1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Reference Renderer
3 * -----------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Reference rasterizer
22 *//*--------------------------------------------------------------------*/
23
24 #include "rrRasterizer.hpp"
25 #include "deMath.h"
26 #include "tcuVectorUtil.hpp"
27
28 namespace rr
29 {
30
toSubpixelCoord(float v,int bits)31 inline int64_t toSubpixelCoord(float v, int bits)
32 {
33 return (int64_t)(v * (float)(1 << bits) + (v < 0.f ? -0.5f : 0.5f));
34 }
35
toSubpixelCoord(int32_t v,int bits)36 inline int64_t toSubpixelCoord(int32_t v, int bits)
37 {
38 return v << bits;
39 }
40
ceilSubpixelToPixelCoord(int64_t coord,int bits,bool fillEdge)41 inline int32_t ceilSubpixelToPixelCoord(int64_t coord, int bits, bool fillEdge)
42 {
43 if (coord >= 0)
44 return (int32_t)((coord + ((1ll << bits) - (fillEdge ? 0 : 1))) >> bits);
45 else
46 return (int32_t)((coord + (fillEdge ? 1 : 0)) >> bits);
47 }
48
floorSubpixelToPixelCoord(int64_t coord,int bits,bool fillEdge)49 inline int32_t floorSubpixelToPixelCoord(int64_t coord, int bits, bool fillEdge)
50 {
51 if (coord >= 0)
52 return (int32_t)((coord - (fillEdge ? 1 : 0)) >> bits);
53 else
54 return (int32_t)((coord - ((1ll << bits) - (fillEdge ? 0 : 1))) >> bits);
55 }
56
initEdgeCCW(EdgeFunction & edge,const HorizontalFill horizontalFill,const VerticalFill verticalFill,const int64_t x0,const int64_t y0,const int64_t x1,const int64_t y1)57 static inline void initEdgeCCW(EdgeFunction &edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill,
58 const int64_t x0, const int64_t y0, const int64_t x1, const int64_t y1)
59 {
60 // \note See EdgeFunction documentation for details.
61
62 const int64_t xd = x1 - x0;
63 const int64_t yd = y1 - y0;
64 bool inclusive = false; //!< Inclusive in CCW orientation.
65
66 if (yd == 0)
67 inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0;
68 else
69 inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0;
70
71 edge.a = (y0 - y1);
72 edge.b = (x1 - x0);
73 edge.c = x0 * y1 - y0 * x1;
74 edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles
75 }
76
reverseEdge(EdgeFunction & edge)77 static inline void reverseEdge(EdgeFunction &edge)
78 {
79 edge.a = -edge.a;
80 edge.b = -edge.b;
81 edge.c = -edge.c;
82 edge.inclusive = !edge.inclusive;
83 }
84
evaluateEdge(const EdgeFunction & edge,const int64_t x,const int64_t y)85 static inline int64_t evaluateEdge(const EdgeFunction &edge, const int64_t x, const int64_t y)
86 {
87 return edge.a * x + edge.b * y + edge.c;
88 }
89
isInsideCCW(const EdgeFunction & edge,const int64_t edgeVal)90 static inline bool isInsideCCW(const EdgeFunction &edge, const int64_t edgeVal)
91 {
92 return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0);
93 }
94
95 namespace LineRasterUtil
96 {
97
98 struct SubpixelLineSegment
99 {
100 const tcu::Vector<int64_t, 2> m_v0;
101 const tcu::Vector<int64_t, 2> m_v1;
102
SubpixelLineSegmentrr::LineRasterUtil::SubpixelLineSegment103 SubpixelLineSegment(const tcu::Vector<int64_t, 2> &v0, const tcu::Vector<int64_t, 2> &v1) : m_v0(v0), m_v1(v1)
104 {
105 }
106
directionrr::LineRasterUtil::SubpixelLineSegment107 tcu::Vector<int64_t, 2> direction(void) const
108 {
109 return m_v1 - m_v0;
110 }
111 };
112
113 enum LINE_SIDE
114 {
115 LINE_SIDE_INTERSECT = 0,
116 LINE_SIDE_LEFT,
117 LINE_SIDE_RIGHT
118 };
119
toSubpixelVector(const tcu::Vec2 & v,int bits)120 static tcu::Vector<int64_t, 2> toSubpixelVector(const tcu::Vec2 &v, int bits)
121 {
122 return tcu::Vector<int64_t, 2>(toSubpixelCoord(v.x(), bits), toSubpixelCoord(v.y(), bits));
123 }
124
toSubpixelVector(const tcu::IVec2 & v,int bits)125 static tcu::Vector<int64_t, 2> toSubpixelVector(const tcu::IVec2 &v, int bits)
126 {
127 return tcu::Vector<int64_t, 2>(toSubpixelCoord(v.x(), bits), toSubpixelCoord(v.y(), bits));
128 }
129
130 #if defined(DE_DEBUG)
isTheCenterOfTheFragment(const tcu::Vector<int64_t,2> & a,int bits)131 static bool isTheCenterOfTheFragment(const tcu::Vector<int64_t, 2> &a, int bits)
132 {
133 const uint64_t pixelSize = 1ll << bits;
134 const uint64_t halfPixel = 1ll << (bits - 1);
135 return ((a.x() & (pixelSize - 1)) == halfPixel && (a.y() & (pixelSize - 1)) == halfPixel);
136 }
137
inViewport(const tcu::IVec2 & p,const tcu::IVec4 & viewport)138 static bool inViewport(const tcu::IVec2 &p, const tcu::IVec4 &viewport)
139 {
140 return p.x() >= viewport.x() && p.y() >= viewport.y() && p.x() < viewport.x() + viewport.z() &&
141 p.y() < viewport.y() + viewport.w();
142 }
143 #endif // DE_DEBUG
144
145 // returns true if vertex is on the left side of the line
vertexOnLeftSideOfLine(const tcu::Vector<int64_t,2> & p,const SubpixelLineSegment & l)146 static bool vertexOnLeftSideOfLine(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
147 {
148 const tcu::Vector<int64_t, 2> u = l.direction();
149 const tcu::Vector<int64_t, 2> v = (p - l.m_v0);
150 const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
151 return crossProduct < 0;
152 }
153
154 // returns true if vertex is on the right side of the line
vertexOnRightSideOfLine(const tcu::Vector<int64_t,2> & p,const SubpixelLineSegment & l)155 static bool vertexOnRightSideOfLine(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
156 {
157 const tcu::Vector<int64_t, 2> u = l.direction();
158 const tcu::Vector<int64_t, 2> v = (p - l.m_v0);
159 const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
160 return crossProduct > 0;
161 }
162
163 // returns true if vertex is on the line
vertexOnLine(const tcu::Vector<int64_t,2> & p,const SubpixelLineSegment & l)164 static bool vertexOnLine(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
165 {
