1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Rasterization verifier utils.
22 *//*--------------------------------------------------------------------*/
23
24 #include "tcuRasterizationVerifier.hpp"
25 #include "tcuVector.hpp"
26 #include "tcuSurface.hpp"
27 #include "tcuTestLog.hpp"
28 #include "tcuTextureUtil.hpp"
29 #include "tcuVectorUtil.hpp"
30 #include "tcuFloat.hpp"
31
32 #include "deMath.h"
33 #include "deStringUtil.hpp"
34
35 #include "rrRasterizer.hpp"
36
37 #include <limits>
38
39 namespace tcu
40 {
41 namespace
42 {
43
44 bool verifyLineGroupInterpolationWithProjectedWeights(const tcu::Surface &surface, const LineSceneSpec &scene,
45 const RasterizationArguments &args, tcu::TestLog &log);
46
lineLineIntersect(const tcu::Vector<int64_t,2> & line0Beg,const tcu::Vector<int64_t,2> & line0End,const tcu::Vector<int64_t,2> & line1Beg,const tcu::Vector<int64_t,2> & line1End)47 bool lineLineIntersect(const tcu::Vector<int64_t, 2> &line0Beg, const tcu::Vector<int64_t, 2> &line0End,
48 const tcu::Vector<int64_t, 2> &line1Beg, const tcu::Vector<int64_t, 2> &line1End)
49 {
50 typedef tcu::Vector<int64_t, 2> I64Vec2;
51
52 // Lines do not intersect if the other line's endpoints are on the same side
53 // otherwise, the do intersect
54
55 // Test line 0
56 {
57 const I64Vec2 line = line0End - line0Beg;
58 const I64Vec2 v0 = line1Beg - line0Beg;
59 const I64Vec2 v1 = line1End - line0Beg;
60 const int64_t crossProduct0 = (line.x() * v0.y() - line.y() * v0.x());
61 const int64_t crossProduct1 = (line.x() * v1.y() - line.y() * v1.x());
62
63 // check signs
64 if ((crossProduct0 < 0 && crossProduct1 < 0) || (crossProduct0 > 0 && crossProduct1 > 0))
65 return false;
66 }
67
68 // Test line 1
69 {
70 const I64Vec2 line = line1End - line1Beg;
71 const I64Vec2 v0 = line0Beg - line1Beg;
72 const I64Vec2 v1 = line0End - line1Beg;
73 const int64_t crossProduct0 = (line.x() * v0.y() - line.y() * v0.x());
74 const int64_t crossProduct1 = (line.x() * v1.y() - line.y() * v1.x());
75
76 // check signs
77 if ((crossProduct0 < 0 && crossProduct1 < 0) || (crossProduct0 > 0 && crossProduct1 > 0))
78 return false;
79 }
80
81 return true;
82 }
83
isTriangleClockwise(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2)84 bool isTriangleClockwise(const tcu::Vec4 &p0, const tcu::Vec4 &p1, const tcu::Vec4 &p2)
85 {
86 const tcu::Vec2 u(p1.x() / p1.w() - p0.x() / p0.w(), p1.y() / p1.w() - p0.y() / p0.w());
87 const tcu::Vec2 v(p2.x() / p2.w() - p0.x() / p0.w(), p2.y() / p2.w() - p0.y() / p0.w());
88 const float crossProduct = (u.x() * v.y() - u.y() * v.x());
89
90 return crossProduct > 0.0f;
91 }
92
compareColors(const tcu::RGBA & colorA,const tcu::RGBA & colorB,int redBits,int greenBits,int blueBits)93 bool compareColors(const tcu::RGBA &colorA, const tcu::RGBA &colorB, int redBits, int greenBits, int blueBits)
94 {
95 const int thresholdRed = 1 << (8 - redBits);
96 const int thresholdGreen = 1 << (8 - greenBits);
97 const int thresholdBlue = 1 << (8 - blueBits);
98
99 return deAbs32(colorA.getRed() - colorB.getRed()) <= thresholdRed &&
100 deAbs32(colorA.getGreen() - colorB.getGreen()) <= thresholdGreen &&
101 deAbs32(colorA.getBlue() - colorB.getBlue()) <= thresholdBlue;
102 }
103
pixelNearLineSegment(const tcu::IVec2 & pixel,const tcu::Vec2 & p0,const tcu::Vec2 & p1)104 bool pixelNearLineSegment(const tcu::IVec2 &pixel, const tcu::Vec2 &p0, const tcu::Vec2 &p1)
105 {
106 const tcu::Vec2 pixelCenterPosition = tcu::Vec2((float)pixel.x() + 0.5f, (float)pixel.y() + 0.5f);
107
108 // "Near" = Distance from the line to the pixel is less than 2 * pixel_max_radius. (pixel_max_radius = sqrt(2) / 2)
109 const float maxPixelDistance = 1.414f;
110 const float maxPixelDistanceSquared = 2.0f;
111
112 // Near the line
113 {
114 const tcu::Vec2 line = p1 - p0;
115 const tcu::Vec2 v = pixelCenterPosition - p0;
116 const float crossProduct = (line.x() * v.y() - line.y() * v.x());
117
118 // distance to line: (line x v) / |line|
119 // |(line x v) / |line|| > maxPixelDistance
120 // ==> (line x v)^2 / |line|^2 > maxPixelDistance^2
121 // ==> (line x v)^2 > maxPixelDistance^2 * |line|^2
122
123 if (crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(line))
124 return false;
125 }
126
127 // Between the endpoints
128 {
129 // distance from line endpoint 1 to pixel is less than line length + maxPixelDistance
130 const float maxDistance = tcu::length(p1 - p0) + maxPixelDistance;
131
132 if (tcu::length(pixelCenterPosition - p0) > maxDistance)
133 return false;
134 if (tcu::length(pixelCenterPosition - p1) > maxDistance)
135 return false;
136 }
137
138 return true;
139 }
140
pixelOnlyOnASharedEdge(const tcu::IVec2 & pixel,const TriangleSceneSpec::SceneTriangle & triangle,const tcu::IVec2 & viewportSize)141 bool pixelOnlyOnASharedEdge(const tcu::IVec2 &pixel, const TriangleSceneSpec::SceneTriangle &triangle,
142 const tcu::IVec2 &viewportSize)
143 {
144 if (triangle.sharedEdge[0] || triangle.sharedEdge[1] || triangle.sharedEdge[2])
145 {
146 const tcu::Vec2 triangleNormalizedDeviceSpace[3] = {
147 tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(),
148 triangle.positions[0].y() / triangle.positions[0].w()),
149 tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(),
150 triangle.positions[1].y() / triangle.positions[1].w()),
151 tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(),
152 triangle.positions[2].y() / triangle.positions[2].w()),
153 };
154 const tcu::Vec2 triangleScreenSpace[3] = {
155 (triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
156 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
157 (triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
158 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
159 (triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
160 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
161 };
162
163 const bool pixelOnEdge0 = pixelNearLineSegment(pixel, triangleScreenSpace[0], triangleScreenSpace[1]);
164 const bool pixelOnEdge1 = pixelNearLineSegment(pixel, triangleScreenSpace[1], triangleScreenSpace[2]);
165 const bool pixelOnEdge2 = pixelNearLineSegment(pixel, triangleScreenSpace[2], triangleScreenSpace[0]);
166
167 // If the pixel is on a multiple edges return false
168
169 if (pixelOnEdge0 && !pixelOnEdge1 && !pixelOnEdge2)
170 return triangle.sharedEdge[0];
171 if (!pixelOnEdge0 && pixelOnEdge1 && !pixelOnEdge2)
172 return triangle.sharedEdge[1];
173 if (!pixelOnEdge0 && !pixelOnEdge1 && pixelOnEdge2)
174 return triangle.sharedEdge[2];
175 }
176
177 return false;
178 }
179
triangleArea(const tcu::Vec2 & s0,const tcu::Vec2 & s1,const tcu::Vec2 & s2)180 float triangleArea(const tcu::Vec2 &s0, const tcu::Vec2 &s1, const tcu::Vec2 &s2)
181 {
182 const tcu::Vec2 u(s1.x() - s0.x(), s1.y() - s0.y());
183 const tcu::Vec2 v(s2.x() - s0.x(), s2.y() - s0.y());
184 const float crossProduct = (u.x() * v.y() - u.y() * v.x());
185
186 return crossProduct / 2.0f;
187 }
188
getTriangleAABB(const TriangleSceneSpec::SceneTriangle & triangle,const tcu::IVec2 & viewportSize)189 tcu::IVec4 getTriangleAABB(const TriangleSceneSpec::SceneTriangle &triangle, const tcu::IVec2 &viewportSize)
190 {
191 const tcu::Vec2 normalizedDeviceSpace[3] = {
192 tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(),
193 triangle.positions[0].y() / triangle.positions[0].w()),
194 tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(),
195 triangle.positions[1].y() / triangle.positions[1].w()),
196 tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(),
197 triangle.positions[2].y() / triangle.positions[2].w()),
198 };
199 const tcu::Vec2 screenSpace[3] = {
200 (normalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
201 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
202 (normalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
203 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
204 (normalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
205 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
206 };
207
208 tcu::IVec4 aabb;
209
210 aabb.x() = (int)deFloatFloor(de::min(de::min(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
211 aabb.y() = (int)deFloatFloor(de::min(de::min(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
212 aabb.z() = (int)deFloatCeil(de::max(de::max(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
213 aabb.w() = (int)deFloatCeil(de::max(de::max(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
214
215 return aabb;
216 }
217
getExponentEpsilonFromULP(int valueExponent,uint32_t ulp)218 float getExponentEpsilonFromULP(int valueExponent, uint32_t ulp)
219 {
220 DE_ASSERT(ulp < (1u << 10));
221
222 // assume mediump precision, using ulp as ulps in a 10 bit mantissa
223 return tcu::Float32::construct(+1, valueExponent, (1u << 23) + (ulp << (23 - 10))).asFloat() -
224 tcu::Float32::construct(+1, valueExponent, (1u << 23)).asFloat();
225 }
226
getValueEpsilonFromULP(float value,uint32_t ulp)227 float getValueEpsilonFromULP(float value, uint32_t ulp)
228 {
229 DE_ASSERT(value != std::numeric_limits<float>::infinity() && value != -std::numeric_limits<float>::infinity());
230
231 const int exponent = tcu::Float32(value).exponent();
232 return getExponentEpsilonFromULP(exponent, ulp);
233 }
234
getMaxValueWithinError(float value,uint32_t ulp)235 float getMaxValueWithinError(float value, uint32_t ulp)
236 {
237 if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
238 return value;
239
240 return value + getValueEpsilonFromULP(value, ulp);
241 }
242
getMinValueWithinError(float value,uint32_t ulp)243 float getMinValueWithinError(float value, uint32_t ulp)
244 {
245 if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
246 return value;
247
248 return value - getValueEpsilonFromULP(value, ulp);
249 }
250
getMinFlushToZero(float value)251 float getMinFlushToZero(float value)
252 {
253 // flush to zero if that decreases the value
254 // assume mediump precision
255 if (value > 0.0f && value < tcu::Float32::construct(+1, -14, 1u << 23).asFloat())
256 return 0.0f;
257 return value;
258 }
259
getMaxFlushToZero(float value)260 float getMaxFlushToZero(float value)
261 {
262 // flush to zero if that increases the value
263 // assume mediump precision
264 if (value < 0.0f && value > tcu::Float32::construct(-1, -14, 1u << 23).asFloat())
265 return 0.0f;
266 return value;
267 }
268
convertRGB8ToNativeFormat(const tcu::RGBA & color,const RasterizationArguments & args)269 tcu::IVec3 convertRGB8ToNativeFormat(const tcu::RGBA &color, const RasterizationArguments &args)
270 {
271 tcu::IVec3 pixelNativeColor;
272
273 for (int channelNdx = 0; channelNdx < 3; ++channelNdx)
274 {
275 const int channelBitCount = (channelNdx == 0) ? (args.redBits) :
276 (channelNdx == 1) ? (args.greenBits) :
277 (args.blueBits);
278 const int channelPixelValue = (channelNdx == 0) ? (color.getRed()) :
279 (channelNdx == 1) ? (color.getGreen()) :
280 (color.getBlue());
281
282 if (channelBitCount <= 8)
283 pixelNativeColor[channelNdx] = channelPixelValue >> (8 - channelBitCount);
284 else if (channelBitCount == 8)
285 pixelNativeColor[channelNdx] = channelPixelValue;
286 else
287 {
288 // just in case someone comes up with 8+ bits framebuffers pixel formats. But as
289 // we can only read in rgba8, we have to guess the trailing bits. Guessing 0.
290 pixelNativeColor[channelNdx] = channelPixelValue << (channelBitCount - 8);
291 }
292 }
293
294 return pixelNativeColor;
295 }
296
297 /*--------------------------------------------------------------------*//*!
298 * Returns the maximum value of x / y, where x c [minDividend, maxDividend]
299 * and y c [minDivisor, maxDivisor]
300 *//*--------------------------------------------------------------------*/
maximalRangeDivision(float minDividend,float maxDividend,float minDivisor,float maxDivisor)301 float maximalRangeDivision(float minDividend, float maxDividend, float minDivisor, float maxDivisor)
302 {
303 DE_ASSERT(minDividend <= maxDividend);
304 DE_ASSERT(minDivisor <= maxDivisor);
305
306 // special cases
307 if (minDividend == 0.0f && maxDividend == 0.0f)
308 return 0.0f;
309 if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
310 return std::numeric_limits<float>::infinity();
311
312 return de::max(de::max(minDividend / minDivisor, minDividend / maxDivisor),
313 de::max(maxDividend / minDivisor, maxDividend / maxDivisor));
314 }
315
316 /*--------------------------------------------------------------------*//*!
