1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Fuzzy image comparison.
22 *//*--------------------------------------------------------------------*/
23
24 #include "tcuFuzzyImageCompare.hpp"
25 #include "tcuTexture.hpp"
26 #include "tcuTextureUtil.hpp"
27 #include "deMath.h"
28 #include "deRandom.hpp"
29
30 #include <vector>
31
32 namespace tcu
33 {
34
35 enum
36 {
37 MIN_ERR_THRESHOLD = 4 // Magic to make small differences go away
38 };
39
40 using std::vector;
41
42 template <int Channel>
getChannel(uint32_t color)43 static inline uint8_t getChannel(uint32_t color)
44 {
45 return (uint8_t)((color >> (Channel * 8)) & 0xff);
46 }
47
getChannel(uint32_t color,int channel)48 static inline uint8_t getChannel(uint32_t color, int channel)
49 {
50 return (uint8_t)((color >> (channel * 8)) & 0xff);
51 }
52
setChannel(uint32_t color,int channel,uint8_t val)53 static inline uint32_t setChannel(uint32_t color, int channel, uint8_t val)
54 {
55 return (color & ~(0xffu << (8 * channel))) | (val << (8 * channel));
56 }
57
toFloatVec(uint32_t color)58 static inline Vec4 toFloatVec(uint32_t color)
59 {
60 return Vec4((float)getChannel<0>(color), (float)getChannel<1>(color), (float)getChannel<2>(color),
61 (float)getChannel<3>(color));
62 }
63
roundToUint8Sat(float v)64 static inline uint8_t roundToUint8Sat(float v)
65 {
66 return (uint8_t)de::clamp((int)(v + 0.5f), 0, 255);
67 }
68
toColor(Vec4 v)69 static inline uint32_t toColor(Vec4 v)
70 {
71 return roundToUint8Sat(v[0]) | (roundToUint8Sat(v[1]) << 8) | (roundToUint8Sat(v[2]) << 16) |
72 (roundToUint8Sat(v[3]) << 24);
73 }
74
75 template <int NumChannels>
readUnorm8(const tcu::ConstPixelBufferAccess & src,int x,int y)76 static inline uint32_t readUnorm8(const tcu::ConstPixelBufferAccess &src, int x, int y)
77 {
78 const uint8_t *ptr = (const uint8_t *)src.getDataPtr() + src.getRowPitch() * y + x * NumChannels;
79 uint32_t v = 0;
80
81 for (int c = 0; c < NumChannels; c++)
82 v |= ptr[c] << (c * 8);
83
84 if (NumChannels < 4)
85 v |= 0xffu << 24;
86
87 return v;
88 }
89
90 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
91 template <>
readUnorm8(const tcu::ConstPixelBufferAccess & src,int x,int y)92 inline uint32_t readUnorm8<4>(const tcu::ConstPixelBufferAccess &src, int x, int y)
93 {
94 return *(const uint32_t *)((const uint8_t *)src.getDataPtr() + src.getRowPitch() * y + x * 4);
95 }
96 #endif
97
98 template <int NumChannels>
writeUnorm8(const tcu::PixelBufferAccess & dst,int x,int y,uint32_t val)99 static inline void writeUnorm8(const tcu::PixelBufferAccess &dst, int x, int y, uint32_t val)
100 {
101 uint8_t *ptr = (uint8_t *)dst.getDataPtr() + dst.getRowPitch() * y + x * NumChannels;
102
103 for (int c = 0; c < NumChannels; c++)
104 ptr[c] = getChannel(val, c);
105 }
106
107 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
108 template <>
writeUnorm8(const tcu::PixelBufferAccess & dst,int x,int y,uint32_t val)109 inline void writeUnorm8<4>(const tcu::PixelBufferAccess &dst, int x, int y, uint32_t val)
