1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL (ES) Module
3 * -----------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Shader performance measurer; handles calibration and measurement
22 *//*--------------------------------------------------------------------*/
23
24 #include "glsShaderPerformanceMeasurer.hpp"
25 #include "gluDefs.hpp"
26 #include "tcuTestLog.hpp"
27 #include "tcuRenderTarget.hpp"
28 #include "deStringUtil.hpp"
29 #include "deMath.h"
30 #include "deClock.h"
31
32 #include "glwFunctions.hpp"
33 #include "glwEnums.hpp"
34
35 #include <algorithm>
36
37 using std::string;
38 using std::vector;
39 using tcu::TestLog;
40 using tcu::Vec4;
41 using namespace glw; // GL types
42
43 namespace deqp
44 {
45 namespace gls
46 {
47
triangleInterpolate(float v0,float v1,float v2,float x,float y)48 static inline float triangleInterpolate(float v0, float v1, float v2, float x, float y)
49 {
50 return v0 + (v2 - v0) * x + (v1 - v0) * y;
51 }
52
triQuadInterpolate(float x,float y,const tcu::Vec4 & quad)53 static inline float triQuadInterpolate(float x, float y, const tcu::Vec4 &quad)
54 {
55 // \note Top left fill rule.
56 if (x + y < 1.0f)
57 return triangleInterpolate(quad.x(), quad.y(), quad.z(), x, y);
58 else
59 return triangleInterpolate(quad.w(), quad.z(), quad.y(), 1.0f - x, 1.0f - y);
60 }
61
getNumVertices(int gridSizeX,int gridSizeY)62 static inline int getNumVertices(int gridSizeX, int gridSizeY)
63 {
64 return (gridSizeX + 1) * (gridSizeY + 1);
65 }
66
getNumIndices(int gridSizeX,int gridSizeY)67 static inline int getNumIndices(int gridSizeX, int gridSizeY)
68 {
69 return gridSizeX * gridSizeY * 6;
70 }
71
getVtxIndex(int x,int y,int gridSizeX)72 static inline uint16_t getVtxIndex(int x, int y, int gridSizeX)
73 {
74 return (uint16_t)(y * (gridSizeX + 1) + x);
75 }
76
generateVertices(std::vector<float> & dst,int gridSizeX,int gridSizeY,const AttribSpec & spec)77 static void generateVertices(std::vector<float> &dst, int gridSizeX, int gridSizeY, const AttribSpec &spec)
78 {
79 const int numComponents = 4;
80
81 DE_ASSERT((gridSizeX + 1) * (gridSizeY + 1) <= (1 << 16)); // Must fit into 16-bit indices.
82 DE_ASSERT(gridSizeX >= 1 && gridSizeY >= 1);
83 dst.resize((gridSizeX + 1) * (gridSizeY + 1) * 4);
84
85 for (int y = 0; y <= gridSizeY; y++)
86 {
87 for (int x = 0; x <= gridSizeX; x++)
88 {
89 float xf = (float)x / (float)gridSizeX;
90 float yf = (float)y / (float)gridSizeY;
91
92 for (int compNdx = 0; compNdx < numComponents; compNdx++)
93 dst[getVtxIndex(x, y, gridSizeX) * numComponents + compNdx] = triQuadInterpolate(
94 xf, yf, tcu::Vec4(spec.p00[compNdx], spec.p01[compNdx], spec.p10[compNdx], spec.p11[compNdx]));
95 }
96 }
97 }
98
generateIndices(std::vector<uint16_t> & dst,int gridSizeX,int gridSizeY)99 static void generateIndices(std::vector<uint16_t> &dst, int gridSizeX, int gridSizeY)
100 {
101 const int numIndicesPerQuad = 6;