166 const tcu::Vector<int64_t, 2> u = l.direction();
167 const tcu::Vector<int64_t, 2> v = (p - l.m_v0);
168 const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
169 return crossProduct == 0; // cross product == 0
170 }
171
172 // returns true if vertex is on the line segment
vertexOnLineSegment(const tcu::Vector<int64_t,2> & p,const SubpixelLineSegment & l)173 static bool vertexOnLineSegment(const tcu::Vector<int64_t, 2> &p, const SubpixelLineSegment &l)
174 {
175 if (!vertexOnLine(p, l))
176 return false;
177
178 const tcu::Vector<int64_t, 2> v = l.direction();
179 const tcu::Vector<int64_t, 2> u1 = (p - l.m_v0);
180 const tcu::Vector<int64_t, 2> u2 = (p - l.m_v1);
181
182 if (v.x() == 0 && v.y() == 0)
183 return false;
184
185 return tcu::dot(v, u1) >= 0 && tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0
186 }
187
getVertexSide(const tcu::Vector<int64_t,2> & v,const SubpixelLineSegment & l)188 static LINE_SIDE getVertexSide(const tcu::Vector<int64_t, 2> &v, const SubpixelLineSegment &l)
189 {
190 if (vertexOnLeftSideOfLine(v, l))
191 return LINE_SIDE_LEFT;
192 else if (vertexOnRightSideOfLine(v, l))
193 return LINE_SIDE_RIGHT;
194 else if (vertexOnLine(v, l))
195 return LINE_SIDE_INTERSECT;
196 else
197 {
198 DE_ASSERT(false);
199 return LINE_SIDE_INTERSECT;
200 }
201 }
202
203 // returns true if angle between line and given cornerExitNormal is in range (-45, 45)
lineInCornerAngleRange(const SubpixelLineSegment & line,const tcu::Vector<int64_t,2> & cornerExitNormal)204 bool lineInCornerAngleRange(const SubpixelLineSegment &line, const tcu::Vector<int64_t, 2> &cornerExitNormal)
205 {
206 // v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45)
207 const tcu::Vector<int64_t, 2> v = line.direction();
208 const int64_t dotProduct = dot(v, cornerExitNormal);
209
210 // dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2)
211 if (dotProduct < 0)
212 return false;
213 return 2 * dotProduct * dotProduct > tcu::lengthSquared(v) * tcu::lengthSquared(cornerExitNormal);
214 }
215
216 // returns true if angle between line and given cornerExitNormal is in range (-135, 135)
lineInCornerOutsideAngleRange(const SubpixelLineSegment & line,const tcu::Vector<int64_t,2> & cornerExitNormal)217 bool lineInCornerOutsideAngleRange(const SubpixelLineSegment &line, const tcu::Vector<int64_t, 2> &cornerExitNormal)
218 {
219 // v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135)
220 const tcu::Vector<int64_t, 2> v = line.direction();
221 const int64_t dotProduct = dot(v, cornerExitNormal);
222
223 // dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2)
224 if (dotProduct >= 0)
225 return true;
226 return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v) * tcu::lengthSquared(cornerExitNormal);
227 }
228
doesLineSegmentExitDiamond(const SubpixelLineSegment & line,const tcu::Vector<int64_t,2> & diamondCenter,int bits)229 bool doesLineSegmentExitDiamond(const SubpixelLineSegment &line, const tcu::Vector<int64_t, 2> &diamondCenter, int bits)
230 {
231 DE_ASSERT(isTheCenterOfTheFragment(diamondCenter, bits));
232
233 // Diamond Center is at diamondCenter in subpixel coords
234
235 const int64_t halfPixel = 1ll << (bits - 1);
236
237 // Reject distant diamonds early
238 {
239 const tcu::Vector<int64_t, 2> u = line.direction();
240 const tcu::Vector<int64_t, 2> v = (diamondCenter - line.m_v0);
241 const int64_t crossProduct = (u.x() * v.y() - u.y() * v.x());
242
243 // crossProduct = |p| |l| sin(theta)
244 // distanceFromLine = |p| sin(theta)
245 // => distanceFromLine = crossProduct / |l|
246 //
247 // |distanceFromLine| > C
248 // => distanceFromLine^2 > C^2
249 // => crossProduct^2 / |l|^2 > C^2
250 // => crossProduct^2 > |l|^2 * C^2
251
252 const int64_t floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64))
253
254 const int64_t broadRejectDistance = 2 * halfPixel;
255 const int64_t broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance;
256 const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64);
257 const int64_t crossProductSquared =
258 (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow
259 const int64_t lineLengthSquared = tcu::lengthSquared(u);
260 const bool limitValueCouldOverflow =
261 ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63;
262 const int64_t limitValue =
263 (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow
264
265 // only cross overflows
266 if (crossProductOverflows && !limitValueCouldOverflow)
267 return false;
268
269 // both representable
270 if (!crossProductOverflows && !limitValueCouldOverflow)
271 {
272 if (crossProductSquared > limitValue)
273 return false;
274 }
275 }
276
277 const struct DiamondBound
278 {
279 tcu::Vector<int64_t, 2> p0;
280 tcu::Vector<int64_t, 2> p1;
281 bool edgeInclusive; // would a point on the bound be inside of the region
282 } bounds[] = {
283 {diamondCenter + tcu::Vector<int64_t, 2>(0, -halfPixel), diamondCenter + tcu::Vector<int64_t, 2>(-halfPixel, 0),
284 false},
285 {diamondCenter + tcu::Vector<int64_t, 2>(-halfPixel, 0), diamondCenter + tcu::Vector<int64_t, 2>(0, halfPixel),
286 false},
287 {diamondCenter + tcu::Vector<int64_t, 2>(0, halfPixel), diamondCenter + tcu::Vector<int64_t, 2>(halfPixel, 0),
288 true},
289 {diamondCenter + tcu::Vector<int64_t, 2>(halfPixel, 0), diamondCenter + tcu::Vector<int64_t, 2>(0, -halfPixel),
290 true},
291 };
292
293 const struct DiamondCorners
294 {
295 enum CORNER_EDGE_CASE_BEHAVIOR
296 {
297 CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting
298 CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit
299 CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside)
300 CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside)
301 };