317 * Returns the minimum value of x / y, where x c [minDividend, maxDividend]
318 * and y c [minDivisor, maxDivisor]
319 *//*--------------------------------------------------------------------*/
minimalRangeDivision(float minDividend,float maxDividend,float minDivisor,float maxDivisor)320 float minimalRangeDivision(float minDividend, float maxDividend, float minDivisor, float maxDivisor)
321 {
322 DE_ASSERT(minDividend <= maxDividend);
323 DE_ASSERT(minDivisor <= maxDivisor);
324
325 // special cases
326 if (minDividend == 0.0f && maxDividend == 0.0f)
327 return 0.0f;
328 if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
329 return -std::numeric_limits<float>::infinity();
330
331 return de::min(de::min(minDividend / minDivisor, minDividend / maxDivisor),
332 de::min(maxDividend / minDivisor, maxDividend / maxDivisor));
333 }
334
isLineXMajor(const tcu::Vec2 & lineScreenSpaceP0,const tcu::Vec2 & lineScreenSpaceP1)335 static bool isLineXMajor(const tcu::Vec2 &lineScreenSpaceP0, const tcu::Vec2 &lineScreenSpaceP1)
336 {
337 return de::abs(lineScreenSpaceP1.x() - lineScreenSpaceP0.x()) >=
338 de::abs(lineScreenSpaceP1.y() - lineScreenSpaceP0.y());
339 }
340
isPackedSSLineXMajor(const tcu::Vec4 & packedLine)341 static bool isPackedSSLineXMajor(const tcu::Vec4 &packedLine)
342 {
343 const tcu::Vec2 lineScreenSpaceP0 = packedLine.swizzle(0, 1);
344 const tcu::Vec2 lineScreenSpaceP1 = packedLine.swizzle(2, 3);
345
346 return isLineXMajor(lineScreenSpaceP0, lineScreenSpaceP1);
347 }
348
349 struct InterpolationRange
350 {
351 tcu::Vec3 max;
352 tcu::Vec3 min;
353 };
354
355 struct LineInterpolationRange
356 {
357 tcu::Vec2 max;
358 tcu::Vec2 min;
359 };
360
calcTriangleInterpolationWeights(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::Vec2 & ndpixel)361 InterpolationRange calcTriangleInterpolationWeights(const tcu::Vec4 &p0, const tcu::Vec4 &p1, const tcu::Vec4 &p2,
362 const tcu::Vec2 &ndpixel)
363 {
364 const int roundError = 1;
365 const int barycentricError = 3;
366 const int divError = 8;
367
368 const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
369 const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
370 const tcu::Vec2 nd2 = p2.swizzle(0, 1) / p2.w();
371
372 const float ka = triangleArea(ndpixel, nd1, nd2);
373 const float kb = triangleArea(ndpixel, nd2, nd0);
374 const float kc = triangleArea(ndpixel, nd0, nd1);
375
376 const float kaMax = getMaxFlushToZero(getMaxValueWithinError(ka, barycentricError));
377 const float kbMax = getMaxFlushToZero(getMaxValueWithinError(kb, barycentricError));
378 const float kcMax = getMaxFlushToZero(getMaxValueWithinError(kc, barycentricError));
379 const float kaMin = getMinFlushToZero(getMinValueWithinError(ka, barycentricError));
380 const float kbMin = getMinFlushToZero(getMinValueWithinError(kb, barycentricError));
381 const float kcMin = getMinFlushToZero(getMinValueWithinError(kc, barycentricError));
382 DE_ASSERT(kaMin <= kaMax);
383 DE_ASSERT(kbMin <= kbMax);
384 DE_ASSERT(kcMin <= kcMax);
385
386 // calculate weights: vec3(ka / p0.w, kb / p1.w, kc / p2.w) / (ka / p0.w + kb / p1.w + kc / p2.w)
387 const float maxPreDivisionValues[3] = {
388 getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kaMax / p0.w()), divError)),
389 getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kbMax / p1.w()), divError)),
390 getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kcMax / p2.w()), divError)),
391 };
392 const float minPreDivisionValues[3] = {
393 getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kaMin / p0.w()), divError)),
394 getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kbMin / p1.w()), divError)),
395 getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kcMin / p2.w()), divError)),
396 };
397 DE_ASSERT(minPreDivisionValues[0] <= maxPreDivisionValues[0]);
398 DE_ASSERT(minPreDivisionValues[1] <= maxPreDivisionValues[1]);
399 DE_ASSERT(minPreDivisionValues[2] <= maxPreDivisionValues[2]);
400
401 const float maxDivisor = getMaxFlushToZero(getMaxValueWithinError(
402 maxPreDivisionValues[0] + maxPreDivisionValues[1] + maxPreDivisionValues[2], 2 * roundError));
403 const float minDivisor = getMinFlushToZero(getMinValueWithinError(
404 minPreDivisionValues[0] + minPreDivisionValues[1] + minPreDivisionValues[2], 2 * roundError));
405 DE_ASSERT(minDivisor <= maxDivisor);
406
407 InterpolationRange returnValue;
408
409 returnValue.max.x() = getMaxFlushToZero(
410 getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0],
411 minDivisor, maxDivisor)),
412 divError));
413 returnValue.max.y() = getMaxFlushToZero(
414 getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1],
415 minDivisor, maxDivisor)),
416 divError));
417 returnValue.max.z() = getMaxFlushToZero(
418 getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2],
419 minDivisor, maxDivisor)),
420 divError));
421 returnValue.min.x() = getMinFlushToZero(
422 getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0],
423 minDivisor, maxDivisor)),
424 divError));
425 returnValue.min.y() = getMinFlushToZero(
426 getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1],
427 minDivisor, maxDivisor)),
428 divError));
429 returnValue.min.z() = getMinFlushToZero(
430 getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2],
431 minDivisor, maxDivisor)),
432 divError));
433
434 DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
435 DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
436 DE_ASSERT(returnValue.min.z() <= returnValue.max.z());
437
438 return returnValue;
439 }
440
calcLineInterpolationWeights(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::Vec2 & pr)441 LineInterpolationRange calcLineInterpolationWeights(const tcu::Vec2 &pa, float wa, const tcu::Vec2 &pb, float wb,
442 const tcu::Vec2 &pr)
443 {
444 const int roundError = 1;
445 const int divError = 3;
446
447 // calc weights:
448 // (1-t) / wa t / wb
449 // ------------------- , -------------------
450 // (1-t) / wa + t / wb (1-t) / wa + t / wb
451
452 // Allow 1 ULP
453 const float dividend = tcu::dot(pr - pa, pb - pa);
454 const float dividendMax = getMaxValueWithinError(dividend, 1);
455 const float dividendMin = getMinValueWithinError(dividend, 1);
456 DE_ASSERT(dividendMin <= dividendMax);
457
458 // Assuming lengthSquared will not be implemented as sqrt(x)^2, allow 1 ULP
459 const float divisor = tcu::lengthSquared(pb - pa);
460 const float divisorMax = getMaxValueWithinError(divisor, 1);
461 const float divisorMin = getMinValueWithinError(divisor, 1);
462 DE_ASSERT(divisorMin <= divisorMax);
463
464 // Allow 3 ULP precision for division
465 const float tMax =
466 getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
467 const float tMin =
468 getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
469 DE_ASSERT(tMin <= tMax);
470
471 const float perspectiveTMax = getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
472 const float perspectiveTMin = getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
473 DE_ASSERT(perspectiveTMin <= perspectiveTMax);
474
475 const float perspectiveInvTMax =
476 getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
477 const float perspectiveInvTMin =
478 getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
479 DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
480
481 const float perspectiveDivisorMax = getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
482 const float perspectiveDivisorMin = getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
483 DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
484
485 LineInterpolationRange returnValue;
486 returnValue.max.x() = getMaxValueWithinError(
487 maximalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax),
488 divError);
489 returnValue.max.y() = getMaxValueWithinError(
490 maximalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
491 returnValue.min.x() = getMinValueWithinError(
492 minimalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax),
493 divError);
494 returnValue.min.y() = getMinValueWithinError(
495 minimalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
496
497 DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
498 DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
499
500 return returnValue;
501 }
502
calcLineInterpolationWeightsAxisProjected(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::Vec2 & pr)503 LineInterpolationRange calcLineInterpolationWeightsAxisProjected(const tcu::Vec2 &pa, float wa, const tcu::Vec2 &pb,
504 float wb, const tcu::Vec2 &pr)
505 {
506 const int roundError = 1;
507 const int divError = 3;
508 const bool isXMajor = isLineXMajor(pa, pb);
509 const int majorAxisNdx = (isXMajor) ? (0) : (1);
510
511 // calc weights:
512 // (1-t) / wa t / wb
513 // ------------------- , -------------------
514 // (1-t) / wa + t / wb (1-t) / wa + t / wb
515
516 // Use axis projected (inaccurate) method, i.e. for X-major lines:
517 // (xd - xa) * (xb - xa) xd - xa
518 // t = --------------------- == -------
519 // ( xb - xa ) ^ 2 xb - xa
520
521 // Allow 1 ULP
522 const float dividend = (pr[majorAxisNdx] - pa[majorAxisNdx]);
523 const float dividendMax = getMaxValueWithinError(dividend, 1);
524 const float dividendMin = getMinValueWithinError(dividend, 1);
525 DE_ASSERT(dividendMin <= dividendMax);
526
527 // Allow 1 ULP
528 const float divisor = (pb[majorAxisNdx] - pa[majorAxisNdx]);
529 const float divisorMax = getMaxValueWithinError(divisor, 1);
530 const float divisorMin = getMinValueWithinError(divisor, 1);
531 DE_ASSERT(divisorMin <= divisorMax);
532
533 // Allow 3 ULP precision for division
534 const float tMax =
535 getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
536 const float tMin =
537 getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
538 DE_ASSERT(tMin <= tMax);
539
540 const float perspectiveTMax = getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
541 const float perspectiveTMin = getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
542 DE_ASSERT(perspectiveTMin <= perspectiveTMax);
543
544 const float perspectiveInvTMax =
545 getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
546 const float perspectiveInvTMin =
547 getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
548 DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
549
550 const float perspectiveDivisorMax = getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
551 const float perspectiveDivisorMin = getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
552 DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
553
554 LineInterpolationRange returnValue;
555 returnValue.max.x() = getMaxValueWithinError(
556 maximalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax),
557 divError);
558 returnValue.max.y() = getMaxValueWithinError(
559 maximalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
560 returnValue.min.x() = getMinValueWithinError(
561 minimalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax),
562 divError);
563 returnValue.min.y() = getMinValueWithinError(
564 minimalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
565
566 DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
567 DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
568
569 return returnValue;
570 }
571
572 template <typename WeightEquation>
calcSingleSampleLineInterpolationRangeWithWeightEquation(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits,WeightEquation weightEquation)573 LineInterpolationRange calcSingleSampleLineInterpolationRangeWithWeightEquation(const tcu::Vec2 &pa, float wa,
574 const tcu::Vec2 &pb, float wb,
575 const tcu::IVec2 &pixel,
576 int subpixelBits,
577 WeightEquation weightEquation)
578 {
579 // allow interpolation weights anywhere in the central subpixels
580 const float testSquareSize = (2.0f / (float)(1UL << subpixelBits));
581 const float testSquarePos = (0.5f - testSquareSize / 2);
582
583 const tcu::Vec2 corners[4] = {
584 tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f, (float)pixel.y() + testSquarePos + 0.0f),
585 tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f, (float)pixel.y() + testSquarePos + testSquareSize),
586 tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize, (float)pixel.y() + testSquarePos + testSquareSize),
587 tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize, (float)pixel.y() + testSquarePos + 0.0f),
588 };
589
590 // calculate interpolation as a line
591 const LineInterpolationRange weights[4] = {
592 weightEquation(pa, wa, pb, wb, corners[0]),
593 weightEquation(pa, wa, pb, wb, corners[1]),
594 weightEquation(pa, wa, pb, wb, corners[2]),
595 weightEquation(pa, wa, pb, wb, corners[3]),
596 };
597
598 const tcu::Vec2 minWeights =
599 tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
600 const tcu::Vec2 maxWeights =
601 tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
602
603 LineInterpolationRange result;
604 result.min = minWeights;
605 result.max = maxWeights;
606 return result;
607 }
608
calcSingleSampleLineInterpolationRange(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits)609 LineInterpolationRange calcSingleSampleLineInterpolationRange(const tcu::Vec2 &pa, float wa, const tcu::Vec2 &pb,
610 float wb, const tcu::IVec2 &pixel, int subpixelBits)
611 {
612 return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits,
613 calcLineInterpolationWeights);
614 }
615
calcSingleSampleLineInterpolationRangeAxisProjected(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits)616 LineInterpolationRange calcSingleSampleLineInterpolationRangeAxisProjected(const tcu::Vec2 &pa, float wa,
617 const tcu::Vec2 &pb, float wb,
618 const tcu::IVec2 &pixel, int subpixelBits)
619 {
620 return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits,
621 calcLineInterpolationWeightsAxisProjected);
622 }
623
624 struct TriangleInterpolator
625 {
626 const TriangleSceneSpec &scene;
627
TriangleInterpolatortcu::__anone85a11dd0111::TriangleInterpolator628 TriangleInterpolator(const TriangleSceneSpec &scene_) : scene(scene_)
629 {
630 }
631
interpolatetcu::__anone85a11dd0111::TriangleInterpolator632 InterpolationRange interpolate(int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize,
633 bool multisample, int subpixelBits) const
634 {
635 // allow anywhere in the pixel area in multisample
636 // allow only in the center subpixels (4 subpixels) in singlesample
637 const float testSquareSize = (multisample) ? (1.0f) : (2.0f / (float)(1UL << subpixelBits));
638 const float testSquarePos = (multisample) ? (0.0f) : (0.5f - testSquareSize / 2);
639 const tcu::Vec2 corners[4] = {
640 tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f) / (float)viewportSize.x() * 2.0f - 1.0f,
641 ((float)pixel.y() + testSquarePos + 0.0f) / (float)viewportSize.y() * 2.0f - 1.0f),
642 tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f) / (float)viewportSize.x() * 2.0f - 1.0f,
643 ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
644 tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f,
645 ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
646 tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f,
647 ((float)pixel.y() + testSquarePos + 0.0f) / (float)viewportSize.y() * 2.0f - 1.0f),
648 };
649 const InterpolationRange weights[4] = {
650 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0],
651 scene.triangles[primitiveNdx].positions[1],
652 scene.triangles[primitiveNdx].positions[2], corners[0]),
653 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0],
654 scene.triangles[primitiveNdx].positions[1],
655 scene.triangles[primitiveNdx].positions[2], corners[1]),
656 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0],
657 scene.triangles[primitiveNdx].positions[1],
658 scene.triangles[primitiveNdx].positions[2], corners[2]),
659 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0],
660 scene.triangles[primitiveNdx].positions[1],
661 scene.triangles[primitiveNdx].positions[2], corners[3]),
662 };
663
664 InterpolationRange result;
665 result.min = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
666 result.max = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
667 return result;
668 }
669 };
670
671 /*--------------------------------------------------------------------*//*!
672 * Used only by verifyMultisampleLineGroupInterpolation to calculate
673 * correct line interpolations for the triangulated lines.
674 *//*--------------------------------------------------------------------*/
675 struct MultisampleLineInterpolator
676 {
677 const LineSceneSpec &scene;
678
MultisampleLineInterpolatortcu::__anone85a11dd0111::MultisampleLineInterpolator679 MultisampleLineInterpolator(const LineSceneSpec &scene_) : scene(scene_)
680 {
681 }
682
interpolatetcu::__anone85a11dd0111::MultisampleLineInterpolator683 InterpolationRange interpolate(int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize,
684 bool multisample, int subpixelBits) const
685 {
686 DE_UNREF(multisample);
687 DE_UNREF(subpixelBits);
688
689 // in triangulation, one line emits two triangles
690 const int lineNdx = primitiveNdx / 2;
691
692 // allow interpolation weights anywhere in the pixel
693 const tcu::Vec2 corners[4] = {
694 tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 0.0f),
695 tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 1.0f),
696 tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 1.0f),
697 tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 0.0f),
698 };
699
700 const float wa = scene.lines[lineNdx].positions[0].w();
701 const float wb = scene.lines[lineNdx].positions[1].w();
702 const tcu::Vec2 pa =
703 tcu::Vec2((scene.lines[lineNdx].positions[0].x() / wa + 1.0f) * 0.5f * (float)viewportSize.x(),
704 (scene.lines[lineNdx].positions[0].y() / wa + 1.0f) * 0.5f * (float)viewportSize.y());
705 const tcu::Vec2 pb =
706 tcu::Vec2((scene.lines[lineNdx].positions[1].x() / wb + 1.0f) * 0.5f * (float)viewportSize.x(),
707 (scene.lines[lineNdx].positions[1].y() / wb + 1.0f) * 0.5f * (float)viewportSize.y());
708
709 // calculate interpolation as a line
710 const LineInterpolationRange weights[4] = {
711 calcLineInterpolationWeights(pa, wa, pb, wb, corners[0]),
712 calcLineInterpolationWeights(pa, wa, pb, wb, corners[1]),
713 calcLineInterpolationWeights(pa, wa, pb, wb, corners[2]),
714 calcLineInterpolationWeights(pa, wa, pb, wb, corners[3]),
715 };
716
717 const tcu::Vec2 minWeights =
718 tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
719 const tcu::Vec2 maxWeights =
720 tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
721
722 // convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
723 InterpolationRange result;
724 result.min = tcu::Vec3(minWeights.x(), 0.0f, minWeights.y());
725 result.max = tcu::Vec3(maxWeights.x(), 0.0f, maxWeights.y());
726 return result;
727 }
728 };
729
730 template <typename Interpolator>
verifyTriangleGroupInterpolationWithInterpolator(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,VerifyTriangleGroupInterpolationLogStash & logStash,const Interpolator & interpolator)731 bool verifyTriangleGroupInterpolationWithInterpolator(const tcu::Surface &surface, const TriangleSceneSpec &scene,
732 const RasterizationArguments &args,
733 VerifyTriangleGroupInterpolationLogStash &logStash,
734 const Interpolator &interpolator)
735 {
736 const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
737 const bool multisampled = (args.numSamples != 0);
738 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
739 const int errorFloodThreshold = 4;
740 int errorCount = 0;
741 int invalidPixels = 0;
742 int subPixelBits = args.subpixelBits;
743 tcu::Surface errorMask(surface.getWidth(), surface.getHeight());
744
745 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
746
747 // log format
748
749 logStash.messages.push_back(std::string("Verifying rasterization result. Native format is RGB" +
750 de::toString(args.redBits) + de::toString(args.greenBits) +
751 de::toString(args.blueBits)));
752 if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
753 logStash.messages.push_back(
754 std::string("Warning! More than 8 bits in a color channel, this may produce false negatives."));
755
756 // subpixel bits in a valid range?
757
758 if (subPixelBits < 0)
759 {
760 logStash.messages.push_back(
761 std::string("Invalid subpixel count (" + de::toString(subPixelBits) + "), assuming 0"));
762 subPixelBits = 0;
763 }
764 else if (subPixelBits > 16)
765 {
766 // At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
767 logStash.messages.push_back(
768 std::string("Subpixel count is greater than 16 (" + de::toString(subPixelBits) +
769 ")."
770 " Checking results using less strict 16 bit requirements. This may produce false positives."));
771 subPixelBits = 16;
772 }
773
774 // check pixels
775
776 for (int y = 0; y < surface.getHeight(); ++y)
777 for (int x = 0; x < surface.getWidth(); ++x)
778 {
779 const tcu::RGBA color = surface.getPixel(x, y);
780 bool stackBottomFound = false;
781 int stackSize = 0;
782 tcu::Vec4 colorStackMin;
783 tcu::Vec4 colorStackMax;
784
785 // Iterate triangle coverage front to back, find the stack of pontentially contributing fragments
786 for (int triNdx = (int)scene.triangles.size() - 1; triNdx >= 0; --triNdx)
787 {
788 const CoverageType coverage = calculateTriangleCoverage(
789 scene.triangles[triNdx].positions[0], scene.triangles[triNdx].positions[1],
790 scene.triangles[triNdx].positions[2], tcu::IVec2(x, y), viewportSize, subPixelBits, multisampled);
791
792 if (coverage == COVERAGE_FULL || coverage == COVERAGE_PARTIAL)
793 {
794 // potentially contributes to the result fragment's value
795 const InterpolationRange weights =
796 interpolator.interpolate(triNdx, tcu::IVec2(x, y), viewportSize, multisampled, subPixelBits);
797
798 const tcu::Vec4 fragmentColorMax =
799 de::clamp(weights.max.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
800 de::clamp(weights.max.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
801 de::clamp(weights.max.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
802 const tcu::Vec4 fragmentColorMin =
803 de::clamp(weights.min.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
804 de::clamp(weights.min.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
805 de::clamp(weights.min.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
806
807 if (stackSize++ == 0)
808 {
809 // first triangle, set the values properly
810 colorStackMin = fragmentColorMin;
811 colorStackMax = fragmentColorMax;
812 }
813 else
814 {
815 // contributing triangle
816 colorStackMin = tcu::min(colorStackMin, fragmentColorMin);
817 colorStackMax = tcu::max(colorStackMax, fragmentColorMax);
818 }
819
820 if (coverage == COVERAGE_FULL)
821 {
822 // loop terminates, this is the bottommost fragment
823 stackBottomFound = true;
824 break;
825 }
826 }
827 }
828
829 // Partial coverage == background may be visible
830 if (stackSize != 0 && !stackBottomFound)
831 {
832 stackSize++;
833 colorStackMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
834 }
835
836 // Is the result image color in the valid range.