110 {
111 *(uint32_t *)((uint8_t *)dst.getDataPtr() + dst.getRowPitch() * y + x * 4) = val;
112 }
113 #endif
114
colorDistSquared(uint32_t pa,uint32_t pb)115 static inline uint32_t colorDistSquared(uint32_t pa, uint32_t pb)
116 {
117 const int r = de::max<int>(de::abs((int)getChannel<0>(pa) - (int)getChannel<0>(pb)) - MIN_ERR_THRESHOLD, 0);
118 const int g = de::max<int>(de::abs((int)getChannel<1>(pa) - (int)getChannel<1>(pb)) - MIN_ERR_THRESHOLD, 0);
119 const int b = de::max<int>(de::abs((int)getChannel<2>(pa) - (int)getChannel<2>(pb)) - MIN_ERR_THRESHOLD, 0);
120 const int a = de::max<int>(de::abs((int)getChannel<3>(pa) - (int)getChannel<3>(pb)) - MIN_ERR_THRESHOLD, 0);
121
122 return uint32_t(r * r + g * g + b * b + a * a);
123 }
124
125 template <int NumChannels>
bilinearSample(const ConstPixelBufferAccess & src,float u,float v)126 inline uint32_t bilinearSample(const ConstPixelBufferAccess &src, float u, float v)
127 {
128 int w = src.getWidth();
129 int h = src.getHeight();
130
131 int x0 = deFloorFloatToInt32(u - 0.5f);
132 int x1 = x0 + 1;
133 int y0 = deFloorFloatToInt32(v - 0.5f);
134 int y1 = y0 + 1;
135
136 int i0 = de::clamp(x0, 0, w - 1);
137 int i1 = de::clamp(x1, 0, w - 1);
138 int j0 = de::clamp(y0, 0, h - 1);
139 int j1 = de::clamp(y1, 0, h - 1);
140
141 float a = deFloatFrac(u - 0.5f);
142 float b = deFloatFrac(v - 0.5f);
143
144 uint32_t p00 = readUnorm8<NumChannels>(src, i0, j0);
145 uint32_t p10 = readUnorm8<NumChannels>(src, i1, j0);
146 uint32_t p01 = readUnorm8<NumChannels>(src, i0, j1);
147 uint32_t p11 = readUnorm8<NumChannels>(src, i1, j1);
148 uint32_t dst = 0;
149
150 // Interpolate.
151 for (int c = 0; c < NumChannels; c++)
152 {
153 float f = (getChannel(p00, c) * (1.0f - a) * (1.0f - b)) + (getChannel(p10, c) * (a) * (1.0f - b)) +
154 (getChannel(p01, c) * (1.0f - a) * (b)) + (getChannel(p11, c) * (a) * (b));
155 dst = setChannel(dst, c, roundToUint8Sat(f));
156 }
157
158 return dst;
159 }
160
161 template <int DstChannels, int SrcChannels>
separableConvolve(const PixelBufferAccess & dst,const ConstPixelBufferAccess & src,int shiftX,int shiftY,const std::vector<float> & kernelX,const std::vector<float> & kernelY)162 static void separableConvolve(const PixelBufferAccess &dst, const ConstPixelBufferAccess &src, int shiftX, int shiftY,
163 const std::vector<float> &kernelX, const std::vector<float> &kernelY)
164 {
165 DE_ASSERT(dst.getWidth() == src.getWidth() && dst.getHeight() == src.getHeight());
166
167 TextureLevel tmp(dst.getFormat(), dst.getHeight(), dst.getWidth());
168 PixelBufferAccess tmpAccess = tmp.getAccess();
169
170 int kw = (int)kernelX.size();
171 int kh = (int)kernelY.size();
172
173 // Horizontal pass
174 // \note Temporary surface is written in column-wise order
175 for (int j = 0; j < src.getHeight(); j++)
176 {
177 for (int i = 0; i < src.getWidth(); i++)
178 {
179 Vec4 sum(0);
180
181 for (int kx = 0; kx < kw; kx++)
182 {
183 float f = kernelX[kw - kx - 1];