302 enum CORNER_START_CASE_BEHAVIOR
303 {
304 CORNER_START_CASE_NONE, // the line starting point is outside, no exiting
305 CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside)
306 CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side.
307 CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side.
308 };
309 enum CORNER_END_CASE_BEHAVIOR
310 {
311 CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside)
312 CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside)
313 CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside)
314 CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside)
315 };
316
317 tcu::Vector<int64_t, 2> dp;
318 bool pointInclusive; // would a point in this corner intersect with the region
319 CORNER_EDGE_CASE_BEHAVIOR
320 lineBehavior; // would a line segment going through this corner intersect with the region
321 CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner
322 CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner
323 } corners[] = {
324 {tcu::Vector<int64_t, 2>(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER,
325 DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER},
326 {tcu::Vector<int64_t, 2>(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE,
327 DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION},
328 {tcu::Vector<int64_t, 2>(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER,
329 DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER},
330 {tcu::Vector<int64_t, 2>(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT,
331 DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE},
332 };
333
334 // Corner cases at the corners
335 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx)
336 {
337 const tcu::Vector<int64_t, 2> p = diamondCenter + corners[ndx].dp;
338 const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line);
339
340 if (!intersectsAtCorner)
341 continue;
342
343 // line segment body intersects with the corner
344 if (p != line.m_v0 && p != line.m_v1)
345 {
346 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT)
347 return true;
348
349 // endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0
350 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER &&
351 (line.direction().x() * line.direction().y()) <= 0)
352 return true;
353
354 // endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0
355 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER &&
356 (line.direction().x() * line.direction().y()) > 0)
357 return true;
358 }
359
360 // line exits the area at the corner
361 if (lineInCornerAngleRange(line, corners[ndx].dp))
362 {
363 const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0;
364 const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1;
365
366 // starting point is inside the region and end endpoint is outside
367 if (startIsInside && endIsOutside)
368 return true;
369 }
370
371 // line end is at the corner
372 if (p == line.m_v1)
373 {
374 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION ||
375 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER ||
376 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER)
377 {
378 // did the line intersect the region
379 if (lineInCornerAngleRange(line, corners[ndx].dp))
380 return true;
381 }
382
383 // due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair
384 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER &&
385 line.direction().x() < 0 && line.direction().y() > 0)
386 return true;
387 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER &&
388 line.direction().x() > 0 && line.direction().y() > 0)
389 return true;
390 }
391
392 // line start is at the corner
393 if (p == line.m_v0)
394 {
395 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE)
396 {
397 // if the line is not going inside, it will exit
398 if (lineInCornerOutsideAngleRange(line, corners[ndx].dp))
399 return true;
400 }
401
402 // exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side.
403 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 &&
404 line.direction().x() > 0 && line.direction().y() > 0 && line.direction().y() <= line.direction().x())
405 return true;
406
407 // exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side.
408 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 &&
409 line.direction().x() > 0 && line.direction().y() <= 0 && -line.direction().y() <= line.direction().x())
410 return true;
411 }
412 }
413
414 // Does the line intersect boundary at the left == exits the diamond
415 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx)
416 {
417 const bool startVertexInside =
418 LineRasterUtil::vertexOnLeftSideOfLine(
419 line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
420 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine(line.m_v0, LineRasterUtil::SubpixelLineSegment(
421 bounds[ndx].p0, bounds[ndx].p1)));
422 const bool endVertexInside =
423 LineRasterUtil::vertexOnLeftSideOfLine(
424 line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
425 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine(line.m_v1, LineRasterUtil::SubpixelLineSegment(
426 bounds[ndx].p0, bounds[ndx].p1)));
427
428 // start must be on inside this half space (left or at the inclusive boundary)
429 if (!startVertexInside)
430 continue;
431
432 // end must be outside of this half-space (right or at non-inclusive boundary)
433 if (endVertexInside)
434 continue;
435
436 // Does the line via v0 and v1 intersect the line segment p0-p1
437 // <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line.
438 // Corners are not allowed, they are checked already
439 LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line);
440 LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line);
441
442 if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT && sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT &&
443 sideP0 != sideP1)
444 return true;
445 }
446
447 return false;
448 }
449
450 } // namespace LineRasterUtil
451
TriangleRasterizer(const tcu::IVec4 & viewport,const int numSamples,const RasterizationState & state,const int subpixelBits)452 TriangleRasterizer::TriangleRasterizer(const tcu::IVec4 &viewport, const int numSamples,
453 const RasterizationState &state, const int subpixelBits)
454 : m_viewport(viewport)
455 , m_numSamples(numSamples)
456 , m_winding(state.winding)
457 , m_horizontalFill(state.horizontalFill)
458 , m_verticalFill(state.verticalFill)
459 , m_subpixelBits(subpixelBits)
460 , m_face(FACETYPE_LAST)
461 , m_viewportOrientation(state.viewportOrientation)
462 {
463 }
464
465 /*--------------------------------------------------------------------*//*!
466 * \brief Initialize triangle rasterization
467 * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0.
468 * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1.
469 * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2.
470 *//*--------------------------------------------------------------------*/
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1,const tcu::Vec4 & v2)471 void TriangleRasterizer::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1, const tcu::Vec4 &v2)
472 {
473 m_v0 = v0;
474 m_v1 = v1;
475 m_v2 = v2;
476
477 // Positions in fixed-point coordinates.
478 const int64_t x0 = toSubpixelCoord(v0.x(), m_subpixelBits);
479 const int64_t y0 = toSubpixelCoord(v0.y(), m_subpixelBits);
480 const int64_t x1 = toSubpixelCoord(v1.x(), m_subpixelBits);
481 const int64_t y1 = toSubpixelCoord(v1.y(), m_subpixelBits);
482 const int64_t x2 = toSubpixelCoord(v2.x(), m_subpixelBits);
483 const int64_t y2 = toSubpixelCoord(v2.y(), m_subpixelBits);
484
485 // Initialize edge functions.