837 if (stackSize == 0)
838 {
839 // No coverage, allow only background (black, value=0)
840 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
841 const int threshold = 1;
842
843 if (pixelNativeColor.x() > threshold || pixelNativeColor.y() > threshold ||
844 pixelNativeColor.z() > threshold)
845 {
846 ++errorCount;
847
848 // don't fill the logs with too much data
849 if (errorCount < errorFloodThreshold)
850 {
851 std::ostringstream str;
852
853 str << "Found an invalid pixel at (" << x << "," << y << ")\n"
854 << "\tPixel color:\t\t" << color << "\n"
855 << "\tExpected background color.\n";
856
857 logStash.messages.push_back(str.str());
858 }
859
860 ++invalidPixels;
861 errorMask.setPixel(x, y, invalidPixelColor);
862 }
863 }
864 else
865 {
866 DE_ASSERT(stackSize);
867
868 // Each additional step in the stack may cause conversion error of 1 bit due to undefined rounding direction
869 const int thresholdRed = stackSize - 1;
870 const int thresholdGreen = stackSize - 1;
871 const int thresholdBlue = stackSize - 1;
872
873 const tcu::Vec3 valueRangeMin = tcu::Vec3(colorStackMin.xyz());
874 const tcu::Vec3 valueRangeMax = tcu::Vec3(colorStackMax.xyz());
875
876 const tcu::IVec3 formatLimit((1 << args.redBits) - 1, (1 << args.greenBits) - 1,
877 (1 << args.blueBits) - 1);
878 const tcu::Vec3 colorMinF(
879 de::clamp(valueRangeMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
880 de::clamp(valueRangeMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
881 de::clamp(valueRangeMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
882 const tcu::Vec3 colorMaxF(
883 de::clamp(valueRangeMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
884 de::clamp(valueRangeMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
885 de::clamp(valueRangeMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
886 const tcu::IVec3 colorMin((int)deFloatFloor(colorMinF.x()), (int)deFloatFloor(colorMinF.y()),
887 (int)deFloatFloor(colorMinF.z()));
888 const tcu::IVec3 colorMax((int)deFloatCeil(colorMaxF.x()), (int)deFloatCeil(colorMaxF.y()),
889 (int)deFloatCeil(colorMaxF.z()));
890
891 // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
892 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
893
894 // Validity check
895 if (pixelNativeColor.x() < colorMin.x() - thresholdRed ||
896 pixelNativeColor.y() < colorMin.y() - thresholdGreen ||
897 pixelNativeColor.z() < colorMin.z() - thresholdBlue ||
898 pixelNativeColor.x() > colorMax.x() + thresholdRed ||
899 pixelNativeColor.y() > colorMax.y() + thresholdGreen ||
900 pixelNativeColor.z() > colorMax.z() + thresholdBlue)
901 {
902 ++errorCount;
903
904 // don't fill the logs with too much data
905 if (errorCount <= errorFloodThreshold)
906 {
907 std::ostringstream str;
908
909 str << "Found an invalid pixel at (" << x << "," << y << ")\n"
910 << "\tPixel color:\t\t" << color << "\n"
911 << "\tNative color:\t\t" << pixelNativeColor << "\n"
912 << "\tAllowed error:\t\t" << tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue) << "\n"
913 << "\tReference native color min: "
914 << tcu::clamp(colorMin - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue),
915 tcu::IVec3(0, 0, 0), formatLimit)
916 << "\n"
917 << "\tReference native color max: "
918 << tcu::clamp(colorMax + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue),
919 tcu::IVec3(0, 0, 0), formatLimit)
920 << "\n"
921 << "\tReference native float min: "
922 << tcu::clamp(colorMinF -
923 tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(),
924 tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>())
925 << "\n"
926 << "\tReference native float max: "
927 << tcu::clamp(colorMaxF +
928 tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(),
929 tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>())
930 << "\n"
931 << "\tFmin:\t"
932 << tcu::clamp(valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f))
933 << "\n"
934 << "\tFmax:\t"
935 << tcu::clamp(valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f))
936 << "\n";
937 logStash.messages.push_back(str.str());
938 }
939
940 ++invalidPixels;
941 errorMask.setPixel(x, y, invalidPixelColor);
942 }
943 }
944 }
945
946 // don't just hide failures
947 if (errorCount > errorFloodThreshold)
948 logStash.messages.push_back(
949 std::string("Omitted " + de::toString(errorCount - errorFloodThreshold) + " pixel error description(s)."));
950
951 logStash.success = (invalidPixels == 0);
952 logStash.invalidPixels = invalidPixels;
953
954 // report result
955 if (!logStash.success)
956 logStash.errorMask = errorMask;
957
958 return logStash.success;
959 }
960
calculateIntersectionParameter(const tcu::Vec2 line[2],float w,int componentNdx)961 float calculateIntersectionParameter(const tcu::Vec2 line[2], float w, int componentNdx)
962 {
963 DE_ASSERT(componentNdx < 2);
964 if (line[1][componentNdx] == line[0][componentNdx])
965 return -1.0f;
966
967 return (w - line[0][componentNdx]) / (line[1][componentNdx] - line[0][componentNdx]);
968 }
969
970 // Clips the given line with a ((-w, -w), (-w, w), (w, w), (w, -w)) rectangle
applyClippingBox(tcu::Vec2 line[2],float w)971 void applyClippingBox(tcu::Vec2 line[2], float w)
972 {
973 for (int side = 0; side < 4; ++side)
974 {
975 const int sign = ((side / 2) * -2) + 1;
976 const int component = side % 2;
977 const float t = calculateIntersectionParameter(line, w * (float)sign, component);
978
979 if ((t > 0) && (t < 1))
980 {
981 const float newCoord = t * line[1][1 - component] + (1 - t) * line[0][1 - component];
982
983 if (line[1][component] > (w * (float)sign))
984 {
985 line[1 - side / 2][component] = w * (float)sign;
986 line[1 - side / 2][1 - component] = newCoord;
987 }
988 else
989 {
990 line[side / 2][component] = w * (float)sign;
991 line[side / 2][1 - component] = newCoord;
992 }
993 }
994 }
995 }
996
997 enum ClipMode
998 {
999 CLIPMODE_NO_CLIPPING = 0,
1000 CLIPMODE_USE_CLIPPING_BOX,
1001
1002 CLIPMODE_LAST
1003 };
1004
verifyMultisampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,ClipMode clipMode,VerifyTriangleGroupRasterizationLogStash * logStash,const bool vulkanLinesTest,const bool strictMode,const bool carryRemainder)1005 bool verifyMultisampleLineGroupRasterization(const tcu::Surface &surface, const LineSceneSpec &scene,
1006 const RasterizationArguments &args, tcu::TestLog &log, ClipMode clipMode,
1007 VerifyTriangleGroupRasterizationLogStash *logStash,
1008 const bool vulkanLinesTest, const bool strictMode,
1009 const bool carryRemainder)
1010 {
1011 // Multisampled line == 2 triangles
1012
1013 const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
1014 const float halfLineWidth = scene.lineWidth * 0.5f;
1015 TriangleSceneSpec triangleScene;
1016
1017 uint32_t stippleCounter = 0;
1018 float leftoverPhase = 0.0f;
1019
1020 triangleScene.triangles.resize(2 * scene.lines.size());
1021 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1022 {
1023
1024 if (!scene.isStrip)
1025 {
1026 // reset stipple at the start of each line segment
1027 stippleCounter = 0;
1028 leftoverPhase = 0;
1029 }
1030
1031 // Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
1032 tcu::Vec2 lineNormalizedDeviceSpace[2] = {
1033 tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(),
1034 scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
1035 tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(),
1036 scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
1037 };
1038
1039 if (clipMode == CLIPMODE_USE_CLIPPING_BOX)
1040 {
1041 applyClippingBox(lineNormalizedDeviceSpace, 1.0f);
1042 }
1043
1044 const tcu::Vec2 lineScreenSpace[2] = {
1045 (lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
1046 (lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
1047 };
1048
1049 const tcu::Vec2 lineDir = tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
1050 const tcu::Vec2 lineNormalDir = (strictMode || scene.isRectangular) ? tcu::Vec2(lineDir.y(), -lineDir.x()) :
1051 isLineXMajor(lineScreenSpace[0], lineScreenSpace[1]) ? tcu::Vec2(0.0f, 1.0f) :
1052 tcu::Vec2(1.0f, 0.0f);
1053
1054 if (scene.stippleEnable)
1055 {
1056 float lineLength = tcu::distance(lineScreenSpace[0], lineScreenSpace[1]);
1057 float lineOffset = 0.0f;
1058
1059 while (lineOffset < lineLength)
1060 {
1061 float d0 = (float)lineOffset;
1062 float d1 = d0 + 1.0f;
1063
1064 if (carryRemainder)
1065 {
1066 // "leftoverPhase" carries over a fractional stipple phase that was "unused"
1067 // by the last line segment in the strip, if it wasn't an integer length.
1068 if (leftoverPhase > lineLength)
1069 {
1070 DE_ASSERT(d0 == 0.0f);
1071 d1 = lineLength;
1072 leftoverPhase -= lineLength;
1073 }
1074 else if (leftoverPhase != 0.0f)
1075 {
1076 DE_ASSERT(d0 == 0.0f);
1077 d1 = leftoverPhase;
1078 leftoverPhase = 0.0f;
1079 }
1080 else
1081 {
1082 if (d0 + 1.0f > lineLength)
1083 {
1084 d1 = lineLength;
1085 leftoverPhase = d0 + 1.0f - lineLength;
1086 }
1087 else
1088 d1 = d0 + 1.0f;
1089 }
1090 }
1091 else
1092 {
1093 if (d1 > lineLength)
1094 d1 = lineLength;
1095 }
1096
1097 // set offset for next iteration
1098 lineOffset = d1;
1099
1100 int stippleBit = (stippleCounter / scene.stippleFactor) % 16;
1101 bool stipplePass = (scene.stipplePattern & (1 << stippleBit)) != 0;
1102
1103 if (leftoverPhase == 0)
1104 stippleCounter++;
1105
1106 if (!stipplePass)
1107 continue;
1108
1109 d0 /= lineLength;
1110 d1 /= lineLength;
1111
1112 tcu::Vec2 l0 = mix(lineScreenSpace[0], lineScreenSpace[1], d0);
1113 tcu::Vec2 l1 = mix(lineScreenSpace[0], lineScreenSpace[1], d1);
1114
1115 const tcu::Vec2 lineQuadScreenSpace[4] = {
1116 l0 + lineNormalDir * halfLineWidth,
1117 l0 - lineNormalDir * halfLineWidth,
1118 l1 - lineNormalDir * halfLineWidth,
1119 l1 + lineNormalDir * halfLineWidth,
1120 };
1121 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] = {
1122 lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1123 lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1124 lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1125 lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1126 };
1127
1128 TriangleSceneSpec::SceneTriangle tri;
1129
1130 tri.positions[0] =
1131 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
1132 tri.sharedEdge[0] = (d0 != 0.0f);
1133 tri.positions[1] =
1134 tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
1135 tri.sharedEdge[1] = false;
1136 tri.positions[2] =
1137 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
1138 tri.sharedEdge[2] = true;
1139
1140 triangleScene.triangles.push_back(tri);
1141
1142 tri.positions[0] =
1143 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
1144 tri.sharedEdge[0] = true;
1145 tri.positions[1] =
1146 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
1147 tri.sharedEdge[1] = (d1 != 1.0f);
1148 tri.positions[2] =
1149 tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
1150 tri.sharedEdge[2] = false;
1151
1152 triangleScene.triangles.push_back(tri);
1153 }
1154 }
1155 else
1156 {
1157 const tcu::Vec2 lineQuadScreenSpace[4] = {
1158 lineScreenSpace[0] + lineNormalDir * halfLineWidth,
1159 lineScreenSpace[0] - lineNormalDir * halfLineWidth,
1160 lineScreenSpace[1] - lineNormalDir * halfLineWidth,
1161 lineScreenSpace[1] + lineNormalDir * halfLineWidth,
1162 };
1163 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] = {
1164 lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1165 lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1166 lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1167 lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1168 };
1169
1170 triangleScene.triangles[lineNdx * 2 + 0].positions[0] =
1171 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
1172 triangleScene.triangles[lineNdx * 2 + 0].sharedEdge[0] = false;
1173 triangleScene.triangles[lineNdx * 2 + 0].positions[1] =
1174 tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
1175 triangleScene.triangles[lineNdx * 2 + 0].sharedEdge[1] = false;
1176 triangleScene.triangles[lineNdx * 2 + 0].positions[2] =
1177 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
1178 triangleScene.triangles[lineNdx * 2 + 0].sharedEdge[2] = true;
1179
1180 triangleScene.triangles[lineNdx * 2 + 1].positions[0] =
1181 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
1182 triangleScene.triangles[lineNdx * 2 + 1].sharedEdge[0] = true;
1183 triangleScene.triangles[lineNdx * 2 + 1].positions[1] =
1184 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
1185 triangleScene.triangles[lineNdx * 2 + 1].sharedEdge[1] = false;
1186 triangleScene.triangles[lineNdx * 2 + 1].positions[2] =
1187 tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
1188 triangleScene.triangles[lineNdx * 2 + 1].sharedEdge[2] = false;
1189 }
1190 }
1191
1192 if (logStash != DE_NULL)
1193 {
1194 logStash->messages.push_back(
1195 "Rasterization clipping mode: " +
1196 std::string(clipMode == CLIPMODE_USE_CLIPPING_BOX ? "CLIPMODE_USE_CLIPPING_BOX" : "CLIPMODE_NO_CLIPPING") +
1197 ".");
1198 logStash->messages.push_back(
1199 "Rasterization line draw strictness mode: " + std::string(strictMode ? "strict" : "non-strict") + ".");
1200 }
1201
1202 return verifyTriangleGroupRasterization(surface, triangleScene, args, log, scene.verificationMode, logStash,
1203 vulkanLinesTest);
1204 }
1205
verifyMultisampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,ClipMode clipMode,VerifyTriangleGroupRasterizationLogStash * logStash,const bool vulkanLinesTest,const bool strictMode)1206 bool verifyMultisampleLineGroupRasterization(const tcu::Surface &surface, const LineSceneSpec &scene,
1207 const RasterizationArguments &args, tcu::TestLog &log, ClipMode clipMode,
1208 VerifyTriangleGroupRasterizationLogStash *logStash,
1209 const bool vulkanLinesTest, const bool strictMode)
1210 {
1211 if (scene.stippleEnable)
1212 return verifyMultisampleLineGroupRasterization(surface, scene, args, log, clipMode, logStash, vulkanLinesTest,
1213 strictMode, true) ||
1214 verifyMultisampleLineGroupRasterization(surface, scene, args, log, clipMode, logStash, vulkanLinesTest,
1215 strictMode, false);
1216 else
1217 return verifyMultisampleLineGroupRasterization(surface, scene, args, log, clipMode, logStash, vulkanLinesTest,
1218 strictMode, true);
1219 }
1220
verifyMultisampleLineGroupInterpolationInternal(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,VerifyTriangleGroupInterpolationLogStash & logStash,const bool strictMode)1221 static bool verifyMultisampleLineGroupInterpolationInternal(const tcu::Surface &surface, const LineSceneSpec &scene,
1222 const RasterizationArguments &args,
1223 VerifyTriangleGroupInterpolationLogStash &logStash,
1224 const bool strictMode)
1225 {
1226 // Multisampled line == 2 triangles
1227
1228 const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
1229 const float halfLineWidth = scene.lineWidth * 0.5f;
1230 TriangleSceneSpec triangleScene;
1231
1232 triangleScene.triangles.resize(2 * scene.lines.size());
1233 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1234 {
1235 // Need the w-coordinates a couple of times
1236 const float wa = scene.lines[lineNdx].positions[0].w();
1237 const float wb = scene.lines[lineNdx].positions[1].w();
1238
1239 // Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
1240 const tcu::Vec2 lineNormalizedDeviceSpace[2] = {
1241 tcu::Vec2(scene.lines[lineNdx].positions[0].x() / wa, scene.lines[lineNdx].positions[0].y() / wa),
1242 tcu::Vec2(scene.lines[lineNdx].positions[1].x() / wb, scene.lines[lineNdx].positions[1].y() / wb),
1243 };
1244 const tcu::Vec2 lineScreenSpace[2] = {
1245 (lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
1246 (lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
1247 };
1248
1249 const tcu::Vec2 lineDir = tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
1250 const tcu::Vec2 lineNormalDir = (strictMode || scene.isRectangular) ? tcu::Vec2(lineDir.y(), -lineDir.x()) :
1251 isLineXMajor(lineScreenSpace[0], lineScreenSpace[1]) ? tcu::Vec2(0.0f, 1.0f) :
1252 tcu::Vec2(1.0f, 0.0f);
1253
1254 const tcu::Vec2 lineQuadScreenSpace[4] = {
1255 lineScreenSpace[0] + lineNormalDir * halfLineWidth,
1256 lineScreenSpace[0] - lineNormalDir * halfLineWidth,
1257 lineScreenSpace[1] - lineNormalDir * halfLineWidth,
1258 lineScreenSpace[1] + lineNormalDir * halfLineWidth,
1259 };
1260 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] = {
1261 lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1262 lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1263 lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1264 lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1265 };
1266
1267 // Re-construct un-projected geometry using the quantised positions
1268 const tcu::Vec4 lineQuadUnprojected[4] = {
1269 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x() * wa, lineQuadNormalizedDeviceSpace[0].y() * wa, 0.0f, wa),
1270 tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x() * wa, lineQuadNormalizedDeviceSpace[1].y() * wa, 0.0f, wa),
1271 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x() * wb, lineQuadNormalizedDeviceSpace[2].y() * wb, 0.0f, wb),
1272 tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x() * wb, lineQuadNormalizedDeviceSpace[3].y() * wb, 0.0f, wb),
1273 };
1274
1275 triangleScene.triangles[lineNdx * 2 + 0].positions[0] = lineQuadUnprojected[0];
1276 triangleScene.triangles[lineNdx * 2 + 0].positions[1] = lineQuadUnprojected[1];
1277 triangleScene.triangles[lineNdx * 2 + 0].positions[2] = lineQuadUnprojected[2];
1278
1279 triangleScene.triangles[lineNdx * 2 + 0].sharedEdge[0] = false;
1280 triangleScene.triangles[lineNdx * 2 + 0].sharedEdge[1] = false;
1281 triangleScene.triangles[lineNdx * 2 + 0].sharedEdge[2] = true;
1282
1283 triangleScene.triangles[lineNdx * 2 + 0].colors[0] = scene.lines[lineNdx].colors[0];
1284 triangleScene.triangles[lineNdx * 2 + 0].colors[1] = scene.lines[lineNdx].colors[0];
1285 triangleScene.triangles[lineNdx * 2 + 0].colors[2] = scene.lines[lineNdx].colors[1];
1286
1287 triangleScene.triangles[lineNdx * 2 + 1].positions[0] = lineQuadUnprojected[0];
1288 triangleScene.triangles[lineNdx * 2 + 1].positions[1] = lineQuadUnprojected[2];
1289 triangleScene.triangles[lineNdx * 2 + 1].positions[2] = lineQuadUnprojected[3];
1290
1291 triangleScene.triangles[lineNdx * 2 + 1].sharedEdge[0] = true;
1292 triangleScene.triangles[lineNdx * 2 + 1].sharedEdge[1] = false;
1293 triangleScene.triangles[lineNdx * 2 + 1].sharedEdge[2] = false;
1294
1295 triangleScene.triangles[lineNdx * 2 + 1].colors[0] = scene.lines[lineNdx].colors[0];
1296 triangleScene.triangles[lineNdx * 2 + 1].colors[1] = scene.lines[lineNdx].colors[1];
1297 triangleScene.triangles[lineNdx * 2 + 1].colors[2] = scene.lines[lineNdx].colors[1];
1298 }
1299
1300 if (strictMode)
1301 {
1302 // Strict mode interpolation should be purely in the direction of the line-segment
1303 logStash.messages.push_back("Verify using line interpolator");
1304 return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, logStash,
1305 MultisampleLineInterpolator(scene));
1306 }
1307 else
1308 {
1309 // For non-strict lines some allowance needs to be inplace for a few different styles of implementation.