102 int numIndices = gridSizeX * gridSizeY * numIndicesPerQuad;
103 dst.resize(numIndices);
104
105 for (int y = 0; y < gridSizeY; y++)
106 {
107 for (int x = 0; x < gridSizeX; x++)
108 {
109 int quadNdx = y * gridSizeX + x;
110
111 dst[quadNdx * numIndicesPerQuad + 0] = getVtxIndex(x + 0, y + 0, gridSizeX);
112 dst[quadNdx * numIndicesPerQuad + 1] = getVtxIndex(x + 1, y + 0, gridSizeX);
113 dst[quadNdx * numIndicesPerQuad + 2] = getVtxIndex(x + 0, y + 1, gridSizeX);
114
115 dst[quadNdx * numIndicesPerQuad + 3] = getVtxIndex(x + 0, y + 1, gridSizeX);
116 dst[quadNdx * numIndicesPerQuad + 4] = getVtxIndex(x + 1, y + 0, gridSizeX);
117 dst[quadNdx * numIndicesPerQuad + 5] = getVtxIndex(x + 1, y + 1, gridSizeX);
118 }
119 }
120 }
121
ShaderPerformanceMeasurer(const glu::RenderContext & renderCtx,PerfCaseType measureType)122 ShaderPerformanceMeasurer::ShaderPerformanceMeasurer(const glu::RenderContext &renderCtx, PerfCaseType measureType)
123 : m_renderCtx(renderCtx)
124 , m_gridSizeX(measureType == CASETYPE_FRAGMENT ? 1 : 255)
125 , m_gridSizeY(measureType == CASETYPE_FRAGMENT ? 1 : 255)
126 , m_viewportWidth(measureType == CASETYPE_VERTEX ? 32 : renderCtx.getRenderTarget().getWidth())
127 , m_viewportHeight(measureType == CASETYPE_VERTEX ? 32 : renderCtx.getRenderTarget().getHeight())
128 , m_state(STATE_UNINITIALIZED)
129 , m_isFirstIteration(false)
130 , m_prevRenderStartTime(0)
131 , m_result(-1.0f, -1.0f)
132 , m_indexBuffer(0)
133 , m_vao(0)
134 {
135 }
136
logParameters(TestLog & log) const137 void ShaderPerformanceMeasurer::logParameters(TestLog &log) const
138 {
139 log << TestLog::Message << "Grid size: " << m_gridSizeX << "x" << m_gridSizeY << TestLog::EndMessage
140 << TestLog::Message << "Viewport: " << m_viewportWidth << "x" << m_viewportHeight << TestLog::EndMessage;
141 }
142
init(uint32_t program,const vector<AttribSpec> & attributes,int calibratorInitialNumCalls)143 void ShaderPerformanceMeasurer::init(uint32_t program, const vector<AttribSpec> &attributes,
144 int calibratorInitialNumCalls)
145 {
146 DE_ASSERT(m_state == STATE_UNINITIALIZED);
147
148 const glw::Functions &gl = m_renderCtx.getFunctions();
149 const bool useVAO = glu::isContextTypeGLCore(m_renderCtx.getType());
150
151 if (useVAO)
152 {
153 DE_ASSERT(!m_vao);
154 gl.genVertexArrays(1, &m_vao);
155 gl.bindVertexArray(m_vao);
156 GLU_EXPECT_NO_ERROR(gl.getError(), "Create VAO");
157 }
158
159 // Validate that we have sane grid and viewport setup.
160
161 DE_ASSERT(de::inBounds(m_gridSizeX, 1, 256) && de::inBounds(m_gridSizeY, 1, 256));
162
163 {
164 bool widthTooSmall = m_renderCtx.getRenderTarget().getWidth() < m_viewportWidth;
165 bool heightTooSmall = m_renderCtx.getRenderTarget().getHeight() < m_viewportHeight;
166
167 if (widthTooSmall || heightTooSmall)
168 throw tcu::NotSupportedError(
169 "Render target too small (" +
170 (widthTooSmall ? "width must be at least " + de::toString(m_viewportWidth) : "") +
171 (heightTooSmall ?