486 if (m_winding == WINDING_CCW)
487 {
488 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1);
489 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2);
490 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0);
491 }
492 else
493 {
494 // Reverse edges
495 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0);
496 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1);
497 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2);
498 }
499
500 // Determine face.
501 const int64_t s = evaluateEdge(m_edge01, x2, y2);
502 const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0);
503
504 if (m_viewportOrientation == VIEWPORTORIENTATION_UPPER_LEFT)
505 m_face = positiveArea ? FACETYPE_BACK : FACETYPE_FRONT;
506 else
507 m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK;
508
509 if (!positiveArea)
510 {
511 // Reverse edges so that we can use CCW area tests & interpolation
512 reverseEdge(m_edge01);
513 reverseEdge(m_edge12);
514 reverseEdge(m_edge20);
515 }
516
517 // Bounding box
518 const int64_t xMin = de::min(de::min(x0, x1), x2);
519 const int64_t xMax = de::max(de::max(x0, x1), x2);
520 const int64_t yMin = de::min(de::min(y0, y1), y2);
521 const int64_t yMax = de::max(de::max(y0, y1), y2);
522
523 m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, m_subpixelBits, m_horizontalFill == FILL_LEFT);
524 m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, m_subpixelBits, m_verticalFill == FILL_BOTTOM);
525 m_bboxMax.x() = ceilSubpixelToPixelCoord(xMax, m_subpixelBits, m_horizontalFill == FILL_RIGHT);
526 m_bboxMax.y() = ceilSubpixelToPixelCoord(yMax, m_subpixelBits, m_verticalFill == FILL_TOP);
527
528 // Clamp to viewport
529 const int wX0 = m_viewport.x();
530 const int wY0 = m_viewport.y();
531 const int wX1 = wX0 + m_viewport.z() - 1;
532 const int wY1 = wY0 + m_viewport.w() - 1;
533
534 m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1);
535 m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1);
536 m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1);
537 m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1);
538
539 m_curPos = m_bboxMin;
540 }
541
rasterizeSingleSample(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)542 void TriangleRasterizer::rasterizeSingleSample(FragmentPacket *const fragmentPackets, float *const depthValues,
543 const int maxFragmentPackets, int &numPacketsRasterized)
544 {
545 DE_ASSERT(maxFragmentPackets > 0);
546
547 const uint64_t halfPixel = 1ll << (m_subpixelBits - 1);
548 int packetNdx = 0;
549
550 // For depth interpolation; given barycentrics A, B, C = (1 - A - B)
551 // we can reformulate the usual z = z0*A + z1*B + z2*C into more
552 // stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2.
553 const float za = m_v0.z() - m_v2.z();
554 const float zb = m_v1.z() - m_v2.z();
555 const float zc = m_v2.z();
556
557 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
558 {
559 const int x0 = m_curPos.x();
560 const int y0 = m_curPos.y();
561
562 // Subpixel coords
563 const int64_t sx0 = toSubpixelCoord(x0, m_subpixelBits) + halfPixel;
564 const int64_t sx1 = toSubpixelCoord(x0 + 1, m_subpixelBits) + halfPixel;
565 const int64_t sy0 = toSubpixelCoord(y0, m_subpixelBits) + halfPixel;
566 const int64_t sy1 = toSubpixelCoord(y0 + 1, m_subpixelBits) + halfPixel;
567
568 const int64_t sx[4] = {sx0, sx1, sx0, sx1};
569 const int64_t sy[4] = {sy0, sy0, sy1, sy1};
570
571 // Viewport test
572 const bool outX1 = x0 + 1 == m_viewport.x() + m_viewport.z();
573 const bool outY1 = y0 + 1 == m_viewport.y() + m_viewport.w();
574
575 DE_ASSERT(x0 < m_viewport.x() + m_viewport.z());
576 DE_ASSERT(y0 < m_viewport.y() + m_viewport.w());
577
578 // Edge values
579 tcu::Vector<int64_t, 4> e01;
580 tcu::Vector<int64_t, 4> e12;
581 tcu::Vector<int64_t, 4> e20;
582
583 // Coverage
584 uint64_t coverage = 0;
585
586 // Evaluate edge values
587 for (int i = 0; i < 4; i++)
588 {
589 e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]);
590 e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]);
591 e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]);
592 }
593
594 // Compute coverage mask
595 coverage = setCoverageValue(coverage, 1, 0, 0, 0,
596 isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) &&
597 isInsideCCW(m_edge20, e20[0]));
598 coverage = setCoverageValue(coverage, 1, 1, 0, 0,
599 !outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) &&
600 isInsideCCW(m_edge20, e20[1]));
601 coverage = setCoverageValue(coverage, 1, 0, 1, 0,
602 !outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) &&
603 isInsideCCW(m_edge20, e20[2]));
604 coverage = setCoverageValue(coverage, 1, 1, 1, 0,
605 !outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) &&
606 isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3]));
607
608 // Advance to next location
609 m_curPos.x() += 2;
610 if (m_curPos.x() > m_bboxMax.x())
611 {
612 m_curPos.y() += 2;
613 m_curPos.x() = m_bboxMin.x();
614 }
615
616 if (coverage == 0)
617 continue; // Discard.
618
619 // Floating-point edge values for barycentrics etc.
620 const tcu::Vec4 e01f = e01.asFloat();
621 const tcu::Vec4 e12f = e12.asFloat();
622 const tcu::Vec4 e20f = e20.asFloat();
623
624 // Compute depth values.