1310 //
1311 // Some implementations duplicate the attributes at the endpoints to the corners of the triangle
1312 // deconstruted parallelogram. Gradients along the line will be seen to travel in the major axis,
1313 // with values effectively duplicated in the minor axis direction. In other cases, implementations
1314 // will use the original parameters of the line to calculate attribute interpolation so it will
1315 // follow the direction of the line-segment.
1316 logStash.messages.push_back("Verify using triangle interpolator");
1317 if (!verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, logStash,
1318 TriangleInterpolator(triangleScene)))
1319 {
1320 logStash.messages.push_back("Verify using line interpolator");
1321 return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, logStash,
1322 MultisampleLineInterpolator(scene));
1323 }
1324 return true;
1325 }
1326 }
1327
logTriangleGroupnterpolationStash(const tcu::Surface & surface,tcu::TestLog & log,VerifyTriangleGroupInterpolationLogStash & logStash)1328 static void logTriangleGroupnterpolationStash(const tcu::Surface &surface, tcu::TestLog &log,
1329 VerifyTriangleGroupInterpolationLogStash &logStash)
1330 {
1331 // Output results
1332 log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
1333
1334 for (size_t msgNdx = 0; msgNdx < logStash.messages.size(); ++msgNdx)
1335 log << tcu::TestLog::Message << logStash.messages[msgNdx] << tcu::TestLog::EndMessage;
1336
1337 // report result
1338 if (!logStash.success)
1339 {
1340 log << tcu::TestLog::Message << logStash.invalidPixels << " invalid pixel(s) found."
1341 << tcu::TestLog::EndMessage;
1342 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1343 << tcu::TestLog::Image("Result", "Result", surface)
1344 << tcu::TestLog::Image("ErrorMask", "ErrorMask", logStash.errorMask) << tcu::TestLog::EndImageSet;
1345 }
1346 else
1347 {
1348 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
1349 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1350 << tcu::TestLog::Image("Result", "Result", surface) << tcu::TestLog::EndImageSet;
1351 }
1352 }
1353
verifyMultisampleLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const bool strictMode=true,const bool allowBresenhamForNonStrictLines=false)1354 static bool verifyMultisampleLineGroupInterpolation(const tcu::Surface &surface, const LineSceneSpec &scene,
1355 const RasterizationArguments &args, tcu::TestLog &log,
1356 const bool strictMode = true,
1357 const bool allowBresenhamForNonStrictLines = false)
1358 {
1359 bool result = false;
1360 VerifyTriangleGroupInterpolationLogStash nonStrictModeLogStash;
1361 VerifyTriangleGroupInterpolationLogStash strictModeLogStash;
1362
1363 nonStrictModeLogStash.messages.push_back("Non-strict line draw mode.");
1364 strictModeLogStash.messages.push_back("Strict mode line draw mode.");
1365
1366 if (strictMode)
1367 {
1368 result = verifyMultisampleLineGroupInterpolationInternal(surface, scene, args, strictModeLogStash, strictMode);
1369
1370 logTriangleGroupnterpolationStash(surface, log, strictModeLogStash);
1371 }
1372 else
1373 {
1374 if (verifyMultisampleLineGroupInterpolationInternal(surface, scene, args, nonStrictModeLogStash, false))
1375 {
1376 logTriangleGroupnterpolationStash(surface, log, nonStrictModeLogStash);
1377
1378 result = true;
1379 }
1380 else if (verifyMultisampleLineGroupInterpolationInternal(surface, scene, args, strictModeLogStash, true))
1381 {
1382 logTriangleGroupnterpolationStash(surface, log, strictModeLogStash);
1383
1384 result = true;
1385 }
1386 else
1387 {
1388 logTriangleGroupnterpolationStash(surface, log, nonStrictModeLogStash);
1389 logTriangleGroupnterpolationStash(surface, log, strictModeLogStash);
1390 }
1391
1392 // In the non-strict line case, bresenham is also permissable, though not specified. This is due
1393 // to a change in how lines are specified in Vulkan versus GLES; in GLES bresenham lines using the
1394 // diamond-exit rule were the preferred way to draw single pixel non-antialiased lines, and not all
1395 // GLES implementations are able to disable this behaviour.
1396 if (result == false)
1397 {
1398 log << tcu::TestLog::Message
1399 << "Checking line rasterisation using verifySinglesampleNarrowLineGroupInterpolation for nonStrict "
1400 "lines"
1401 << tcu::TestLog::EndMessage;
1402 if (args.numSamples <= 1 && allowBresenhamForNonStrictLines &&
1403 verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
1404 {
1405 log << tcu::TestLog::Message
1406 << "verifySinglesampleNarrowLineGroupInterpolation for nonStrict lines Passed"
1407 << tcu::TestLog::EndMessage;
1408
1409 result = true;
1410 }
1411 }
1412 }
1413
1414 return result;
1415 }
1416
verifyMultisamplePointGroupRasterization(const tcu::Surface & surface,const PointSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1417 bool verifyMultisamplePointGroupRasterization(const tcu::Surface &surface, const PointSceneSpec &scene,
1418 const RasterizationArguments &args, tcu::TestLog &log)
1419 {
1420 // Multisampled point == 2 triangles
1421
1422 const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
1423 TriangleSceneSpec triangleScene;
1424
1425 triangleScene.triangles.resize(2 * scene.points.size());
1426 for (int pointNdx = 0; pointNdx < (int)scene.points.size(); ++pointNdx)
1427 {
1428 // Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
1429 const tcu::Vec2 pointNormalizedDeviceSpace =
1430 tcu::Vec2(scene.points[pointNdx].position.x() / scene.points[pointNdx].position.w(),
1431 scene.points[pointNdx].position.y() / scene.points[pointNdx].position.w());
1432 const tcu::Vec2 pointScreenSpace = (pointNormalizedDeviceSpace + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize;
1433 const float offset = scene.points[pointNdx].pointSize * 0.5f;
1434 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] = {
1435 (pointScreenSpace + tcu::Vec2(-offset, -offset)) / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1436 (pointScreenSpace + tcu::Vec2(-offset, offset)) / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1437 (pointScreenSpace + tcu::Vec2(offset, offset)) / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1438 (pointScreenSpace + tcu::Vec2(offset, -offset)) / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1439 };
1440
1441 triangleScene.triangles[pointNdx * 2 + 0].positions[0] =
1442 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
1443 triangleScene.triangles[pointNdx * 2 + 0].sharedEdge[0] = false;
1444 triangleScene.triangles[pointNdx * 2 + 0].positions[1] =
1445 tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
1446 triangleScene.triangles[pointNdx * 2 + 0].sharedEdge[1] = false;
1447 triangleScene.triangles[pointNdx * 2 + 0].positions[2] =
1448 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
1449 triangleScene.triangles[pointNdx * 2 + 0].sharedEdge[2] = true;
1450
1451 triangleScene.triangles[pointNdx * 2 + 1].positions[0] =
1452 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
1453 triangleScene.triangles[pointNdx * 2 + 1].sharedEdge[0] = true;
1454 triangleScene.triangles[pointNdx * 2 + 1].positions[1] =
1455 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
1456 triangleScene.triangles[pointNdx * 2 + 1].sharedEdge[1] = false;
1457 triangleScene.triangles[pointNdx * 2 + 1].positions[2] =
1458 tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
1459 triangleScene.triangles[pointNdx * 2 + 1].sharedEdge[2] = false;
1460 }
1461
1462 return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
1463 }
1464
genScreenSpaceLines(std::vector<tcu::Vec4> & screenspaceLines,const std::vector<LineSceneSpec::SceneLine> & lines,const tcu::IVec2 & viewportSize)1465 void genScreenSpaceLines(std::vector<tcu::Vec4> &screenspaceLines, const std::vector<LineSceneSpec::SceneLine> &lines,
1466 const tcu::IVec2 &viewportSize)
1467 {
1468 DE_ASSERT(screenspaceLines.size() == lines.size());
1469
1470 for (int lineNdx = 0; lineNdx < (int)lines.size(); ++lineNdx)
1471 {
1472 const tcu::Vec2 lineNormalizedDeviceSpace[2] = {
1473 tcu::Vec2(lines[lineNdx].positions[0].x() / lines[lineNdx].positions[0].w(),
1474 lines[lineNdx].positions[0].y() / lines[lineNdx].positions[0].w()),
1475 tcu::Vec2(lines[lineNdx].positions[1].x() / lines[lineNdx].positions[1].w(),
1476 lines[lineNdx].positions[1].y() / lines[lineNdx].positions[1].w()),
1477 };
1478 const tcu::Vec4 lineScreenSpace[2] = {
1479 tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)viewportSize.x(),
1480 (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
1481 tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)viewportSize.x(),
1482 (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
1483 };
1484
1485 screenspaceLines[lineNdx] =
1486 tcu::Vec4(lineScreenSpace[0].x(), lineScreenSpace[0].y(), lineScreenSpace[1].x(), lineScreenSpace[1].y());
1487 }
1488 }
1489
verifySinglesampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1490 bool verifySinglesampleLineGroupRasterization(const tcu::Surface &surface, const LineSceneSpec &scene,
1491 const RasterizationArguments &args, tcu::TestLog &log)
1492 {
1493 DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
1494 DE_ASSERT(scene.lines.size() < 255); // indices are stored as unsigned 8-bit ints
1495
1496 bool allOK = true;
1497 bool overdrawInReference = false;
1498 int referenceFragments = 0;
1499 int resultFragments = 0;
1500 int lineWidth = deFloorFloatToInt32(scene.lineWidth + 0.5f);
1501 std::vector<bool> lineIsXMajor(scene.lines.size());
1502 std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
1503
1504 // Reference renderer produces correct fragments using the diamond-rule. Make 2D int array, each cell contains the highest index (first index = 1) of the overlapping lines or 0 if no line intersects the pixel
1505 tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8),
1506 surface.getWidth(), surface.getHeight());
1507 tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1508
1509 genScreenSpaceLines(screenspaceLines, scene.lines, tcu::IVec2(surface.getWidth(), surface.getHeight()));
1510
1511 rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()),
1512 args.subpixelBits);
1513 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1514 {
1515 rasterizer.init(tcu::Vec4(screenspaceLines[lineNdx][0], screenspaceLines[lineNdx][1], 0.0f, 1.0f),
1516 tcu::Vec4(screenspaceLines[lineNdx][2], screenspaceLines[lineNdx][3], 0.0f, 1.0f),
1517 scene.lineWidth, scene.stippleFactor, scene.stipplePattern);
1518
1519 if (!scene.isStrip)
1520 rasterizer.resetStipple();
1521
1522 // calculate majority of later use
1523 lineIsXMajor[lineNdx] = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
1524
1525 for (;;)
1526 {
1527 const int maxPackets = 32;
1528 int numRasterized = 0;
1529 rr::FragmentPacket packets[maxPackets];
1530
1531 rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
1532
1533 for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1534 {
1535 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
1536 {
1537 if ((uint32_t)packets[packetNdx].coverage & (1 << fragNdx))
1538 {
1539 const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx % 2, fragNdx / 2);
1540
1541 // Check for overdraw
1542 if (!overdrawInReference)
1543 overdrawInReference =
1544 referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x() != 0;
1545
1546 // Output pixel
1547 referenceLineMap.getAccess().setPixel(tcu::IVec4(lineNdx + 1, 0, 0, 0), fragPos.x(),
1548 fragPos.y());
1549 }
1550 }
1551 }
1552
1553 if (numRasterized != maxPackets)
1554 break;
1555 }
1556 }
1557
1558 // Requirement 1: The coordinates of a fragment produced by the algorithm may not deviate by more than one unit
1559 {
1560 tcu::Surface errorMask(surface.getWidth(), surface.getHeight());
1561 bool missingFragments = false;
1562
1563 tcu::clear(errorMask.getAccess(), tcu::IVec4(0, 255, 0, 255));
1564
1565 log << tcu::TestLog::Message << "Searching for deviating fragments." << tcu::TestLog::EndMessage;
1566
1567 for (int y = 0; y < referenceLineMap.getHeight(); ++y)
1568 for (int x = 0; x < referenceLineMap.getWidth(); ++x)
1569 {
1570 const bool reference = referenceLineMap.getAccess().getPixelInt(x, y).x() != 0;
1571 const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits,
1572 args.greenBits, args.blueBits);
1573
1574 if (reference)
1575 ++referenceFragments;
1576 if (result)
1577 ++resultFragments;
1578
1579 if (reference == result)
1580 continue;
1581
1582 // Reference fragment here, matching result fragment must be nearby
1583 if (reference && !result)
1584 {
1585 bool foundFragment = false;
1586
1587 if (x == 0 || y == 0 || x == referenceLineMap.getWidth() - 1 ||
1588 y == referenceLineMap.getHeight() - 1)
1589 {
1590 // image boundary, missing fragment could be over the image edge
1591 foundFragment = true;
1592 }
1593
1594 // find nearby fragment
1595 for (int dy = -1; dy < 2 && !foundFragment; ++dy)
1596 for (int dx = -1; dx < 2 && !foundFragment; ++dx)
1597 {
1598 if (compareColors(surface.getPixel(x + dx, y + dy), tcu::RGBA::white(), args.redBits,
1599 args.greenBits, args.blueBits))
1600 foundFragment = true;
1601 }
1602
1603 if (!foundFragment)
1604 {
1605 missingFragments = true;
1606 errorMask.setPixel(x, y, tcu::RGBA::red());
1607 }
1608 }
1609 }
1610
1611 if (missingFragments)
1612 {
1613
1614 allOK = false;
1615 }
1616 else
1617 {
1618 log << tcu::TestLog::Message << "No invalid deviations found." << tcu::TestLog::EndMessage;
1619 }
1620 }
1621
1622 // Requirement 2: The total number of fragments produced by the algorithm may differ from
1623 // that produced by the diamond-exit rule by no more than one.