172 string(widthTooSmall ? ", " : "") + "height must be at least " + de::toString(m_viewportHeight) :
173 "") +
174 ")");
175 }
176
177 TCU_CHECK_INTERNAL(de::inRange(m_viewportWidth, 1, m_renderCtx.getRenderTarget().getWidth()) &&
178 de::inRange(m_viewportHeight, 1, m_renderCtx.getRenderTarget().getHeight()));
179
180 // Insert a_position to attributes.
181 m_attributes = attributes;
182 m_attributes.push_back(AttribSpec("a_position", Vec4(-1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, -1.0f, 0.0f, 1.0f),
183 Vec4(-1.0f, 1.0f, 0.0f, 1.0f), Vec4(1.0f, 1.0f, 0.0f, 1.0f)));
184
185 // Generate indices.
186 {
187 std::vector<uint16_t> indices;
188 generateIndices(indices, m_gridSizeX, m_gridSizeY);
189
190 gl.genBuffers(1, &m_indexBuffer);
191 gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer);
192 gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (GLsizeiptr)(indices.size() * sizeof(uint16_t)), &indices[0],
193 GL_STATIC_DRAW);
194
195 GLU_EXPECT_NO_ERROR(gl.getError(), "Upload index data");
196 }
197
198 // Generate vertices.
199 m_attribBuffers.resize(m_attributes.size(), 0);
200 gl.genBuffers((GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]);
201
202 for (int attribNdx = 0; attribNdx < (int)m_attributes.size(); attribNdx++)
203 {
204 std::vector<float> vertices;
205 generateVertices(vertices, m_gridSizeX, m_gridSizeY, m_attributes[attribNdx]);
206
207 gl.bindBuffer(GL_ARRAY_BUFFER, m_attribBuffers[attribNdx]);
208 gl.bufferData(GL_ARRAY_BUFFER, (GLsizeiptr)(vertices.size() * sizeof(float)), &vertices[0], GL_STATIC_DRAW);
209 }
210
211 GLU_EXPECT_NO_ERROR(gl.getError(), "Upload vertex data");
212
213 // Setup attribute bindings.
214 for (int attribNdx = 0; attribNdx < (int)m_attributes.size(); attribNdx++)
215 {
216 int location = gl.getAttribLocation(program, m_attributes[attribNdx].name.c_str());
217
218 if (location >= 0)
219 {
220 gl.enableVertexAttribArray(location);
221 gl.bindBuffer(GL_ARRAY_BUFFER, m_attribBuffers[attribNdx]);
222 gl.vertexAttribPointer(location, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
223 }
224
225 GLU_EXPECT_NO_ERROR(gl.getError(), "Setup vertex attribute state");
226 }
227
228 gl.useProgram(program);
229 GLU_EXPECT_NO_ERROR(gl.getError(), "glUseProgram()");
230
231 m_state = STATE_MEASURING;
232 m_isFirstIteration = true;
233
234 m_calibrator.clear(CalibratorParameters(calibratorInitialNumCalls, 10 /* calibrate iteration frames */,
235 2000.0f /* calibrate iteration shortcut threshold (ms) */,
236 16 /* max calibrate iterations */, 1000.0f / 30.0f /* frame time (ms) */,
237 1000.0f / 60.0f /* frame time cap (ms) */,
238 1000.0f /* target measure duration (ms) */));
239 }
240
deinit(void)241 void ShaderPerformanceMeasurer::deinit(void)
242 {
243 const glw::Functions &gl = m_renderCtx.getFunctions();
244
245 if (m_indexBuffer)
246 {
247 gl.deleteBuffers(1, &m_indexBuffer);
248 m_indexBuffer = 0;
249 }
250
251 if (m_vao)
252 {
253 gl.deleteVertexArrays(1, &m_vao);
254 m_vao = 0;
255 }
256
257 if (!m_attribBuffers.empty())
258 {
259 gl.deleteBuffers((GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]);
260 m_attribBuffers.clear();
261 }
262
263 m_state = STATE_UNINITIALIZED;
264 }
265
render(int numDrawCalls)266 void ShaderPerformanceMeasurer::render(int numDrawCalls)
267 {
268 const glw::Functions &gl = m_renderCtx.getFunctions();
269 GLsizei numIndices = (GLsizei)getNumIndices(m_gridSizeX, m_gridSizeY);
270
271 gl.viewport(0, 0, m_viewportWidth, m_viewportHeight);
272
273 for (int callNdx = 0; callNdx < numDrawCalls; callNdx++)
274 gl.drawElements(GL_TRIANGLES, numIndices, GL_UNSIGNED_SHORT, DE_NULL);
275 }
276
iterate(void)277 void ShaderPerformanceMeasurer::iterate(void)
278 {
279 DE_ASSERT(m_state == STATE_MEASURING);
280
281 uint64_t renderStartTime = deGetMicroseconds();
282 render(m_calibrator.getCallCount()); // Always render. This gives more stable performance behavior.