625 if (depthValues)
626 {
627 const tcu::Vec4 edgeSum = e01f + e12f + e20f;
628 const tcu::Vec4 z0 = e12f / edgeSum;
629 const tcu::Vec4 z1 = e20f / edgeSum;
630
631 depthValues[packetNdx * 4 + 0] = z0[0] * za + z1[0] * zb + zc;
632 depthValues[packetNdx * 4 + 1] = z0[1] * za + z1[1] * zb + zc;
633 depthValues[packetNdx * 4 + 2] = z0[2] * za + z1[2] * zb + zc;
634 depthValues[packetNdx * 4 + 3] = z0[3] * za + z1[3] * zb + zc;
635 }
636
637 // Compute barycentrics and write out fragment packet
638 {
639 FragmentPacket &packet = fragmentPackets[packetNdx];
640
641 const tcu::Vec4 b0 = e12f * m_v0.w();
642 const tcu::Vec4 b1 = e20f * m_v1.w();
643 const tcu::Vec4 b2 = e01f * m_v2.w();
644 const tcu::Vec4 bSum = b0 + b1 + b2;
645
646 packet.position = tcu::IVec2(x0, y0);
647 packet.coverage = coverage;
648 packet.barycentric[0] = b0 / bSum;
649 packet.barycentric[1] = b1 / bSum;
650 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1];
651
652 packetNdx += 1;
653 }
654 }
655
656 DE_ASSERT(packetNdx <= maxFragmentPackets);
657 numPacketsRasterized = packetNdx;
658 }
659
660 // Sample positions - ordered as (x, y) list.
661 static const float s_samplePts2[] = {0.3f, 0.3f, 0.7f, 0.7f};
662
663 static const float s_samplePts4[] = {0.25f, 0.25f, 0.75f, 0.25f, 0.25f, 0.75f, 0.75f, 0.75f};
664
665 static const float s_samplePts8[] = {7.f / 16.f, 9.f / 16.f, 9.f / 16.f, 13.f / 16.f, 11.f / 16.f, 3.f / 16.f,
666 13.f / 16.f, 11.f / 16.f, 1.f / 16.f, 7.f / 16.f, 5.f / 16.f, 1.f / 16.f,
667 15.f / 16.f, 5.f / 16.f, 3.f / 16.f, 15.f / 16.f};
668
669 static const float s_samplePts16[] = {1.f / 8.f, 1.f / 8.f, 3.f / 8.f, 1.f / 8.f, 5.f / 8.f, 1.f / 8.f, 7.f / 8.f,
670 1.f / 8.f, 1.f / 8.f, 3.f / 8.f, 3.f / 8.f, 3.f / 8.f, 5.f / 8.f, 3.f / 8.f,
671 7.f / 8.f, 3.f / 8.f, 1.f / 8.f, 5.f / 8.f, 3.f / 8.f, 5.f / 8.f, 5.f / 8.f,
672 5.f / 8.f, 7.f / 8.f, 5.f / 8.f, 1.f / 8.f, 7.f / 8.f, 3.f / 8.f, 7.f / 8.f,
673 5.f / 8.f, 7.f / 8.f, 7.f / 8.f, 7.f / 8.f};
674
675 template <int NumSamples>
rasterizeMultiSample(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)676 void TriangleRasterizer::rasterizeMultiSample(FragmentPacket *const fragmentPackets, float *const depthValues,
677 const int maxFragmentPackets, int &numPacketsRasterized)
678 {
679 DE_ASSERT(maxFragmentPackets > 0);
680
681 // Big enough to hold maximum multisample count
682 int64_t samplePos[DE_LENGTH_OF_ARRAY(s_samplePts16)];
683 const float *samplePts = DE_NULL;
684 const uint64_t halfPixel = 1ll << (m_subpixelBits - 1);
685 int packetNdx = 0;
686
687 // For depth interpolation, see rasterizeSingleSample
688 const float za = m_v0.z() - m_v2.z();
689 const float zb = m_v1.z() - m_v2.z();
690 const float zc = m_v2.z();
691
692 switch (NumSamples)
693 {
694 case 2:
695 samplePts = s_samplePts2;
696 break;
697 case 4:
698 samplePts = s_samplePts4;
699 break;
700 case 8:
701 samplePts = s_samplePts8;
702 break;
703 case 16:
704 samplePts = s_samplePts16;
705 break;
706 default:
707 DE_ASSERT(false);
708 }
709
710 for (int c = 0; c < NumSamples * 2; ++c)
711 samplePos[c] = toSubpixelCoord(samplePts[c], m_subpixelBits);
712
713 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
714 {
715 const int x0 = m_curPos.x();
716 const int y0 = m_curPos.y();
717
718 // Base subpixel coords
719 const int64_t sx0 = toSubpixelCoord(x0, m_subpixelBits);
720 const int64_t sx1 = toSubpixelCoord(x0 + 1, m_subpixelBits);
721 const int64_t sy0 = toSubpixelCoord(y0, m_subpixelBits);
722 const int64_t sy1 = toSubpixelCoord(y0 + 1, m_subpixelBits);
723
724 const int64_t sx[4] = {sx0, sx1, sx0, sx1};
725 const int64_t sy[4] = {sy0, sy0, sy1, sy1};
726
727 // Viewport test
728 const bool outX1 = x0 + 1 == m_viewport.x() + m_viewport.z();
729 const bool outY1 = y0 + 1 == m_viewport.y() + m_viewport.w();
730
731 DE_ASSERT(x0 < m_viewport.x() + m_viewport.z());
732 DE_ASSERT(y0 < m_viewport.y() + m_viewport.w());
733
734 // Edge values
735 tcu::Vector<int64_t, 4> e01[NumSamples];
736 tcu::Vector<int64_t, 4> e12[NumSamples];
737 tcu::Vector<int64_t, 4> e20[NumSamples];
738
739 // Coverage
740 uint64_t coverage = 0;
741
742 // Evaluate edge values at sample positions
743 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
744 {
745 const int64_t ox = samplePos[sampleNdx * 2 + 0];
746 const int64_t oy = samplePos[sampleNdx * 2 + 1];
747
748 for (int fragNdx = 0; fragNdx < 4; fragNdx++)
749 {
750 e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy);
751 e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy);
752 e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy);
753 }
754 }
755
756 // Compute coverage mask
757 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
758 {
759 coverage =
760 setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx,
761 isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) &&
762 isInsideCCW(m_edge20, e20[sampleNdx][0]));
763 coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx,
764 !outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) &&
765 isInsideCCW(m_edge12, e12[sampleNdx][1]) &&
766 isInsideCCW(m_edge20, e20[sampleNdx][1]));
767 coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx,
768 !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) &&
769 isInsideCCW(m_edge12, e12[sampleNdx][2]) &&
770 isInsideCCW(m_edge20, e20[sampleNdx][2]));
771 coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx,
772 !outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) &&
773 isInsideCCW(m_edge12, e12[sampleNdx][3]) &&
774 isInsideCCW(m_edge20, e20[sampleNdx][3]));
775 }
776
777 // Advance to next location
778 m_curPos.x() += 2;
779 if (m_curPos.x() > m_bboxMax.x())
780 {
781 m_curPos.y() += 2;
782 m_curPos.x() = m_bboxMin.x();
783 }
784
785 if (coverage == 0)
786 continue; // Discard.