1624 {
1625 // Check is not valid if the primitives intersect or otherwise share same fragments
1626 if (!overdrawInReference)
1627 {
1628 int allowedDeviation =
1629 (int)scene.lines.size() * lineWidth; // one pixel per primitive in the major direction
1630
1631 log << tcu::TestLog::Message << "Verifying fragment counts:\n"
1632 << "\tDiamond-exit rule: " << referenceFragments << " fragments.\n"
1633 << "\tResult image: " << resultFragments << " fragments.\n"
1634 << "\tAllowing deviation of " << allowedDeviation << " fragments.\n"
1635 << tcu::TestLog::EndMessage;
1636
1637 if (deAbs32(referenceFragments - resultFragments) > allowedDeviation)
1638 {
1639 tcu::Surface reference(surface.getWidth(), surface.getHeight());
1640
1641 // show a helpful reference image
1642 tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
1643 for (int y = 0; y < surface.getHeight(); ++y)
1644 for (int x = 0; x < surface.getWidth(); ++x)
1645 if (referenceLineMap.getAccess().getPixelInt(x, y).x())
1646 reference.setPixel(x, y, tcu::RGBA::white());
1647
1648 log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
1649 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1650 << tcu::TestLog::Image("Reference", "Reference", reference)
1651 << tcu::TestLog::Image("Result", "Result", surface) << tcu::TestLog::EndImageSet;
1652
1653 allOK = false;
1654 }
1655 else
1656 {
1657 log << tcu::TestLog::Message << "Fragment count is valid." << tcu::TestLog::EndMessage;
1658 }
1659 }
1660 else
1661 {
1662 log << tcu::TestLog::Message
1663 << "Overdraw in scene. Fragment count cannot be verified. Skipping fragment count checks."
1664 << tcu::TestLog::EndMessage;
1665 }
1666 }
1667
1668 // Requirement 3: Line width must be constant
1669 {
1670 bool invalidWidthFound = false;
1671
1672 log << tcu::TestLog::Message << "Verifying line widths of the x-major lines." << tcu::TestLog::EndMessage;
1673 for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
1674 {
1675 bool fullyVisibleLine = false;
1676 bool previousPixelUndefined = false;
1677 int currentLine = 0;
1678 int currentWidth = 1;
1679
1680 for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
1681 {
1682 const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits,
1683 args.greenBits, args.blueBits);
1684 int lineID = 0;
1685
1686 // Which line does this fragment belong to?
1687
1688 if (result)
1689 {
1690 bool multipleNearbyLines = false;
1691 bool renderAtSurfaceEdge = false;
1692
1693 renderAtSurfaceEdge = (x == 1) || (x == referenceLineMap.getWidth() - 2);
1694
1695 for (int dy = -1; dy < 2; ++dy)
1696 for (int dx = -1; dx < 2; ++dx)
1697 {
1698 const int nearbyID = referenceLineMap.getAccess().getPixelInt(x + dx, y + dy).x();
1699 if (nearbyID)
1700 {
1701 if (lineID && lineID != nearbyID)
1702 multipleNearbyLines = true;
1703 }
1704 }
1705
1706 if (multipleNearbyLines || renderAtSurfaceEdge)
1707 {
1708 // Another line is too close, don't try to calculate width here
1709 // Or the render result is outside of surface range
1710 previousPixelUndefined = true;
1711 continue;
1712 }
1713 }
1714
1715 // Only line with id of lineID is nearby
1716
1717 if (previousPixelUndefined)
1718 {
1719 // The line might have been overdrawn or not
1720 currentLine = lineID;
1721 currentWidth = 1;
1722 fullyVisibleLine = false;
1723 previousPixelUndefined = false;
1724 }
1725 else if (lineID == currentLine)
1726 {
1727 // Current line continues
1728 ++currentWidth;
1729 }
1730 else if (lineID > currentLine)
1731 {
1732 // Another line was drawn over or the line ends
1733 currentLine = lineID;
1734 currentWidth = 1;
1735 fullyVisibleLine = true;
1736 }
1737 else
1738 {
1739 // The line ends
1740 if (fullyVisibleLine && !lineIsXMajor[currentLine - 1])
1741 {
1742 // check width
1743 if (currentWidth != lineWidth)
1744 {
1745 log << tcu::TestLog::Message << "\tInvalid line width at (" << x - currentWidth << ", " << y
1746 << ") - (" << x - 1 << ", " << y << "). Detected width of " << currentWidth
1747 << ", expected " << lineWidth << tcu::TestLog::EndMessage;
1748 invalidWidthFound = true;
1749 }
1750 }
1751
1752 currentLine = lineID;
1753 currentWidth = 1;
1754 fullyVisibleLine = false;
1755 }
1756 }
1757 }
1758
1759 log << tcu::TestLog::Message << "Verifying line widths of the y-major lines." << tcu::TestLog::EndMessage;
1760 for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
1761 {
1762 bool fullyVisibleLine = false;
1763 bool previousPixelUndefined = false;
1764 int currentLine = 0;
1765 int currentWidth = 1;
1766
1767 for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
1768 {
1769 const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits,
1770 args.greenBits, args.blueBits);
1771 int lineID = 0;
1772
1773 // Which line does this fragment belong to?
1774
1775 if (result)
1776 {
1777 bool multipleNearbyLines = false;
1778 bool renderAtSurfaceEdge = false;
1779
1780 renderAtSurfaceEdge = (y == 1) || (y == referenceLineMap.getWidth() - 2);
1781
1782 for (int dy = -1; dy < 2; ++dy)
1783 for (int dx = -1; dx < 2; ++dx)
1784 {
1785 const int nearbyID = referenceLineMap.getAccess().getPixelInt(x + dx, y + dy).x();
1786 if (nearbyID)
1787 {
1788 if (lineID && lineID != nearbyID)
1789 multipleNearbyLines = true;
1790 lineID = nearbyID;
1791 }
1792 }
1793
1794 if (multipleNearbyLines || renderAtSurfaceEdge)
1795 {
1796 // Another line is too close, don't try to calculate width here
1797 // Or the render result is outside of surface range
1798 previousPixelUndefined = true;
1799 continue;
1800 }
1801 }
1802
1803 // Only line with id of lineID is nearby
1804
1805 if (previousPixelUndefined)
1806 {
1807 // The line might have been overdrawn or not
1808 currentLine = lineID;
1809 currentWidth = 1;
1810 fullyVisibleLine = false;
1811 previousPixelUndefined = false;
1812 }
1813 else if (lineID == currentLine)
1814 {
1815 // Current line continues
1816 ++currentWidth;
1817 }
1818 else if (lineID > currentLine)
1819 {
1820 // Another line was drawn over or the line ends
1821 currentLine = lineID;
1822 currentWidth = 1;
1823 fullyVisibleLine = true;
1824 }
1825 else
1826 {
1827 // The line ends
1828 if (fullyVisibleLine && lineIsXMajor[currentLine - 1])
1829 {
1830 // check width
1831 if (currentWidth != lineWidth)
1832 {
1833 log << tcu::TestLog::Message << "\tInvalid line width at (" << x << ", " << y - currentWidth
1834 << ") - (" << x << ", " << y - 1 << "). Detected width of " << currentWidth
1835 << ", expected " << lineWidth << tcu::TestLog::EndMessage;
1836 invalidWidthFound = true;
1837 }
1838 }
1839
1840 currentLine = lineID;
1841 currentWidth = 1;
1842 fullyVisibleLine = false;
1843 }
1844 }
1845 }
1846
1847 if (invalidWidthFound)
1848 {
1849 log << tcu::TestLog::Message << "Invalid line width found, image is not valid." << tcu::TestLog::EndMessage;
1850 allOK = false;
1851 }
1852 else
1853 {
1854 log << tcu::TestLog::Message << "Line widths are valid." << tcu::TestLog::EndMessage;
1855 }
1856 }
1857
1858 //\todo [2013-10-24 jarkko].
1859 //Requirement 4. If two line segments share a common endpoint, and both segments are either
1860 //x-major (both left-to-right or both right-to-left) or y-major (both bottom-totop
1861 //or both top-to-bottom), then rasterizing both segments may not produce
1862 //duplicate fragments, nor may any fragments be omitted so as to interrupt
1863 //continuity of the connected segments.
1864
1865 {
1866 tcu::Surface reference(surface.getWidth(), surface.getHeight());
1867 tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
1868 for (int y = 0; y < surface.getHeight(); ++y)
1869 for (int x = 0; x < surface.getWidth(); ++x)
1870 if (referenceLineMap.getAccess().getPixelInt(x, y).x())
1871 reference.setPixel(x, y, tcu::RGBA::white());
1872 log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
1873 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1874 << tcu::TestLog::Image("Reference", "Reference", reference)
1875 << tcu::TestLog::Image("Result", "Result", surface) << tcu::TestLog::EndImageSet;
1876 }
1877
1878 return allOK;
1879 }
1880
1881 struct SingleSampleNarrowLineCandidate
1882 {
1883 int lineNdx;
1884 tcu::IVec3 colorMin;
1885 tcu::IVec3 colorMax;
1886 tcu::Vec3 colorMinF;
1887 tcu::Vec3 colorMaxF;
1888 tcu::Vec3 valueRangeMin;
1889 tcu::Vec3 valueRangeMax;
1890 };
1891
setMaskMapCoverageBitForLine(int bitNdx,const tcu::Vec2 & screenSpaceP0,const tcu::Vec2 & screenSpaceP1,float lineWidth,tcu::PixelBufferAccess maskMap,const int subpixelBits)1892 void setMaskMapCoverageBitForLine(int bitNdx, const tcu::Vec2 &screenSpaceP0, const tcu::Vec2 &screenSpaceP1,
1893 float lineWidth, tcu::PixelBufferAccess maskMap, const int subpixelBits)
1894 {
1895 enum
1896 {
1897 MAX_PACKETS = 32,
1898 };
1899
1900 rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, maskMap.getWidth(), maskMap.getHeight()), subpixelBits);
1901 int numRasterized = MAX_PACKETS;
1902 rr::FragmentPacket packets[MAX_PACKETS];
1903
1904 rasterizer.init(tcu::Vec4(screenSpaceP0.x(), screenSpaceP0.y(), 0.0f, 1.0f),
1905 tcu::Vec4(screenSpaceP1.x(), screenSpaceP1.y(), 0.0f, 1.0f), lineWidth, 1, 0xFFFF);
1906
1907 while (numRasterized == MAX_PACKETS)
1908 {
1909 rasterizer.rasterize(packets, DE_NULL, MAX_PACKETS, numRasterized);
1910
1911 for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1912 {
1913 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
1914 {
1915 if ((uint32_t)packets[packetNdx].coverage & (1 << fragNdx))
1916 {
1917 const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx % 2, fragNdx / 2);
1918
1919 DE_ASSERT(deInBounds32(fragPos.x(), 0, maskMap.getWidth()));
1920 DE_ASSERT(deInBounds32(fragPos.y(), 0, maskMap.getHeight()));
1921
1922 const uint32_t previousMask = maskMap.getPixelUint(fragPos.x(), fragPos.y()).x();
1923 const uint32_t newMask = (previousMask) | ((uint32_t)1u << bitNdx);
1924
1925 maskMap.setPixel(tcu::UVec4(newMask, 0, 0, 0), fragPos.x(), fragPos.y());
1926 }
1927 }
1928 }
1929 }
1930 }
1931
setMaskMapCoverageBitForLines(const std::vector<tcu::Vec4> & screenspaceLines,float lineWidth,tcu::PixelBufferAccess maskMap,const int subpixelBits)1932 void setMaskMapCoverageBitForLines(const std::vector<tcu::Vec4> &screenspaceLines, float lineWidth,
1933 tcu::PixelBufferAccess maskMap, const int subpixelBits)
1934 {
1935 for (int lineNdx = 0; lineNdx < (int)screenspaceLines.size(); ++lineNdx)
1936 {
1937 const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
1938 const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
1939
1940 setMaskMapCoverageBitForLine(lineNdx, pa, pb, lineWidth, maskMap, subpixelBits);
1941 }
1942 }
1943
1944 // verify line interpolation assuming line pixels are interpolated independently depending only on screen space location
verifyLineGroupPixelIndependentInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,LineInterpolationMethod interpolationMethod)1945 bool verifyLineGroupPixelIndependentInterpolation(const tcu::Surface &surface, const LineSceneSpec &scene,
1946 const RasterizationArguments &args, tcu::TestLog &log,
1947 LineInterpolationMethod interpolationMethod)
1948 {
1949 DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
1950 DE_ASSERT(interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT ||
1951 interpolationMethod == LINEINTERPOLATION_PROJECTED);
1952
1953 const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
1954 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
1955 const int errorFloodThreshold = 4;
1956 int errorCount = 0;
1957 tcu::Surface errorMask(surface.getWidth(), surface.getHeight());
1958 int invalidPixels = 0;
1959 std::vector<tcu::Vec4> screenspaceLines(scene.lines.size()); //!< packed (x0, y0, x1, y1)
1960
1961 // Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
1962 // The map is used to find lines with potential coverage to a given pixel
1963 tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8),
1964 surface.getWidth(), surface.getHeight());
1965
1966 tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1967 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
1968
1969 // log format
1970
1971 log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits
1972 << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
1973 if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
1974 log << tcu::TestLog::Message
1975 << "Warning! More than 8 bits in a color channel, this may produce false negatives."
1976 << tcu::TestLog::EndMessage;
1977
1978 // prepare lookup map
1979
1980 genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
1981 setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess(), args.subpixelBits);
1982
1983 // Find all possible lines with coverage, check pixel color matches one of them
1984
1985 for (int y = 1; y < surface.getHeight() - 1; ++y)
1986 for (int x = 1; x < surface.getWidth() - 1; ++x)
1987 {
1988 const tcu::RGBA color = surface.getPixel(x, y);
1989 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(
1990 color, args); // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
1991 int lineCoverageSet = 0; // !< lines that may cover this fragment
1992 int lineSurroundingCoverage = 0xFFFF; // !< lines that will cover this fragment
1993 bool matchFound = false;
1994 const tcu::IVec3 formatLimit((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
1995
1996 std::vector<SingleSampleNarrowLineCandidate> candidates;
1997
1998 // Find lines with possible coverage
1999
2000 for (int dy = -1; dy < 2; ++dy)
2001 for (int dx = -1; dx < 2; ++dx)
2002 {
2003 const int coverage = referenceLineMap.getAccess().getPixelInt(x + dx, y + dy).x();
2004
2005 lineCoverageSet |= coverage;
2006 lineSurroundingCoverage &= coverage;
2007 }
2008
2009 // background color is possible?
2010 if (lineSurroundingCoverage == 0 &&
2011 compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
2012 continue;
2013
2014 // Check those lines
2015
2016 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2017 {
2018 if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
2019 {
2020 const float wa = scene.lines[lineNdx].positions[0].w();
2021 const float wb = scene.lines[lineNdx].positions[1].w();
2022 const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
2023 const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
2024
2025 const LineInterpolationRange range = (interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT) ?