184 uint32_t p = readUnorm8<SrcChannels>(src, de::clamp(i + kx - shiftX, 0, src.getWidth() - 1), j);
185
186 sum += toFloatVec(p) * f;
187 }
188
189 writeUnorm8<DstChannels>(tmpAccess, j, i, toColor(sum));
190 }
191 }
192
193 // Vertical pass
194 for (int j = 0; j < src.getHeight(); j++)
195 {
196 for (int i = 0; i < src.getWidth(); i++)
197 {
198 Vec4 sum(0.0f);
199
200 for (int ky = 0; ky < kh; ky++)
201 {
202 float f = kernelY[kh - ky - 1];
203 uint32_t p = readUnorm8<DstChannels>(tmpAccess, de::clamp(j + ky - shiftY, 0, tmp.getWidth() - 1), i);
204
205 sum += toFloatVec(p) * f;
206 }
207
208 writeUnorm8<DstChannels>(dst, i, j, toColor(sum));
209 }
210 }
211 }
212
213 template <int NumChannels>
distSquaredToNeighbor(de::Random & rnd,uint32_t pixel,const ConstPixelBufferAccess & surface,int x,int y)214 static uint32_t distSquaredToNeighbor(de::Random &rnd, uint32_t pixel, const ConstPixelBufferAccess &surface, int x,
215 int y)
216 {
217 // (x, y) + (0, 0)
218 uint32_t minDist = colorDistSquared(pixel, readUnorm8<NumChannels>(surface, x, y));
219
220 if (minDist == 0)
221 return minDist;
222
223 // Area around (x, y)
224 static const int s_coords[8][2] = {{-1, -1}, {0, -1}, {+1, -1}, {-1, 0}, {+1, 0}, {-1, +1}, {0, +1}, {+1, +1}};
225
226 for (int d = 0; d < (int)DE_LENGTH_OF_ARRAY(s_coords); d++)
227 {
228 int dx = x + s_coords[d][0];
229 int dy = y + s_coords[d][1];
230
231 if (!deInBounds32(dx, 0, surface.getWidth()) || !deInBounds32(dy, 0, surface.getHeight()))
232 continue;
233
234 minDist = de::min(minDist, colorDistSquared(pixel, readUnorm8<NumChannels>(surface, dx, dy)));
235 if (minDist == 0)
236 return minDist;
237 }
238
239 // Random bilinear-interpolated samples around (x, y)
240 for (int s = 0; s < 32; s++)
241 {
242 float dx = (float)x + rnd.getFloat() * 2.0f - 0.5f;
243 float dy = (float)y + rnd.getFloat() * 2.0f - 0.5f;
244
245 uint32_t sample = bilinearSample<NumChannels>(surface, dx, dy);
246
247 minDist = de::min(minDist, colorDistSquared(pixel, sample));
248 if (minDist == 0)
249 return minDist;
250 }
251
252 return minDist;
253 }
254
toGrayscale(const Vec4 & c)255 static inline float toGrayscale(const Vec4 &c)
256 {
257 return 0.2126f * c[0] + 0.7152f * c[1] + 0.0722f * c[2];
258 }
259
isFormatSupported(const TextureFormat & format)260 static bool isFormatSupported(const TextureFormat &format)
261 {
262 return format.type == TextureFormat::UNORM_INT8 &&
263 (format.order == TextureFormat::RGB || format.order == TextureFormat::RGBA);
264 }
265
fuzzyCompare(const FuzzyCompareParams & params,const ConstPixelBufferAccess & ref,const ConstPixelBufferAccess & cmp,const PixelBufferAccess & errorMask)266 float fuzzyCompare(const FuzzyCompareParams ¶ms, const ConstPixelBufferAccess &ref,
267 const ConstPixelBufferAccess &cmp, const PixelBufferAccess &errorMask)
268 {
269 DE_ASSERT(ref.getWidth() == cmp.getWidth() && ref.getHeight() == cmp.getHeight());
270 DE_ASSERT(errorMask.getWidth() == ref.getWidth() && errorMask.getHeight() == ref.getHeight());
271