787
788 // Compute depth values.
789 if (depthValues)
790 {
791 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
792 {
793 // Floating-point edge values at sample coordinates.
794 const tcu::Vec4 &e01f = e01[sampleNdx].asFloat();
795 const tcu::Vec4 &e12f = e12[sampleNdx].asFloat();
796 const tcu::Vec4 &e20f = e20[sampleNdx].asFloat();
797
798 const tcu::Vec4 edgeSum = e01f + e12f + e20f;
799 const tcu::Vec4 z0 = e12f / edgeSum;
800 const tcu::Vec4 z1 = e20f / edgeSum;
801
802 depthValues[(packetNdx * 4 + 0) * NumSamples + sampleNdx] = z0[0] * za + z1[0] * zb + zc;
803 depthValues[(packetNdx * 4 + 1) * NumSamples + sampleNdx] = z0[1] * za + z1[1] * zb + zc;
804 depthValues[(packetNdx * 4 + 2) * NumSamples + sampleNdx] = z0[2] * za + z1[2] * zb + zc;
805 depthValues[(packetNdx * 4 + 3) * NumSamples + sampleNdx] = z0[3] * za + z1[3] * zb + zc;
806 }
807 }
808
809 // Compute barycentrics and write out fragment packet
810 {
811 FragmentPacket &packet = fragmentPackets[packetNdx];
812
813 // Floating-point edge values at pixel center.
814 tcu::Vec4 e01f;
815 tcu::Vec4 e12f;
816 tcu::Vec4 e20f;
817
818 for (int i = 0; i < 4; i++)
819 {
820 e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel));
821 e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel));
822 e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel));
823 }
824
825 // Barycentrics & scale.
826 const tcu::Vec4 b0 = e12f * m_v0.w();
827 const tcu::Vec4 b1 = e20f * m_v1.w();
828 const tcu::Vec4 b2 = e01f * m_v2.w();
829 const tcu::Vec4 bSum = b0 + b1 + b2;
830
831 packet.position = tcu::IVec2(x0, y0);
832 packet.coverage = coverage;
833 packet.barycentric[0] = b0 / bSum;
834 packet.barycentric[1] = b1 / bSum;
835 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1];
836
837 packetNdx += 1;
838 }
839 }
840
841 DE_ASSERT(packetNdx <= maxFragmentPackets);
842 numPacketsRasterized = packetNdx;
843 }
844
rasterize(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)845 void TriangleRasterizer::rasterize(FragmentPacket *const fragmentPackets, float *const depthValues,
846 const int maxFragmentPackets, int &numPacketsRasterized)
847 {
848 DE_ASSERT(maxFragmentPackets > 0);
849
850 switch (m_numSamples)
851 {
852 case 1:
853 rasterizeSingleSample(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
854 break;
855 case 2:
856 rasterizeMultiSample<2>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
857 break;
858 case 4:
859 rasterizeMultiSample<4>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
860 break;
861 case 8:
862 rasterizeMultiSample<8>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
863 break;
864 case 16:
865 rasterizeMultiSample<16>(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
866 break;
867 default:
868 DE_ASSERT(false);
869 }
870 }
871
SingleSampleLineRasterizer(const tcu::IVec4 & viewport,const int subpixelBits)872 SingleSampleLineRasterizer::SingleSampleLineRasterizer(const tcu::IVec4 &viewport, const int subpixelBits)
873 : m_viewport(viewport)
874 , m_subpixelBits(subpixelBits)
875 , m_curRowFragment(0)
876 , m_lineWidth(0.0f)
877 , m_stippleCounter(0)
878 {
879 }
880
~SingleSampleLineRasterizer(void)881 SingleSampleLineRasterizer::~SingleSampleLineRasterizer(void)
882 {
883 }
884
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1,float lineWidth,uint32_t stippleFactor,uint16_t stipplePattern)885 void SingleSampleLineRasterizer::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1, float lineWidth, uint32_t stippleFactor,
886 uint16_t stipplePattern)
887 {
888 const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y());
889
890 // Bounding box \note: with wide lines, the line is actually moved as in the spec
891 const int32_t lineWidthPixels = (lineWidth > 1.0f) ? (int32_t)floor(lineWidth + 0.5f) : 1;
892
893 const tcu::Vector<int64_t, 2> widthOffset =
894 (isXMajor ? tcu::Vector<int64_t, 2>(0, -1) : tcu::Vector<int64_t, 2>(-1, 0)) *
895 (toSubpixelCoord(lineWidthPixels - 1, m_subpixelBits) / 2);
896
897 const int64_t x0 = toSubpixelCoord(v0.x(), m_subpixelBits) + widthOffset.x();
898 const int64_t y0 = toSubpixelCoord(v0.y(), m_subpixelBits) + widthOffset.y();
899 const int64_t x1 = toSubpixelCoord(v1.x(), m_subpixelBits) + widthOffset.x();
900 const int64_t y1 = toSubpixelCoord(v1.y(), m_subpixelBits) + widthOffset.y();
901
902 // line endpoints might be perturbed, add some margin
903 const int64_t xMin = de::min(x0, x1) - toSubpixelCoord(1, m_subpixelBits);
904 const int64_t xMax = de::max(x0, x1) + toSubpixelCoord(1, m_subpixelBits);
905 const int64_t yMin = de::min(y0, y1) - toSubpixelCoord(1, m_subpixelBits);
906 const int64_t yMax = de::max(y0, y1) + toSubpixelCoord(1, m_subpixelBits);
907
908 // Remove invisible area
909
910 if (isXMajor)
911 {
912 // clamp to viewport in major direction
913 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, m_subpixelBits, true), m_viewport.x(),
914 m_viewport.x() + m_viewport.z() - 1);
915 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord(xMax, m_subpixelBits, true), m_viewport.x(),
916 m_viewport.x() + m_viewport.z() - 1);
917
918 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
919 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, m_subpixelBits, true),
920 m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
921 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord(yMax, m_subpixelBits, true),
922 m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
923 }
924 else
925 {
926 // clamp to viewport in major direction
927 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, m_subpixelBits, true), m_viewport.y(),
928 m_viewport.y() + m_viewport.w() - 1);
929 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord(yMax, m_subpixelBits, true), m_viewport.y(),
930 m_viewport.y() + m_viewport.w() - 1);
931
932 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
933 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, m_subpixelBits, true),
934 m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
935 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord(xMax, m_subpixelBits, true),
936 m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
937 }
938
939 m_lineWidth = lineWidth;
940
941 m_v0 = v0;
942 m_v1 = v1;
943
944 // Choose direction of traversal and whether to start at bbox min or max. Direction matters
945 // for the stipple counter.