2026 (calcSingleSampleLineInterpolationRange(
2027 pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits)) :
2028 (calcSingleSampleLineInterpolationRangeAxisProjected(
2029 pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits));
2030
2031 const tcu::Vec4 valueMin = de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] +
2032 de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
2033 const tcu::Vec4 valueMax = de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] +
2034 de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
2035
2036 const tcu::Vec3 colorMinF(
2037 de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
2038 de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
2039 de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
2040 const tcu::Vec3 colorMaxF(
2041 de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
2042 de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
2043 de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
2044 const tcu::IVec3 colorMin((int)deFloatFloor(colorMinF.x()), (int)deFloatFloor(colorMinF.y()),
2045 (int)deFloatFloor(colorMinF.z()));
2046 const tcu::IVec3 colorMax((int)deFloatCeil(colorMaxF.x()), (int)deFloatCeil(colorMaxF.y()),
2047 (int)deFloatCeil(colorMaxF.z()));
2048
2049 // Verify validity
2050 if (pixelNativeColor.x() < colorMin.x() || pixelNativeColor.y() < colorMin.y() ||
2051 pixelNativeColor.z() < colorMin.z() || pixelNativeColor.x() > colorMax.x() ||
2052 pixelNativeColor.y() > colorMax.y() || pixelNativeColor.z() > colorMax.z())
2053 {
2054 if (errorCount < errorFloodThreshold)
2055 {
2056 // Store candidate information for logging
2057 SingleSampleNarrowLineCandidate candidate;
2058
2059 candidate.lineNdx = lineNdx;
2060 candidate.colorMin = colorMin;
2061 candidate.colorMax = colorMax;
2062 candidate.colorMinF = colorMinF;
2063 candidate.colorMaxF = colorMaxF;
2064 candidate.valueRangeMin = valueMin.swizzle(0, 1, 2);
2065 candidate.valueRangeMax = valueMax.swizzle(0, 1, 2);
2066
2067 candidates.push_back(candidate);
2068 }
2069 }
2070 else
2071 {
2072 matchFound = true;
2073 break;
2074 }
2075 }
2076 }
2077
2078 if (matchFound)
2079 continue;
2080
2081 // invalid fragment
2082 ++invalidPixels;
2083 errorMask.setPixel(x, y, invalidPixelColor);
2084
2085 ++errorCount;
2086
2087 // don't fill the logs with too much data
2088 if (errorCount < errorFloodThreshold)
2089 {
2090 log << tcu::TestLog::Message << "Found an invalid pixel at (" << x << "," << y << "), "
2091 << (int)candidates.size() << " candidate reference value(s) found:\n"
2092 << "\tPixel color:\t\t" << color << "\n"
2093 << "\tNative color:\t\t" << pixelNativeColor << "\n"
2094 << tcu::TestLog::EndMessage;
2095
2096 for (int candidateNdx = 0; candidateNdx < (int)candidates.size(); ++candidateNdx)
2097 {
2098 const SingleSampleNarrowLineCandidate &candidate = candidates[candidateNdx];
2099
2100 log << tcu::TestLog::Message << "\tCandidate (line " << candidate.lineNdx << "):\n"
2101 << "\t\tReference native color min: "
2102 << tcu::clamp(candidate.colorMin, tcu::IVec3(0, 0, 0), formatLimit) << "\n"
2103 << "\t\tReference native color max: "
2104 << tcu::clamp(candidate.colorMax, tcu::IVec3(0, 0, 0), formatLimit) << "\n"
2105 << "\t\tReference native float min: "
2106 << tcu::clamp(candidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>())
2107 << "\n"
2108 << "\t\tReference native float max: "
2109 << tcu::clamp(candidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>())
2110 << "\n"
2111 << "\t\tFmin:\t"
2112 << tcu::clamp(candidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f))
2113 << "\n"
2114 << "\t\tFmax:\t"
2115 << tcu::clamp(candidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f))
2116 << "\n"
2117 << tcu::TestLog::EndMessage;
2118 }
2119 }
2120 }
2121
2122 // don't just hide failures
2123 if (errorCount > errorFloodThreshold)
2124 log << tcu::TestLog::Message << "Omitted " << (errorCount - errorFloodThreshold)
2125 << " pixel error description(s)." << tcu::TestLog::EndMessage;
2126
2127 // report result
2128 if (invalidPixels)
2129 {
2130 log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
2131 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2132 << tcu::TestLog::Image("Result", "Result", surface)
2133 << tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask) << tcu::TestLog::EndImageSet;
2134
2135 return false;
2136 }
2137 else
2138 {
2139 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2140 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2141 << tcu::TestLog::Image("Result", "Result", surface) << tcu::TestLog::EndImageSet;
2142
2143 return true;
2144 }
2145 }
2146
verifySinglesampleNarrowLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2147 bool verifySinglesampleNarrowLineGroupInterpolation(const tcu::Surface &surface, const LineSceneSpec &scene,
2148 const RasterizationArguments &args, tcu::TestLog &log)
2149 {
2150 DE_ASSERT(scene.lineWidth == 1.0f);
2151 return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_STRICTLY_CORRECT);
2152 }
2153
verifyLineGroupInterpolationWithNonProjectedWeights(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2154 bool verifyLineGroupInterpolationWithNonProjectedWeights(const tcu::Surface &surface, const LineSceneSpec &scene,
2155 const RasterizationArguments &args, tcu::TestLog &log)
2156 {
2157 return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_STRICTLY_CORRECT);
2158 }
2159
verifyLineGroupInterpolationWithProjectedWeights(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2160 bool verifyLineGroupInterpolationWithProjectedWeights(const tcu::Surface &surface, const LineSceneSpec &scene,
2161 const RasterizationArguments &args, tcu::TestLog &log)
2162 {
2163 return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_PROJECTED);
2164 }
2165
2166 struct SingleSampleWideLineCandidate
2167 {
2168 struct InterpolationPointCandidate
2169 {
2170 tcu::IVec2 interpolationPoint;
2171 tcu::IVec3 colorMin;
2172 tcu::IVec3 colorMax;
2173 tcu::Vec3 colorMinF;
2174 tcu::Vec3 colorMaxF;
2175 tcu::Vec3 valueRangeMin;
2176 tcu::Vec3 valueRangeMax;
2177 };
2178
2179 int lineNdx;
2180 int numCandidates;
2181 InterpolationPointCandidate interpolationCandidates[3];
2182 };
2183
2184 // return point on line at a given position on a given axis
getLineCoordAtAxisCoord(const tcu::Vec2 & pa,const tcu::Vec2 & pb,bool isXAxis,float axisCoord)2185 tcu::Vec2 getLineCoordAtAxisCoord(const tcu::Vec2 &pa, const tcu::Vec2 &pb, bool isXAxis, float axisCoord)
2186 {
2187 const int fixedCoordNdx = (isXAxis) ? (0) : (1);
2188 const int varyingCoordNdx = (isXAxis) ? (1) : (0);
2189
2190 const float fixedDifference = pb[fixedCoordNdx] - pa[fixedCoordNdx];
2191 const float varyingDifference = pb[varyingCoordNdx] - pa[varyingCoordNdx];
2192
2193 DE_ASSERT(fixedDifference != 0.0f);
2194
2195 const float resultFixedCoord = axisCoord;
2196 const float resultVaryingCoord =
2197 pa[varyingCoordNdx] + (axisCoord - pa[fixedCoordNdx]) * (varyingDifference / fixedDifference);
2198
2199 return (isXAxis) ? (tcu::Vec2(resultFixedCoord, resultVaryingCoord)) :
2200 (tcu::Vec2(resultVaryingCoord, resultFixedCoord));
2201 }
2202
isBlack(const tcu::RGBA & c)2203 bool isBlack(const tcu::RGBA &c)
2204 {
2205 return c.getRed() == 0 && c.getGreen() == 0 && c.getBlue() == 0;
2206 }
2207
verifySinglesampleWideLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2208 bool verifySinglesampleWideLineGroupInterpolation(const tcu::Surface &surface, const LineSceneSpec &scene,
2209 const RasterizationArguments &args, tcu::TestLog &log)
2210 {
2211 DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
2212 DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
2213
2214 enum
2215 {
2216 FLAG_ROOT_NOT_SET = (1u << 16)
2217 };
2218
2219 const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
2220 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
2221 const int errorFloodThreshold = 4;
2222 int errorCount = 0;
2223 tcu::Surface errorMask(surface.getWidth(), surface.getHeight());
2224 int invalidPixels = 0;
2225 std::vector<tcu::Vec4> effectiveLines(scene.lines.size()); //!< packed (x0, y0, x1, y1)
2226 std::vector<bool> lineIsXMajor(scene.lines.size());
2227
2228 // for each line, for every distinct major direction fragment, store root pixel location (along
2229 // minor direction);
2230 std::vector<std::vector<uint32_t>> rootPixelLocation(
2231 scene.lines.size()); //!< packed [16b - flags] [16b - coordinate]
2232
2233 // log format
2234
2235 log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits
2236 << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
2237 if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
2238 log << tcu::TestLog::Message
2239 << "Warning! More than 8 bits in a color channel, this may produce false negatives."
2240 << tcu::TestLog::EndMessage;
2241
2242 // Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
2243 // The map is used to find lines with potential coverage to a given pixel
2244 tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8),
2245 surface.getWidth(), surface.getHeight());
2246 tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
2247
2248 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
2249
2250 // calculate mask and effective line coordinates
2251 {
2252 std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
2253
2254 genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
2255 setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess(),
2256 args.subpixelBits);
2257
2258 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2259 {
2260 const tcu::Vec2 lineScreenSpaceP0 = screenspaceLines[lineNdx].swizzle(0, 1);
2261 const tcu::Vec2 lineScreenSpaceP1 = screenspaceLines[lineNdx].swizzle(2, 3);
2262 const bool isXMajor = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
2263
2264 lineIsXMajor[lineNdx] = isXMajor;
2265
2266 // wide line interpolations are calculated for a line moved in minor direction
2267 {
2268 const float offsetLength = (scene.lineWidth - 1.0f) / 2.0f;
2269 const tcu::Vec2 offsetDirection = (isXMajor) ? (tcu::Vec2(0.0f, -1.0f)) : (tcu::Vec2(-1.0f, 0.0f));
2270 const tcu::Vec2 offset = offsetDirection * offsetLength;
2271
2272 effectiveLines[lineNdx] =
2273 tcu::Vec4(lineScreenSpaceP0.x() + offset.x(), lineScreenSpaceP0.y() + offset.y(),
2274 lineScreenSpaceP1.x() + offset.x(), lineScreenSpaceP1.y() + offset.y());
2275 }
2276 }
2277 }
2278
2279 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2280 {
2281 // Calculate root pixel lookup table for this line. Since the implementation's fragment
2282 // major coordinate range might not be a subset of the correct line range (they are allowed
2283 // to vary by one pixel), we must extend the domain to cover whole viewport along major
2284 // dimension.
2285 //
2286 // Expanding line strip to (effectively) infinite line might result in exit-diamnod set
2287 // that is not a superset of the exit-diamond set of the line strip. In practice, this
2288 // won't be an issue, since the allow-one-pixel-variation rule should tolerate this even
2289 // if the original and extended line would resolve differently a diamond the line just
2290 // touches (precision lost in expansion changes enter/exit status).
2291
2292 {
2293 const bool isXMajor = lineIsXMajor[lineNdx];
2294 const int majorSize = (isXMajor) ? (surface.getWidth()) : (surface.getHeight());
2295 rr::LineExitDiamondGenerator diamondGenerator(args.subpixelBits);
2296 rr::LineExitDiamond diamonds[32];
2297 int numRasterized = DE_LENGTH_OF_ARRAY(diamonds);
2298
2299 // Expand to effectively infinite line (endpoints are just one pixel over viewport boundaries)
2300 const tcu::Vec2 expandedP0 = getLineCoordAtAxisCoord(
2301 effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, -1.0f);
2302 const tcu::Vec2 expandedP1 =
2303 getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3),
2304 isXMajor, (float)majorSize + 1.0f);
2305
2306 diamondGenerator.init(tcu::Vec4(expandedP0.x(), expandedP0.y(), 0.0f, 1.0f),
2307 tcu::Vec4(expandedP1.x(), expandedP1.y(), 0.0f, 1.0f));
2308
2309 rootPixelLocation[lineNdx].resize(majorSize, FLAG_ROOT_NOT_SET);
2310
2311 while (numRasterized == DE_LENGTH_OF_ARRAY(diamonds))
2312 {
2313 diamondGenerator.rasterize(diamonds, DE_LENGTH_OF_ARRAY(diamonds), numRasterized);
2314
2315 for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
2316 {
2317 const tcu::IVec2 fragPos = diamonds[packetNdx].position;
2318 const int majorPos = (isXMajor) ? (fragPos.x()) : (fragPos.y());
2319 const int rootPos = (isXMajor) ? (fragPos.y()) : (fragPos.x());
2320 const uint32_t packed = (uint32_t)((uint16_t)((int16_t)rootPos));
2321
2322 // infinite line will generate some diamonds outside the viewport
2323 if (deInBounds32(majorPos, 0, majorSize))
2324 {
2325 DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) != 0u);
2326 rootPixelLocation[lineNdx][majorPos] = packed;
2327 }
2328 }
2329 }
2330
2331 // Filled whole lookup table
2332 for (int majorPos = 0; majorPos < majorSize; ++majorPos)
2333 DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) == 0u);
2334 }
2335 }
2336
2337 // Find all possible lines with coverage, check pixel color matches one of them
2338
2339 for (int y = 1; y < surface.getHeight() - 1; ++y)
2340 for (int x = 1; x < surface.getWidth() - 1; ++x)
2341 {
2342 const tcu::RGBA color = surface.getPixel(x, y);
2343 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(
2344 color, args); // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
2345 int lineCoverageSet = 0; // !< lines that may cover this fragment
2346 int lineSurroundingCoverage = 0xFFFF; // !< lines that will cover this fragment
2347 bool matchFound = false;
2348 const tcu::IVec3 formatLimit((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
2349
2350 std::vector<SingleSampleWideLineCandidate> candidates;
2351
2352 // Find lines with possible coverage
2353
2354 for (int dy = -1; dy < 2; ++dy)
2355 for (int dx = -1; dx < 2; ++dx)
2356 {
2357 const int coverage = referenceLineMap.getAccess().getPixelInt(x + dx, y + dy).x();
2358
2359 lineCoverageSet |= coverage;
2360 lineSurroundingCoverage &= coverage;
2361 }
2362
2363 // background color is possible?
2364 if (lineSurroundingCoverage == 0 &&
2365 compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
2366 continue;
2367
2368 // Check those lines
2369
2370 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2371 {
2372 if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
2373 {
2374 const float wa = scene.lines[lineNdx].positions[0].w();
2375 const float wb = scene.lines[lineNdx].positions[1].w();
2376 const tcu::Vec2 pa = effectiveLines[lineNdx].swizzle(0, 1);
2377 const tcu::Vec2 pb = effectiveLines[lineNdx].swizzle(2, 3);
2378
2379 // \note Wide line fragments are generated by replicating the root fragment for each
2380 // fragment column (row for y-major). Calculate interpolation at the root
2381 // fragment.
2382 const bool isXMajor = lineIsXMajor[lineNdx];
2383 const int majorPosition = (isXMajor) ? (x) : (y);
2384 const uint32_t minorInfoPacked = rootPixelLocation[lineNdx][majorPosition];
2385 const int minorPosition = (int)((int16_t)((uint16_t)(minorInfoPacked & 0xFFFFu)));
2386 const tcu::IVec2 idealRootPos = (isXMajor) ? (tcu::IVec2(majorPosition, minorPosition)) :
2387 (tcu::IVec2(minorPosition, majorPosition));
2388 const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
2389
2390 SingleSampleWideLineCandidate candidate;
2391
2392 candidate.lineNdx = lineNdx;
2393 candidate.numCandidates = 0;
2394 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates) == 3);
2395
2396 // Interpolation happens at the root fragment, which is then replicated in minor
2397 // direction. Search for implementation's root position near accurate root.