272 if (!isFormatSupported(ref.getFormat()) || !isFormatSupported(cmp.getFormat()))
273 throw InternalError("Unsupported format in fuzzy comparison", DE_NULL, __FILE__, __LINE__);
274
275 int width = ref.getWidth();
276 int height = ref.getHeight();
277 de::Random rnd(667);
278
279 // Filtered
280 TextureLevel refFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
281 TextureLevel cmpFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
282
283 // Kernel = {0.1, 0.8, 0.1}
284 vector<float> kernel(3);
285 kernel[0] = kernel[2] = 0.1f;
286 kernel[1] = 0.8f;
287 int shift = (int)(kernel.size() - 1) / 2;
288
289 switch (ref.getFormat().order)
290 {
291 case TextureFormat::RGBA:
292 separableConvolve<4, 4>(refFiltered, ref, shift, shift, kernel, kernel);
293 break;
294 case TextureFormat::RGB:
295 separableConvolve<4, 3>(refFiltered, ref, shift, shift, kernel, kernel);
296 break;
297 default:
298 DE_ASSERT(false);
299 }
300
301 switch (cmp.getFormat().order)
302 {
303 case TextureFormat::RGBA:
304 separableConvolve<4, 4>(cmpFiltered, cmp, shift, shift, kernel, kernel);
305 break;
306 case TextureFormat::RGB:
307 separableConvolve<4, 3>(cmpFiltered, cmp, shift, shift, kernel, kernel);
308 break;
309 default:
310 DE_ASSERT(false);
311 }
312
313 int numSamples = 0;
314 uint64_t distSum4 = 0ull;
315
316 // Clear error mask to green.
317 clear(errorMask, Vec4(0.0f, 1.0f, 0.0f, 1.0f));
318
319 ConstPixelBufferAccess refAccess = refFiltered.getAccess();
320 ConstPixelBufferAccess cmpAccess = cmpFiltered.getAccess();
321
322 for (int y = 1; y < height - 1; y++)
323 {
324 for (int x = 1; x<width - 1; x += params.maxSampleSkip> 0 ? (int)rnd.getInt(1, params.maxSampleSkip) : 1)
325 {
326 const uint32_t minDist2RefToCmp =
327 distSquaredToNeighbor<4>(rnd, readUnorm8<4>(refAccess, x, y), cmpAccess, x, y);
328 const uint32_t minDist2CmpToRef =
329 distSquaredToNeighbor<4>(rnd, readUnorm8<4>(cmpAccess, x, y), refAccess, x, y);
330 const uint32_t minDist2 = de::min(minDist2RefToCmp, minDist2CmpToRef);
331 const uint64_t newSum4 = distSum4 + minDist2 * minDist2;
332
333 distSum4 = (newSum4 >= distSum4) ? newSum4 : ~0ull; // In case of overflow
334 numSamples += 1;
335
336 // Build error image.
337 {
338 const int scale = 255 - MIN_ERR_THRESHOLD;
339 const float err2 = float(minDist2) / float(scale * scale);
340 const float err4 = err2 * err2;
341 const float red = err4 * 500.0f;
342 const float luma = toGrayscale(cmp.getPixel(x, y));
343 const float rF = 0.7f + 0.3f * luma;
344
345 errorMask.setPixel(Vec4(red * rF, (1.0f - red) * rF, 0.0f, 1.0f), x, y);
346 }
347 }
348 }
349
350 {
351 // Scale error sum based on number of samples taken
352 const double pSamples = double((width - 2) * (height - 2)) / double(numSamples);
353 const uint64_t colScale = uint64_t(255 - MIN_ERR_THRESHOLD);
354 const uint64_t colScale4 = colScale * colScale * colScale * colScale;
355
356 return float(double(distSum4) / double(colScale4) * pSamples);
357 }
358 }
359
360 } // namespace tcu
361