946 int xDelta = (m_v1 - m_v0).x() > 0 ? 1 : -1;
947 int yDelta = (m_v1 - m_v0).y() > 0 ? 1 : -1;
948
949 m_curPos.x() = xDelta > 0 ? m_bboxMin.x() : m_bboxMax.x();
950 m_curPos.y() = yDelta > 0 ? m_bboxMin.y() : m_bboxMax.y();
951
952 m_curRowFragment = 0;
953 m_stippleFactor = stippleFactor;
954 m_stipplePattern = stipplePattern;
955 }
956
rasterize(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)957 void SingleSampleLineRasterizer::rasterize(FragmentPacket *const fragmentPackets, float *const depthValues,
958 const int maxFragmentPackets, int &numPacketsRasterized)
959 {
960 DE_ASSERT(maxFragmentPackets > 0);
961
962 const int64_t halfPixel = 1ll << (m_subpixelBits - 1);
963 const int32_t lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1;
964 const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y());
965 const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
966 const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x());
967 const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z());
968 const tcu::Vector<int64_t, 2> widthOffset =
969 -minorDirection.cast<int64_t>() * (toSubpixelCoord(lineWidth - 1, m_subpixelBits) / 2);
970 const tcu::Vector<int64_t, 2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy(), m_subpixelBits) + widthOffset;
971 const tcu::Vector<int64_t, 2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy(), m_subpixelBits) + widthOffset;
972 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb);
973
974 int packetNdx = 0;
975 int xDelta = (m_v1 - m_v0).x() > 0 ? 1 : -1;
976 int yDelta = (m_v1 - m_v0).y() > 0 ? 1 : -1;
977
978 while (m_curPos.y() <= m_bboxMax.y() && m_curPos.y() >= m_bboxMin.y() && packetNdx < maxFragmentPackets)
979 {
980 const tcu::Vector<int64_t, 2> diamondPosition =
981 LineRasterUtil::toSubpixelVector(m_curPos, m_subpixelBits) + tcu::Vector<int64_t, 2>(halfPixel, halfPixel);
982
983 // Should current fragment be drawn? == does the segment exit this diamond?
984 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition, m_subpixelBits))
985 {
986 const tcu::Vector<int64_t, 2> pr = diamondPosition;
987 const float t =
988 tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat());
989
990 // Rasterize on only fragments that are would end up in the viewport (i.e. visible)
991 const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x());
992 const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation);
993 const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth);
994
995 int stippleBit = (m_stippleCounter / m_stippleFactor) % 16;
996 bool stipplePass = (m_stipplePattern & (1 << stippleBit)) != 0;
997 m_stippleCounter++;
998
999 if (stipplePass)
1000 {
1001 // Wide lines require multiple fragments.
1002 for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++)
1003 {
1004 const int replicationId = rowFragBegin + m_curRowFragment;
1005 const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId;
1006
1007 // We only rasterize visible area
1008 DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport));
1009
1010 // Compute depth values.
1011 if (depthValues)
1012 {
1013 const float za = m_v0.z();
1014 const float zb = m_v1.z();
1015
1016 depthValues[packetNdx * 4 + 0] = (1 - t) * za + t * zb;
1017 depthValues[packetNdx * 4 + 1] = 0;
1018 depthValues[packetNdx * 4 + 2] = 0;
1019 depthValues[packetNdx * 4 + 3] = 0;
1020 }
1021
1022 {
1023 // output this fragment
1024 // \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates
1025 FragmentPacket &packet = fragmentPackets[packetNdx];
1026
1027 const tcu::Vec4 b0 = tcu::Vec4(1 - t);
1028 const tcu::Vec4 b1 = tcu::Vec4(t);
1029 const tcu::Vec4 ooSum = 1.0f / (b0 + b1);
1030
1031 packet.position = fragmentPos;
1032 packet.coverage = getCoverageBit(1, 0, 0, 0);
1033 packet.barycentric[0] = b0 * ooSum;
1034 packet.barycentric[1] = b1 * ooSum;
1035 packet.barycentric[2] = tcu::Vec4(0.0f);
1036
1037 packetNdx += 1;
1038 }
1039
1040 if (packetNdx == maxFragmentPackets)
1041 {
1042 m_curRowFragment++; // don't redraw this fragment again next time
1043 m_stippleCounter--; // reuse same stipple counter next time
1044 numPacketsRasterized = packetNdx;
1045 return;
1046 }
1047 }
1048
1049 m_curRowFragment = 0;
1050 }
1051 }
1052
1053 m_curPos.x() += xDelta;
1054 if (m_curPos.x() > m_bboxMax.x() || m_curPos.x() < m_bboxMin.x())
1055 {
1056 m_curPos.y() += yDelta;
1057 m_curPos.x() = xDelta > 0 ? m_bboxMin.x() : m_bboxMax.x();
1058 }
1059 }
1060
1061 DE_ASSERT(packetNdx <= maxFragmentPackets);
1062 numPacketsRasterized = packetNdx;
1063 }
1064
MultiSampleLineRasterizer(const int numSamples,const tcu::IVec4 & viewport,const int subpixelBits)1065 MultiSampleLineRasterizer::MultiSampleLineRasterizer(const int numSamples, const tcu::IVec4 &viewport,
1066 const int subpixelBits)
1067 : m_numSamples(numSamples)
1068 , m_triangleRasterizer0(viewport, m_numSamples, RasterizationState(), subpixelBits)
1069 , m_triangleRasterizer1(viewport, m_numSamples, RasterizationState(), subpixelBits)
1070 {
1071 }
1072
~MultiSampleLineRasterizer()1073 MultiSampleLineRasterizer::~MultiSampleLineRasterizer()
1074 {
1075 }
1076
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1,float lineWidth)1077 void MultiSampleLineRasterizer::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1, float lineWidth)
1078 {