2398 for (int minorOffset = -1; minorOffset < 2; ++minorOffset)
2399 {
2400 const tcu::IVec2 rootPosition = idealRootPos + minorOffset * minorDirection;
2401
2402 // A fragment can be root fragment only if it exists
2403 // \note root fragment can "exist" outside viewport
2404 // \note no pixel format theshold since in this case allowing only black is more conservative
2405 if (deInBounds32(rootPosition.x(), 0, surface.getWidth()) &&
2406 deInBounds32(rootPosition.y(), 0, surface.getHeight()) &&
2407 isBlack(surface.getPixel(rootPosition.x(), rootPosition.y())))
2408 {
2409 continue;
2410 }
2411
2412 const LineInterpolationRange range =
2413 calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, rootPosition, args.subpixelBits);
2414
2415 const tcu::Vec4 valueMin =
2416 de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] +
2417 de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
2418 const tcu::Vec4 valueMax =
2419 de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] +
2420 de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
2421
2422 const tcu::Vec3 colorMinF(
2423 de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
2424 de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
2425 de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
2426 const tcu::Vec3 colorMaxF(
2427 de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
2428 de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
2429 de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
2430 const tcu::IVec3 colorMin((int)deFloatFloor(colorMinF.x()), (int)deFloatFloor(colorMinF.y()),
2431 (int)deFloatFloor(colorMinF.z()));
2432 const tcu::IVec3 colorMax((int)deFloatCeil(colorMaxF.x()), (int)deFloatCeil(colorMaxF.y()),
2433 (int)deFloatCeil(colorMaxF.z()));
2434
2435 // Verify validity
2436 if (pixelNativeColor.x() < colorMin.x() || pixelNativeColor.y() < colorMin.y() ||
2437 pixelNativeColor.z() < colorMin.z() || pixelNativeColor.x() > colorMax.x() ||
2438 pixelNativeColor.y() > colorMax.y() || pixelNativeColor.z() > colorMax.z())
2439 {
2440 if (errorCount < errorFloodThreshold)
2441 {
2442 // Store candidate information for logging
2443 SingleSampleWideLineCandidate::InterpolationPointCandidate &interpolationCandidate =
2444 candidate.interpolationCandidates[candidate.numCandidates++];
2445 DE_ASSERT(candidate.numCandidates <=
2446 DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates));
2447
2448 interpolationCandidate.interpolationPoint = rootPosition;
2449 interpolationCandidate.colorMin = colorMin;
2450 interpolationCandidate.colorMax = colorMax;
2451 interpolationCandidate.colorMinF = colorMinF;
2452 interpolationCandidate.colorMaxF = colorMaxF;
2453 interpolationCandidate.valueRangeMin = valueMin.swizzle(0, 1, 2);
2454 interpolationCandidate.valueRangeMax = valueMax.swizzle(0, 1, 2);
2455 }
2456 }
2457 else
2458 {
2459 matchFound = true;
2460 break;
2461 }
2462 }
2463
2464 if (!matchFound)
2465 {
2466 // store info for logging
2467 if (errorCount < errorFloodThreshold && candidate.numCandidates > 0)
2468 candidates.push_back(candidate);
2469 }
2470 else
2471 {
2472 // no need to check other lines
2473 break;
2474 }
2475 }
2476 }
2477
2478 if (matchFound)
2479 continue;
2480
2481 // invalid fragment
2482 ++invalidPixels;
2483 errorMask.setPixel(x, y, invalidPixelColor);
2484
2485 ++errorCount;
2486
2487 // don't fill the logs with too much data
2488 if (errorCount < errorFloodThreshold)
2489 {
2490 tcu::MessageBuilder msg(&log);
2491
2492 msg << "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size()
2493 << " candidate reference value(s) found:\n"
2494 << "\tPixel color:\t\t" << color << "\n"
2495 << "\tNative color:\t\t" << pixelNativeColor << "\n";
2496
2497 for (int lineCandidateNdx = 0; lineCandidateNdx < (int)candidates.size(); ++lineCandidateNdx)
2498 {
2499 const SingleSampleWideLineCandidate &candidate = candidates[lineCandidateNdx];
2500
2501 msg << "\tCandidate line (line " << candidate.lineNdx << "):\n";
2502
2503 for (int interpolationCandidateNdx = 0; interpolationCandidateNdx < candidate.numCandidates;
2504 ++interpolationCandidateNdx)
2505 {
2506 const SingleSampleWideLineCandidate::InterpolationPointCandidate &interpolationCandidate =
2507 candidate.interpolationCandidates[interpolationCandidateNdx];
2508
2509 msg << "\t\tCandidate interpolation point (index " << interpolationCandidateNdx << "):\n"
2510 << "\t\t\tRoot fragment position (non-replicated fragment): "
2511 << interpolationCandidate.interpolationPoint << ":\n"
2512 << "\t\t\tReference native color min: "
2513 << tcu::clamp(interpolationCandidate.colorMin, tcu::IVec3(0, 0, 0), formatLimit) << "\n"
2514 << "\t\t\tReference native color max: "
2515 << tcu::clamp(interpolationCandidate.colorMax, tcu::IVec3(0, 0, 0), formatLimit) << "\n"
2516 << "\t\t\tReference native float min: "
2517 << tcu::clamp(interpolationCandidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f),
2518 formatLimit.cast<float>())
2519 << "\n"
2520 << "\t\t\tReference native float max: "
2521 << tcu::clamp(interpolationCandidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f),
2522 formatLimit.cast<float>())
2523 << "\n"
2524 << "\t\t\tFmin:\t"
2525 << tcu::clamp(interpolationCandidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f),
2526 tcu::Vec3(1.0f, 1.0f, 1.0f))
2527 << "\n"
2528 << "\t\t\tFmax:\t"
2529 << tcu::clamp(interpolationCandidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f),
2530 tcu::Vec3(1.0f, 1.0f, 1.0f))
2531 << "\n";
2532 }
2533 }
2534
2535 msg << tcu::TestLog::EndMessage;
2536 }
2537 }
2538
2539 // don't just hide failures
2540 if (errorCount > errorFloodThreshold)
2541 log << tcu::TestLog::Message << "Omitted " << (errorCount - errorFloodThreshold)
2542 << " pixel error description(s)." << tcu::TestLog::EndMessage;
2543
2544 // report result
2545 if (invalidPixels)
2546 {
2547 log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
2548 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2549 << tcu::TestLog::Image("Result", "Result", surface)
2550 << tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask) << tcu::TestLog::EndImageSet;
2551
2552 return false;
2553 }
2554 else
2555 {
2556 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2557 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2558 << tcu::TestLog::Image("Result", "Result", surface) << tcu::TestLog::EndImageSet;
2559
2560 return true;
2561 }
2562 }
2563
2564 } // namespace
2565
calculateTriangleCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::IVec2 & pixel,const tcu::IVec2 & viewportSize,int subpixelBits,bool multisample)2566 CoverageType calculateTriangleCoverage(const tcu::Vec4 &p0, const tcu::Vec4 &p1, const tcu::Vec4 &p2,
2567 const tcu::IVec2 &pixel, const tcu::IVec2 &viewportSize, int subpixelBits,
2568 bool multisample)
2569 {
2570 using tcu::I64Vec2;
2571
2572 const uint64_t numSubPixels = ((uint64_t)1) << subpixelBits;
2573 const uint64_t pixelHitBoxSize =
2574 (multisample) ? (numSubPixels) :
2575 5; //!< 5 = ceil(6 * sqrt(2) / 2) to account for a 3 subpixel fuzz around pixel center
2576 const bool order = isTriangleClockwise(p0, p1, p2); //!< clockwise / counter-clockwise
2577 const tcu::Vec4 &orderedP0 = p0; //!< vertices of a clockwise triangle
2578 const tcu::Vec4 &orderedP1 = (order) ? (p1) : (p2);
2579 const tcu::Vec4 &orderedP2 = (order) ? (p2) : (p1);
2580 const tcu::Vec2 triangleNormalizedDeviceSpace[3] = {
2581 tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
2582 tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
2583 tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
2584 };
2585 const tcu::Vec2 triangleScreenSpace[3] = {
2586 (triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
2587 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2588 (triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
2589 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2590 (triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
2591 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2592 };
2593
2594 // Broad bounding box - pixel check
2595 {
2596 const float minX =
2597 de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2598 const float minY =
2599 de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2600 const float maxX =
2601 de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2602 const float maxY =
2603 de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2604
2605 if ((float)pixel.x() > maxX + 1 || (float)pixel.y() > maxY + 1 || (float)pixel.x() < minX - 1 ||
2606 (float)pixel.y() < minY - 1)
2607 return COVERAGE_NONE;
2608 }
2609
2610 // Broad triangle - pixel area intersection
2611 {
2612 const DVec2 pixelCenterPosition =
2613 DVec2((double)pixel.x(), (double)pixel.y()) * DVec2((double)numSubPixels, (double)numSubPixels) +
2614 DVec2((double)numSubPixels / 2, (double)numSubPixels / 2);
2615 const DVec2 triangleSubPixelSpace[3] = {
2616 DVec2(triangleScreenSpace[0].x() * (double)numSubPixels, triangleScreenSpace[0].y() * (double)numSubPixels),
2617 DVec2(triangleScreenSpace[1].x() * (double)numSubPixels, triangleScreenSpace[1].y() * (double)numSubPixels),
2618 DVec2(triangleScreenSpace[2].x() * (double)numSubPixels, triangleScreenSpace[2].y() * (double)numSubPixels),
2619 };
2620
2621 // Check (using cross product) if pixel center is
2622 // a) too far from any edge
2623 // b) fully inside all edges
2624 bool insideAllEdges = true;
2625 for (int vtxNdx = 0; vtxNdx < 3; ++vtxNdx)
2626 {
2627 const int otherVtxNdx = (vtxNdx + 1) % 3;
2628 const double maxPixelDistanceSquared =
2629 (double)(pixelHitBoxSize *
2630 pixelHitBoxSize); // Max distance from the pixel center from within the pixel is (sqrt(2) * boxWidth/2). Use 2x value for rounding tolerance
2631 const DVec2 edge = triangleSubPixelSpace[otherVtxNdx] - triangleSubPixelSpace[vtxNdx];
2632 const DVec2 v = pixelCenterPosition - triangleSubPixelSpace[vtxNdx];
2633 const double crossProduct = (edge.x() * v.y() - edge.y() * v.x());
2634
2635 // distance from edge: (edge x v) / |edge|
2636 // (edge x v) / |edge| > maxPixelDistance
2637 // ==> (edge x v)^2 / edge^2 > maxPixelDistance^2 | edge x v > 0
2638 // ==> (edge x v)^2 > maxPixelDistance^2 * edge^2
2639 if (crossProduct < 0 && crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(edge))
2640 return COVERAGE_NONE;
2641 if (crossProduct < 0 || crossProduct * crossProduct < maxPixelDistanceSquared * tcu::lengthSquared(edge))
2642 insideAllEdges = false;
2643 }
2644
2645 if (insideAllEdges)
2646 return COVERAGE_FULL;
2647 }
2648
2649 // Accurate intersection for edge pixels
2650 {
2651 // In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
2652 const I64Vec2 pixelCorners[4] = {
2653 I64Vec2((pixel.x() + 0) * numSubPixels, (pixel.y() + 0) * numSubPixels),
2654 I64Vec2((pixel.x() + 1) * numSubPixels, (pixel.y() + 0) * numSubPixels),
2655 I64Vec2((pixel.x() + 1) * numSubPixels, (pixel.y() + 1) * numSubPixels),
2656 I64Vec2((pixel.x() + 0) * numSubPixels, (pixel.y() + 1) * numSubPixels),
2657 };
2658
2659 // 3 subpixel tolerance around pixel center to account for accumulated errors during various line rasterization methods
2660 const I64Vec2 pixelCenterCorners[4] = {
2661 I64Vec2(pixel.x() * numSubPixels + numSubPixels / 2 - 3, pixel.y() * numSubPixels + numSubPixels / 2 - 3),
2662 I64Vec2(pixel.x() * numSubPixels + numSubPixels / 2 + 3, pixel.y() * numSubPixels + numSubPixels / 2 - 3),
2663 I64Vec2(pixel.x() * numSubPixels + numSubPixels / 2 + 3, pixel.y() * numSubPixels + numSubPixels / 2 + 3),
2664 I64Vec2(pixel.x() * numSubPixels + numSubPixels / 2 - 3, pixel.y() * numSubPixels + numSubPixels / 2 + 3),
2665 };
2666
2667 // both rounding directions
2668 const I64Vec2 triangleSubPixelSpaceFloor[3] = {
2669 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels),
2670 deFloorFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2671 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels),
2672 deFloorFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2673 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels),
2674 deFloorFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2675 };
2676 const I64Vec2 triangleSubPixelSpaceCeil[3] = {
2677 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels),
2678 deCeilFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2679 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels),
2680 deCeilFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2681 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels),
2682 deCeilFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2683 };
2684 const I64Vec2 *const corners = (multisample) ? (pixelCorners) : (pixelCenterCorners);
2685
2686 // Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
2687
2688 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2689 for (int startRounding = 0; startRounding < 4; ++startRounding)
2690 for (int endRounding = 0; endRounding < 4; ++endRounding)
2691 {
2692 const int nextEdgeNdx = (edgeNdx + 1) % 3;
2693 const I64Vec2 startPos((startRounding & 0x01) ? (triangleSubPixelSpaceFloor[edgeNdx].x()) :
2694 (triangleSubPixelSpaceCeil[edgeNdx].x()),
2695 (startRounding & 0x02) ? (triangleSubPixelSpaceFloor[edgeNdx].y()) :
2696 (triangleSubPixelSpaceCeil[edgeNdx].y()));
2697 const I64Vec2 endPos((endRounding & 0x01) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].x()) :
2698 (triangleSubPixelSpaceCeil[nextEdgeNdx].x()),
2699 (endRounding & 0x02) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].y()) :
2700 (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
2701
2702 for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
2703 {
2704 const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
2705
2706 if (lineLineIntersect(startPos, endPos, corners[pixelEdgeNdx], corners[pixelEdgeEnd]))
2707 return COVERAGE_PARTIAL;
2708 }
2709 }
2710
2711 // fully inside or outside
2712 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2713 {
2714 const int nextEdgeNdx = (edgeNdx + 1) % 3;
2715 const I64Vec2 &startPos = triangleSubPixelSpaceFloor[edgeNdx];
2716 const I64Vec2 &endPos = triangleSubPixelSpaceFloor[nextEdgeNdx];
2717 const I64Vec2 edge = endPos - startPos;
2718 const I64Vec2 v = corners[0] - endPos;
2719 const int64_t crossProduct = (edge.x() * v.y() - edge.y() * v.x());
2720
2721 // a corner of the pixel is outside => "fully inside" option is impossible
2722 if (crossProduct < 0)
2723 return COVERAGE_NONE;
2724 }
2725
2726 return COVERAGE_FULL;
2727 }
2728 }
2729
calculateUnderestimateLineCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const float lineWidth,const tcu::IVec2 & pixel,const tcu::IVec2 & viewportSize)2730 CoverageType calculateUnderestimateLineCoverage(const tcu::Vec4 &p0, const tcu::Vec4 &p1, const float lineWidth,
2731 const tcu::IVec2 &pixel, const tcu::IVec2 &viewportSize)
2732 {
2733 DE_ASSERT(viewportSize.x() == viewportSize.y() && viewportSize.x() > 0);
2734 DE_ASSERT(p0.w() == 1.0f && p1.w() == 1.0f);
2735
2736 const Vec2 p = Vec2(p0.x(), p0.y());
2737 const Vec2 q = Vec2(p1.x(), p1.y());
2738 const Vec2 pq = Vec2(p1.x() - p0.x(), p1.y() - p0.y());
2739 const Vec2 pqn = normalize(pq);
2740 const Vec2 lw = 0.5f * lineWidth * pqn;
2741 const Vec2 n = Vec2(lw.y(), -lw.x());
2742 const Vec2 vp = Vec2(float(viewportSize.x()), float(viewportSize.y()));
2743 const Vec2 a = 0.5f * (p + Vec2(1.0f, 1.0f)) * vp + n;
2744 const Vec2 b = 0.5f * (p + Vec2(1.0f, 1.0f)) * vp - n;
2745 const Vec2 c = 0.5f * (q + Vec2(1.0f, 1.0f)) * vp - n;
2746 const Vec2 ba = b - a;
2747 const Vec2 bc = b - c;
2748 const float det = ba.x() * bc.y() - ba.y() * bc.x();
2749 int within = 0;
2750
2751 if (det != 0.0f)
2752 {
2753 for (int cornerNdx = 0; cornerNdx < 4; ++cornerNdx)
2754 {
2755 const int pixelCornerOffsetX = ((cornerNdx & 1) ? 1 : 0);
2756 const int pixelCornerOffsetY = ((cornerNdx & 2) ? 1 : 0);
2757 const Vec2 f = Vec2(float(pixel.x() + pixelCornerOffsetX), float(pixel.y() + pixelCornerOffsetY));
2758 const Vec2 bf = b - f;
2759 const float alpha = (bf.x() * bc.y() - bc.x() * bf.y()) / det;
2760 const float beta = (ba.x() * bf.y() - bf.x() * ba.y()) / det;
2761 bool cornerWithin = de::inRange(alpha, 0.0f, 1.0f) && de::inRange(beta, 0.0f, 1.0f);
2762
2763 if (cornerWithin)
2764 within++;
2765 }
2766 }
2767
2768 if (within == 0)
2769 return COVERAGE_NONE;
2770 else if (within == 4)
2771 return COVERAGE_FULL;
2772 else
2773 return COVERAGE_PARTIAL;
2774 }
2775
calculateUnderestimateTriangleCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::IVec2 & pixel,int subpixelBits,const tcu::IVec2 & viewportSize)2776 CoverageType calculateUnderestimateTriangleCoverage(const tcu::Vec4 &p0, const tcu::Vec4 &p1, const tcu::Vec4 &p2,
2777 const tcu::IVec2 &pixel, int subpixelBits,
2778 const tcu::IVec2 &viewportSize)
2779 {
2780 using tcu::I64Vec2;
2781
2782 const uint64_t numSubPixels = ((uint64_t)1) << subpixelBits;
2783 const bool order = isTriangleClockwise(p0, p1, p2); //!< clockwise / counter-clockwise
2784 const tcu::Vec4 &orderedP0 = p0; //!< vertices of a clockwise triangle
2785 const tcu::Vec4 &orderedP1 = (order) ? (p1) : (p2);
2786 const tcu::Vec4 &orderedP2 = (order) ? (p2) : (p1);
2787 const tcu::Vec2 triangleNormalizedDeviceSpace[3] = {
2788 tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
2789 tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
2790 tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
2791 };
2792 const tcu::Vec2 triangleScreenSpace[3] = {
2793 (triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
2794 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2795 (triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
2796 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2797 (triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f *
2798 tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2799 };
2800
2801 // Broad bounding box - pixel check
2802 {
2803 const float minX =
2804 de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2805 const float minY =
2806 de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2807 const float maxX =
2808 de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2809 const float maxY =
2810 de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2811
2812 if ((float)pixel.x() > maxX + 1 || (float)pixel.y() > maxY + 1 || (float)pixel.x() < minX - 1 ||
2813 (float)pixel.y() < minY - 1)
2814 return COVERAGE_NONE;
2815 }
2816
2817 // Accurate intersection for edge pixels
2818 {
2819 // In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
2820 const I64Vec2 pixelCorners[4] = {
2821 I64Vec2((pixel.x() + 0) * numSubPixels, (pixel.y() + 0) * numSubPixels),
2822 I64Vec2((pixel.x() + 1) * numSubPixels, (pixel.y() + 0) * numSubPixels),
2823 I64Vec2((pixel.x() + 1) * numSubPixels, (pixel.y() + 1) * numSubPixels),
2824 I64Vec2((pixel.x() + 0) * numSubPixels, (pixel.y() + 1) * numSubPixels),
2825 };
2826 // both rounding directions
2827 const I64Vec2 triangleSubPixelSpaceFloor[3] = {
2828 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels),
2829 deFloorFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2830 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels),
2831 deFloorFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2832 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels),
2833 deFloorFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2834 };
2835 const I64Vec2 triangleSubPixelSpaceCeil[3] = {
2836 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels),
2837 deCeilFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2838 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels),
2839 deCeilFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2840 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels),
2841 deCeilFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2842 };
2843
2844 // Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
2845
2846 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2847 for (int startRounding = 0; startRounding < 4; ++startRounding)
2848 for (int endRounding = 0; endRounding < 4; ++endRounding)
2849 {
2850 const int nextEdgeNdx = (edgeNdx + 1) % 3;
2851 const I64Vec2 startPos((startRounding & 0x01) ? (triangleSubPixelSpaceFloor[edgeNdx].x()) :
2852 (triangleSubPixelSpaceCeil[edgeNdx].x()),
2853 (startRounding & 0x02) ? (triangleSubPixelSpaceFloor[edgeNdx].y()) :
2854 (triangleSubPixelSpaceCeil[edgeNdx].y()));
2855 const I64Vec2 endPos((endRounding & 0x01) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].x()) :
2856 (triangleSubPixelSpaceCeil[nextEdgeNdx].x()),
2857 (endRounding & 0x02) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].y()) :
2858 (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
2859
2860 for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
2861 {
2862 const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
2863
2864 if (lineLineIntersect(startPos, endPos, pixelCorners[pixelEdgeNdx], pixelCorners[pixelEdgeEnd]))
2865 return COVERAGE_PARTIAL;
2866 }
2867 }
2868
2869 // fully inside or outside
2870 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2871 {
2872 const int nextEdgeNdx = (edgeNdx + 1) % 3;
2873 const I64Vec2 &startPos = triangleSubPixelSpaceFloor[edgeNdx];
2874 const I64Vec2 &endPos = triangleSubPixelSpaceFloor[nextEdgeNdx];
2875 const I64Vec2 edge = endPos - startPos;
2876 const I64Vec2 v = pixelCorners[0] - endPos;
2877 const int64_t crossProduct = (edge.x() * v.y() - edge.y() * v.x());
2878
2879 // a corner of the pixel is outside => "fully inside" option is impossible
2880 if (crossProduct < 0)
2881 return COVERAGE_NONE;
2882 }
2883
2884 return COVERAGE_FULL;
2885 }
2886 }
2887
logTriangleGroupRasterizationStash(const tcu::Surface & surface,tcu::TestLog & log,VerifyTriangleGroupRasterizationLogStash & logStash)2888 static void logTriangleGroupRasterizationStash(const tcu::Surface &surface, tcu::TestLog &log,
2889 VerifyTriangleGroupRasterizationLogStash &logStash)
2890 {
2891 // Output results
2892 log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
2893
2894 for (size_t msgNdx = 0; msgNdx < logStash.messages.size(); ++msgNdx)
2895 log << tcu::TestLog::Message << logStash.messages[msgNdx] << tcu::TestLog::EndMessage;
2896
2897 if (!logStash.result)
2898 {
2899 log << tcu::TestLog::Message << "Invalid pixels found:\n\t" << logStash.missingPixels
2900 << " missing pixels. (Marked with purple)\n\t" << logStash.unexpectedPixels
2901 << " incorrectly filled pixels. (Marked with red)\n\t"
2902 << "Unknown (subpixel on edge) pixels are marked with yellow." << tcu::TestLog::EndMessage;
2903 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2904 << tcu::TestLog::Image("Result", "Result", surface)
2905 << tcu::TestLog::Image("ErrorMask", "ErrorMask", logStash.errorMask) << tcu::TestLog::EndImageSet;
2906 }
2907 else
2908 {
2909 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2910 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2911 << tcu::TestLog::Image("Result", "Result", surface) << tcu::TestLog::EndImageSet;
2912 }
2913 }
2914
verifyTriangleGroupRasterization(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,VerificationMode mode,VerifyTriangleGroupRasterizationLogStash * logStash,const bool vulkanLinesTest)2915 bool verifyTriangleGroupRasterization(const tcu::Surface &surface, const TriangleSceneSpec &scene,
2916 const RasterizationArguments &args, tcu::TestLog &log, VerificationMode mode,
2917 VerifyTriangleGroupRasterizationLogStash *logStash, const bool vulkanLinesTest)
2918 {
2919 DE_ASSERT(mode < VERIFICATIONMODE_LAST);
2920
2921 const tcu::RGBA backGroundColor = tcu::RGBA(0, 0, 0, 255);
2922 const tcu::RGBA triangleColor = tcu::RGBA(255, 255, 255, 255);
2923 const tcu::RGBA missingPixelColor = tcu::RGBA(255, 0, 255, 255);
2924 const tcu::RGBA unexpectedPixelColor = tcu::RGBA(255, 0, 0, 255);
2925 const tcu::RGBA partialPixelColor = tcu::RGBA(255, 255, 0, 255);
2926 const tcu::RGBA primitivePixelColor = tcu::RGBA(30, 30, 30, 255);
2927 const int weakVerificationThreshold = 10;
2928 const int weakerVerificationThreshold = 25;
2929 const bool multisampled = (args.numSamples != 0);
2930 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
2931 int missingPixels = 0;
2932 int unexpectedPixels = 0;
2933 int subPixelBits = args.subpixelBits;
2934 tcu::TextureLevel coverageMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8),
2935 surface.getWidth(), surface.getHeight());
2936 tcu::Surface errorMask(surface.getWidth(), surface.getHeight());
2937 bool result = false;
2938
2939 // subpixel bits in a valid range?
