336 // unless it is a recurrent expression as we would rather the negative
337 // goes on the recurrent expressions children. This makes it easier to
338 // work with in other places.
339 new_add->AddChild(analysis_.CreateNegation(term));
340 } else {
341 // Output value unknown terms as count*term and output recurrent
342 // expression terms as rec(offset, coefficient + count) offset and
343 // coefficient are the same as in the original expression.
344 if (term->GetType() == SENode::ValueUnknown) {
345 SENode* count_as_constant = analysis_.CreateConstant(count);
346 new_add->AddChild(
347 analysis_.CreateMultiplyNode(count_as_constant, term));
348 } else {
349 assert(term->GetType() == SENode::RecurrentAddExpr &&
350 "We only handle value unknowns or recurrent expressions");
351
352 // Create a new recurrent expression by adding the count to the
353 // coefficient of the old one.
354 new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count));
355 }
356 }
357 }
358
359 // If there is only one term in the addition left just return that term.
360 if (new_add->GetChildren().size() == 1) {
361 return new_add->GetChild(0);
362 }
363
364 // If there are no terms left in the addition just return 0.
365 if (new_add->GetChildren().size() == 0) {
366 return analysis_.CreateConstant(0);
367 }
368
369 return analysis_.GetCachedOrAdd(std::move(new_add));
370 }
371
FoldRecurrentAddExpressions(SENode * root)372 SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) {
373 std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)};
374
375 // A mapping of loops to the list of recurrent expressions which are with
376 // respect to those loops.
377 std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>>
378 loops_to_recurrent{};
379
380 bool has_multiple_same_loop_recurrent_terms = false;
381
382 for (SENode* child : *root) {
383 bool negation = false;
384
385 if (child->GetType() == SENode::Negative) {
386 child = child->GetChild(0);
387 negation = true;
388 }
389
390 if (child->GetType() == SENode::RecurrentAddExpr) {
391 const Loop* loop = child->AsSERecurrentNode()->GetLoop();
392
393 SERecurrentNode* rec = child->AsSERecurrentNode();
394 if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) {
395 loops_to_recurrent[loop] = {std::make_pair(rec, negation)};
396 } else {
397 loops_to_recurrent[loop].push_back(std::make_pair(rec, negation));
398 has_multiple_same_loop_recurrent_terms = true;
399 }
400 } else {
401 new_node->AddChild(child);
402 }
403 }
404
405 if (!has_multiple_same_loop_recurrent_terms) return root;
406
407 for (auto pair : loops_to_recurrent) {
408 std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions =
409 pair.second;
410 const Loop* loop = pair.first;
411
412 std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)};
413 std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)};
414
415 for (auto node_pair : recurrent_expressions) {
416 SERecurrentNode* node = node_pair.first;
417 bool negative = node_pair.second;
418
419 if (!negative) {
420 new_coefficient->AddChild(node->GetCoefficient());
421 new_offset->AddChild(node->GetOffset());
422 } else {
423 new_coefficient->AddChild(
424 analysis_.CreateNegation(node->GetCoefficient()));
425 new_offset->AddChild(analysis_.CreateNegation(node->GetOffset()));
426 }
427 }
428
429 std::unique_ptr<SERecurrentNode> new_recurrent{
430 new SERecurrentNode(&analysis_, loop)};
431
432 SENode* new_coefficient_simplified =
433 analysis_.SimplifyExpression(new_coefficient.get());
434
435 SENode* new_offset_simplified =
436 analysis_.SimplifyExpression(new_offset.get());
437
438 if (new_coefficient_simplified->GetType() == SENode::Constant &&
439 new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() ==
440 0) {
441 return new_offset_simplified;
442 }
443
444 new_recurrent->AddCoefficient(new_coefficient_simplified);
445 new_recurrent->AddOffset(new_offset_simplified);
446
447 new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent)));
448 }
449
450 // If we only have one child in the add just return that.
451 if (new_node->GetChildren().size() == 1) {
452 return new_node->GetChild(0);
453 }
454
455 return analysis_.GetCachedOrAdd(std::move(new_node));
456 }
457
EliminateZeroCoefficientRecurrents(SENode * node)458 SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) {
459 if (node->GetType() != SENode::Add) return node;
460
461 bool has_change = false;
462
463 std::vector<SENode*> new_children{};
464 for (SENode* child : *node) {
465 if (child->GetType() == SENode::RecurrentAddExpr) {
466 SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient();
467 // If coefficient is zero then we can eliminate the recurrent expression
468 // entirely and just return the offset as the recurrent expression is
469 // representing the equation coefficient*iterations + offset.
470 if (coefficient->GetType() == SENode::Constant &&
471 coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) {
472 new_children.push_back(child->AsSERecurrentNode()->GetOffset());
473 has_change = true;
474 } else {
475 new_children.push_back(child);
476 }
477 } else {
478 new_children.push_back(child);
479 }
480 }
481
482 if (!has_change) return node;
483
484 std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())};
485
486 for (SENode* child : new_children) {
487 new_add->AddChild(child);
488 }
489
490 return analysis_.GetCachedOrAdd(std::move(new_add));
491 }
492
SimplifyRecurrentAddExpression(SERecurrentNode * recurrent_expr)493 SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression(
494 SERecurrentNode* recurrent_expr) {
495 const std::vector<SENode*>& children = node_->GetChildren();
496
497 std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode(
498 recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())};
499
500 // Create and simplify the new offset node.
501 std::unique_ptr<SENode> new_offset{
502 new SEAddNode(recurrent_expr->GetParentAnalysis())};
503 new_offset->AddChild(recurrent_expr->GetOffset());
504
505 for (SENode* child : children) {
506 if (child->GetType() != SENode::RecurrentAddExpr) {
507 new_offset->AddChild(child);
508 }
509 }
510
511 // Simplify the new offset.
512 SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get());
513
514 // If the child can be simplified, add the simplified form otherwise, add it
515 // via the usual caching mechanism.
516 if (simplified_child->GetType() != SENode::CanNotCompute) {
517 recurrent_node->AddOffset(simplified_child);
518 } else {
519 recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset)));
520 }
521
522 recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient());
523
524 return analysis_.GetCachedOrAdd(std::move(recurrent_node));
525 }
526
527 /*
528 * Scalar Analysis simplification public methods.
529 */
530
SimplifyExpression(SENode * node)531 SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) {
532 SENodeSimplifyImpl impl{this, node};
533
534 return impl.Simplify();
535 }
536
537 } // namespace opt
538 } // namespace spvtools
539