1079 // allow creation of single sampled rasterizer objects but do not allow using them
1080 DE_ASSERT(m_numSamples > 1);
1081
1082 const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy());
1083 const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0]));
1084 const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0);
1085 const float offset = lineWidth / 2.0f;
1086
1087 const tcu::Vec4 p0 = v0 + normal4 * offset;
1088 const tcu::Vec4 p1 = v0 - normal4 * offset;
1089 const tcu::Vec4 p2 = v1 - normal4 * offset;
1090 const tcu::Vec4 p3 = v1 + normal4 * offset;
1091
1092 // Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line
1093 m_triangleRasterizer0.init(p0, p3, p2);
1094 m_triangleRasterizer1.init(p2, p1, p0);
1095 }
1096
rasterize(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)1097 void MultiSampleLineRasterizer::rasterize(FragmentPacket *const fragmentPackets, float *const depthValues,
1098 const int maxFragmentPackets, int &numPacketsRasterized)
1099 {
1100 DE_ASSERT(maxFragmentPackets > 0);
1101
1102 m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
1103
1104 // Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2
1105 for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx)
1106 for (int fragNdx = 0; fragNdx < 4; fragNdx++)
1107 {
1108 float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx];
1109 fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
1110 fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
1111 }
1112
1113 // rasterizer 0 filled the whole buffer?
1114 if (numPacketsRasterized == maxFragmentPackets)
1115 return;
1116
1117 {
1118 FragmentPacket *const nextFragmentPackets = fragmentPackets + numPacketsRasterized;
1119 float *nextDepthValues = (depthValues) ? (depthValues + 4 * numPacketsRasterized * m_numSamples) : (DE_NULL);
1120 int numPacketsRasterized2 = 0;
1121
1122 m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized,
1123 numPacketsRasterized2);
1124
1125 numPacketsRasterized += numPacketsRasterized2;
1126
1127 // Fix swapped barycentrics in the second triangle
1128 for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx)
1129 for (int fragNdx = 0; fragNdx < 4; fragNdx++)
1130 {
1131 float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx];
1132 nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
1133 nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
1134
1135 // edge has reversed direction
1136 std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx],
1137 nextFragmentPackets[packNdx].barycentric[1][fragNdx]);
1138 }
1139 }
1140 }
1141
LineExitDiamondGenerator(const int subpixelBits)1142 LineExitDiamondGenerator::LineExitDiamondGenerator(const int subpixelBits) : m_subpixelBits(subpixelBits)
1143 {
1144 }
1145
~LineExitDiamondGenerator(void)1146 LineExitDiamondGenerator::~LineExitDiamondGenerator(void)
1147 {
1148 }
1149
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1)1150 void LineExitDiamondGenerator::init(const tcu::Vec4 &v0, const tcu::Vec4 &v1)
1151 {
1152 const int64_t x0 = toSubpixelCoord(v0.x(), m_subpixelBits);
1153 const int64_t y0 = toSubpixelCoord(v0.y(), m_subpixelBits);
1154 const int64_t x1 = toSubpixelCoord(v1.x(), m_subpixelBits);
1155 const int64_t y1 = toSubpixelCoord(v1.y(), m_subpixelBits);
1156
1157 // line endpoints might be perturbed, add some margin
1158 const int64_t xMin = de::min(x0, x1) - toSubpixelCoord(1, m_subpixelBits);
1159 const int64_t xMax = de::max(x0, x1) + toSubpixelCoord(1, m_subpixelBits);
1160 const int64_t yMin = de::min(y0, y1) - toSubpixelCoord(1, m_subpixelBits);
1161 const int64_t yMax = de::max(y0, y1) + toSubpixelCoord(1, m_subpixelBits);
1162
1163 m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, m_subpixelBits, true);
1164 m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, m_subpixelBits, true);
1165 m_bboxMax.x() = ceilSubpixelToPixelCoord(xMax, m_subpixelBits, true);
1166 m_bboxMax.y() = ceilSubpixelToPixelCoord(yMax, m_subpixelBits, true);
1167
1168 m_v0 = v0;
1169 m_v1 = v1;
1170
1171 m_curPos = m_bboxMin;
1172 }
1173
rasterize(LineExitDiamond * const lineDiamonds,const int maxDiamonds,int & numWritten)1174 void LineExitDiamondGenerator::rasterize(LineExitDiamond *const lineDiamonds, const int maxDiamonds, int &numWritten)
1175 {
1176 DE_ASSERT(maxDiamonds > 0);
1177
1178 const int64_t halfPixel = 1ll << (m_subpixelBits - 1);
1179 const tcu::Vector<int64_t, 2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy(), m_subpixelBits);
1180 const tcu::Vector<int64_t, 2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy(), m_subpixelBits);
1181 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb);
1182
1183 int diamondNdx = 0;
1184
1185 while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds)
1186 {
1187 const tcu::Vector<int64_t, 2> diamondPosition =
1188 LineRasterUtil::toSubpixelVector(m_curPos, m_subpixelBits) + tcu::Vector<int64_t, 2>(halfPixel, halfPixel);
1189
1190 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition, m_subpixelBits))
1191 {
1192 LineExitDiamond &packet = lineDiamonds[diamondNdx];
1193 packet.position = m_curPos;
1194 ++diamondNdx;
1195 }
1196
1197 ++m_curPos.x();
1198 if (m_curPos.x() > m_bboxMax.x())
1199 {
1200 ++m_curPos.y();
1201 m_curPos.x() = m_bboxMin.x();
1202 }
1203 }
1204
1205 DE_ASSERT(diamondNdx <= maxDiamonds);
1206 numWritten = diamondNdx;
1207 }
1208
1209 } // namespace rr
1210