2940
2941 if (subPixelBits < 0)
2942 {
2943 log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0"
2944 << tcu::TestLog::EndMessage;
2945 subPixelBits = 0;
2946 }
2947 else if (subPixelBits > 16)
2948 {
2949 // At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
2950 log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits
2951 << "). Checking results using less strict 16 bit requirements. This may produce false positives."
2952 << tcu::TestLog::EndMessage;
2953 subPixelBits = 16;
2954 }
2955
2956 // generate coverage map
2957
2958 tcu::clear(coverageMap.getAccess(), tcu::IVec4(COVERAGE_NONE, 0, 0, 0));
2959
2960 for (int triNdx = 0; triNdx < (int)scene.triangles.size(); ++triNdx)
2961 {
2962 const tcu::IVec4 aabb = getTriangleAABB(scene.triangles[triNdx], viewportSize);
2963
2964 for (int y = de::max(0, aabb.y()); y <= de::min(aabb.w(), coverageMap.getHeight() - 1); ++y)
2965 for (int x = de::max(0, aabb.x()); x <= de::min(aabb.z(), coverageMap.getWidth() - 1); ++x)
2966 {
2967 if (coverageMap.getAccess().getPixelUint(x, y).x() == COVERAGE_FULL)
2968 continue;
2969
2970 const CoverageType coverage = calculateTriangleCoverage(
2971 scene.triangles[triNdx].positions[0], scene.triangles[triNdx].positions[1],
2972 scene.triangles[triNdx].positions[2], tcu::IVec2(x, y), viewportSize, subPixelBits, multisampled);
2973
2974 if (coverage == COVERAGE_FULL)
2975 {
2976 coverageMap.getAccess().setPixel(tcu::IVec4(COVERAGE_FULL, 0, 0, 0), x, y);
2977 }
2978 else if (coverage == COVERAGE_PARTIAL)
2979 {
2980 CoverageType resultCoverage = COVERAGE_PARTIAL;
2981
2982 // Sharing an edge with another triangle?
2983 // There should always be such a triangle, but the pixel in the other triangle might be
2984 // on multiple edges, some of which are not shared. In these cases the coverage cannot be determined.
2985 // Assume full coverage if the pixel is only on a shared edge in shared triangle too.
2986 if (pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[triNdx], viewportSize))
2987 {
2988 bool friendFound = false;
2989 for (int friendTriNdx = 0; friendTriNdx < (int)scene.triangles.size(); ++friendTriNdx)
2990 {
2991 if (friendTriNdx == triNdx)
2992 continue;
2993
2994 const CoverageType friendCoverage = calculateTriangleCoverage(
2995 scene.triangles[friendTriNdx].positions[0], scene.triangles[friendTriNdx].positions[1],
2996 scene.triangles[friendTriNdx].positions[2], tcu::IVec2(x, y), viewportSize,
2997 subPixelBits, multisampled);
2998
2999 if (friendCoverage != COVERAGE_NONE &&
3000 pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[friendTriNdx], viewportSize))
3001 {
3002 friendFound = true;
3003 break;
3004 }
3005 }
3006
3007 if (friendFound)
3008 resultCoverage = COVERAGE_FULL;
3009 }
3010
3011 coverageMap.getAccess().setPixel(tcu::IVec4(resultCoverage, 0, 0, 0), x, y);
3012 }
3013 }
3014 }
3015
3016 // check pixels
3017
3018 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
3019
3020 // Use these to quick check there is something drawn when a test expects something else than an empty picture.
3021 bool referenceEmpty = true;
3022 bool resultEmpty = true;
3023
3024 for (int y = 0; y < surface.getHeight(); ++y)
3025 for (int x = 0; x < surface.getWidth(); ++x)
3026 {
3027 const tcu::RGBA color = surface.getPixel(x, y);
3028 const bool imageNoCoverage =
3029 compareColors(color, backGroundColor, args.redBits, args.greenBits, args.blueBits);
3030 const bool imageFullCoverage =
3031 compareColors(color, triangleColor, args.redBits, args.greenBits, args.blueBits);
3032 CoverageType referenceCoverage = (CoverageType)coverageMap.getAccess().getPixelUint(x, y).x();
3033
3034 if (!imageNoCoverage)
3035 resultEmpty = false;
3036
3037 switch (referenceCoverage)
3038 {
3039 case COVERAGE_NONE:
3040 if (!imageNoCoverage)
3041 {
3042 // coverage where there should not be
3043 ++unexpectedPixels;
3044 errorMask.setPixel(x, y, unexpectedPixelColor);
3045 }
3046 break;
3047
3048 case COVERAGE_PARTIAL:
3049 {
3050 referenceEmpty = false;
3051 bool foundFragment = false;
3052 if (vulkanLinesTest == true)
3053 {
3054 for (int dy = -1; dy < 2 && !foundFragment; ++dy)
3055 for (int dx = -1; dx < 2 && !foundFragment; ++dx)
3056 {
3057 if (x + dx >= 0 && x + dx != surface.getWidth() && y + dy >= 0 &&
3058 y + dy != surface.getHeight() &&
3059 (CoverageType)coverageMap.getAccess().getPixelUint(x + dx, y + dy).x() != COVERAGE_NONE)
3060 {
3061 const tcu::RGBA color2 = surface.getPixel(x + dx, y + dy);
3062 if (compareColors(color2, triangleColor, args.redBits, args.greenBits, args.blueBits))
3063 foundFragment = true;
3064 }
3065 }
3066 }
3067 // anything goes
3068 if (foundFragment == false)
3069 {
3070 errorMask.setPixel(x, y, partialPixelColor);
3071 if (vulkanLinesTest == true)
3072 ++missingPixels;
3073 }
3074 }
3075 break;
3076
3077 case COVERAGE_FULL:
3078 referenceEmpty = false;
3079 if (!imageFullCoverage)
3080 {
3081 // no coverage where there should be
3082 ++missingPixels;
3083 errorMask.setPixel(x, y, missingPixelColor);
3084 }
3085 else
3086 {
3087 errorMask.setPixel(x, y, primitivePixelColor);
3088 }
3089 break;
3090
3091 default:
3092 DE_ASSERT(false);
3093 }
3094 }
3095
3096 if (((mode == VERIFICATIONMODE_STRICT) && (missingPixels + unexpectedPixels > 0)) ||
3097 ((mode == VERIFICATIONMODE_WEAK) && (missingPixels + unexpectedPixels > weakVerificationThreshold)) ||
3098 ((mode == VERIFICATIONMODE_WEAKER) && (missingPixels + unexpectedPixels > weakerVerificationThreshold)) ||
3099 ((mode == VERIFICATIONMODE_SMOOTH) && (missingPixels > weakVerificationThreshold)) ||
3100 referenceEmpty != resultEmpty)
3101 {
3102 result = false;
3103 }
3104 else
3105 {
3106 result = true;
3107 }
3108
3109 // Output or stash results
3110 {
3111 VerifyTriangleGroupRasterizationLogStash *tempLogStash =
3112 (logStash == DE_NULL) ? new VerifyTriangleGroupRasterizationLogStash : logStash;
3113
3114 tempLogStash->result = result;
3115 tempLogStash->missingPixels = missingPixels;
3116 tempLogStash->unexpectedPixels = unexpectedPixels;
3117 tempLogStash->errorMask = errorMask;
3118
3119 if (logStash == DE_NULL)
3120 {
3121 logTriangleGroupRasterizationStash(surface, log, *tempLogStash);
3122 delete tempLogStash;
3123 }
3124 }
3125
3126 return result;
3127 }
3128
verifyLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)3129 bool verifyLineGroupRasterization(const tcu::Surface &surface, const LineSceneSpec &scene,
3130 const RasterizationArguments &args, tcu::TestLog &log)
3131 {
3132 const bool multisampled = args.numSamples != 0;
3133
3134 if (multisampled)
3135 return verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING, DE_NULL, false,
3136 true);
3137 else
3138 return verifySinglesampleLineGroupRasterization(surface, scene, args, log);
3139 }
3140
verifyClippedTriangulatedLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)3141 bool verifyClippedTriangulatedLineGroupRasterization(const tcu::Surface &surface, const LineSceneSpec &scene,
3142 const RasterizationArguments &args, tcu::TestLog &log)
3143 {
3144 return verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX, DE_NULL, false,
3145 true);
3146 }
3147
verifyRelaxedLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const bool vulkanLinesTest,const bool strict)3148 bool verifyRelaxedLineGroupRasterization(const tcu::Surface &surface, const LineSceneSpec &scene,
3149 const RasterizationArguments &args, tcu::TestLog &log,
3150 const bool vulkanLinesTest, const bool strict)
3151 {
3152 VerifyTriangleGroupRasterizationLogStash useClippingLogStash;
3153 VerifyTriangleGroupRasterizationLogStash noClippingLogStash;
3154 VerifyTriangleGroupRasterizationLogStash useClippingForcedStrictLogStash;
3155 VerifyTriangleGroupRasterizationLogStash noClippingForcedStrictLogStash;
3156
3157 if (verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX,
3158 &useClippingLogStash, vulkanLinesTest, strict))
3159 {
3160 logTriangleGroupRasterizationStash(surface, log, useClippingLogStash);
3161
3162 return true;
3163 }
3164 else if (verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING,
3165 &noClippingLogStash, vulkanLinesTest, strict))
3166 {
3167 logTriangleGroupRasterizationStash(surface, log, noClippingLogStash);
3168
3169 return true;
3170 }
3171 else if (strict == false &&
3172 verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX,
3173 &useClippingForcedStrictLogStash, vulkanLinesTest, true))
3174 {
3175 logTriangleGroupRasterizationStash(surface, log, useClippingForcedStrictLogStash);
3176
3177 return true;
3178 }
3179 else if (strict == false &&
3180 verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING,
3181 &noClippingForcedStrictLogStash, vulkanLinesTest, true))
3182 {
3183 logTriangleGroupRasterizationStash(surface, log, noClippingForcedStrictLogStash);
3184
3185 return true;
3186 }
3187 else if (strict == false && args.numSamples == 0 && verifyLineGroupRasterization(surface, scene, args, log))
3188 {
3189 return true;
3190 }
3191 else
3192 {
3193 log << tcu::TestLog::Message << "Relaxed rasterization failed, details follow." << tcu::TestLog::EndMessage;
3194
3195 logTriangleGroupRasterizationStash(surface, log, useClippingLogStash);
3196 logTriangleGroupRasterizationStash(surface, log, noClippingLogStash);
3197
3198 if (strict == false)
3199 {
3200 logTriangleGroupRasterizationStash(surface, log, useClippingForcedStrictLogStash);
3201 logTriangleGroupRasterizationStash(surface, log, noClippingForcedStrictLogStash);
3202 }
3203
3204 return false;
3205 }
3206 }
3207
verifyPointGroupRasterization(const tcu::Surface & surface,const PointSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)3208 bool verifyPointGroupRasterization(const tcu::Surface &surface, const PointSceneSpec &scene,
3209 const RasterizationArguments &args, tcu::TestLog &log)
3210 {
3211 // Splitting to triangles is a valid solution in multisampled cases and even in non-multisample cases too.
3212 return verifyMultisamplePointGroupRasterization(surface, scene, args, log);
3213 }
3214
verifyTriangleGroupInterpolation(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)3215 bool verifyTriangleGroupInterpolation(const tcu::Surface &surface, const TriangleSceneSpec &scene,
3216 const RasterizationArguments &args, tcu::TestLog &log)
3217 {
3218 VerifyTriangleGroupInterpolationLogStash logStash;
3219 const bool result =
3220 verifyTriangleGroupInterpolationWithInterpolator(surface, scene, args, logStash, TriangleInterpolator(scene));
3221
3222 logTriangleGroupnterpolationStash(surface, log, logStash);
3223
3224 return result;
3225 }
3226
verifyLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)3227 LineInterpolationMethod verifyLineGroupInterpolation(const tcu::Surface &surface, const LineSceneSpec &scene,
3228 const RasterizationArguments &args, tcu::TestLog &log)
3229 {
3230 const bool multisampled = args.numSamples != 0;
3231
3232 if (multisampled)
3233 {
3234 if (verifyMultisampleLineGroupInterpolation(surface, scene, args, log))
3235 return LINEINTERPOLATION_STRICTLY_CORRECT;
3236 return LINEINTERPOLATION_INCORRECT;
3237 }
3238 else
3239 {
3240 const bool isNarrow = (scene.lineWidth == 1.0f);
3241
3242 // accurate interpolation
3243 if (isNarrow)
3244 {
3245 if (verifySinglesampleNarrowLineGroupInterpolation(surface, scene, args, log))
3246 return LINEINTERPOLATION_STRICTLY_CORRECT;
3247 }
3248 else
3249 {
3250 if (verifySinglesampleWideLineGroupInterpolation(surface, scene, args, log))
3251 return LINEINTERPOLATION_STRICTLY_CORRECT;
3252
3253 if (scene.allowNonProjectedInterpolation &&
3254 verifyLineGroupInterpolationWithNonProjectedWeights(surface, scene, args, log))
3255 return LINEINTERPOLATION_STRICTLY_CORRECT;
3256 }
3257
3258 // check with projected (inaccurate) interpolation
3259 log << tcu::TestLog::Message
3260 << "Accurate verification failed, checking with projected weights (inaccurate equation)."
3261 << tcu::TestLog::EndMessage;
3262 if (verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
3263 return LINEINTERPOLATION_PROJECTED;
3264
3265 return LINEINTERPOLATION_INCORRECT;
3266 }
3267 }
3268
verifyTriangulatedLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const bool strictMode,const bool allowBresenhamForNonStrictLines)3269 bool verifyTriangulatedLineGroupInterpolation(const tcu::Surface &surface, const LineSceneSpec &scene,
3270 const RasterizationArguments &args, tcu::TestLog &log,
3271 const bool strictMode, const bool allowBresenhamForNonStrictLines)
3272 {
3273 return verifyMultisampleLineGroupInterpolation(surface, scene, args, log, strictMode,
3274 allowBresenhamForNonStrictLines);
3275 }
3276
3277 } // namespace tcu
3278