283
284 TheilSenCalibrator::State calibratorState = m_calibrator.getState();
285
286 if (calibratorState == TheilSenCalibrator::STATE_RECOMPUTE_PARAMS)
287 {
288 m_calibrator.recomputeParameters();
289
290 m_isFirstIteration = true;
291 m_prevRenderStartTime = renderStartTime;
292 }
293 else if (calibratorState == TheilSenCalibrator::STATE_MEASURE)
294 {
295 if (!m_isFirstIteration)
296 m_calibrator.recordIteration(renderStartTime - m_prevRenderStartTime);
297
298 m_isFirstIteration = false;
299 m_prevRenderStartTime = renderStartTime;
300 }
301 else
302 {
303 DE_ASSERT(calibratorState == TheilSenCalibrator::STATE_FINISHED);
304
305 GLU_EXPECT_NO_ERROR(m_renderCtx.getFunctions().getError(), "End of rendering");
306
307 const MeasureState &measureState = m_calibrator.getMeasureState();
308
309 // Compute result.
310 uint64_t totalTime = measureState.getTotalTime();
311 int numFrames = (int)measureState.frameTimes.size();
312 int64_t numQuadGrids = measureState.numDrawCalls * numFrames;
313 int64_t numPixels = (int64_t)m_viewportWidth * (int64_t)m_viewportHeight * numQuadGrids;
314 int64_t numVertices = (int64_t)getNumVertices(m_gridSizeX, m_gridSizeY) * numQuadGrids;
315 double mfragPerSecond = (double)numPixels / (double)totalTime;
316 double mvertPerSecond = (double)numVertices / (double)totalTime;
317
318 m_result = Result((float)mvertPerSecond, (float)mfragPerSecond);
319 m_state = STATE_FINISHED;
320 }
321 }
322
logMeasurementInfo(TestLog & log) const323 void ShaderPerformanceMeasurer::logMeasurementInfo(TestLog &log) const
324 {
325 DE_ASSERT(m_state == STATE_FINISHED);
326
327 const MeasureState &measureState(m_calibrator.getMeasureState());
328
329 // Compute totals.
330 uint64_t totalTime = measureState.getTotalTime();
331 int numFrames = (int)measureState.frameTimes.size();
332 int64_t numQuadGrids = measureState.numDrawCalls * numFrames;
333 int64_t numPixels = (int64_t)m_viewportWidth * (int64_t)m_viewportHeight * numQuadGrids;
334 int64_t numVertices = (int64_t)getNumVertices(m_gridSizeX, m_gridSizeY) * numQuadGrids;
335 double mfragPerSecond = (double)numPixels / (double)totalTime;
336 double mvertPerSecond = (double)numVertices / (double)totalTime;
337 double framesPerSecond = (double)numFrames / ((double)totalTime / 1000000.0);
338
339 logCalibrationInfo(log, m_calibrator);
340
341 log << TestLog::Float("FramesPerSecond", "Frames per second in measurement", "Frames/s", QP_KEY_TAG_PERFORMANCE,
342 (float)framesPerSecond)
343 << TestLog::Float("FragmentsPerVertices", "Vertex-fragment ratio", "Fragments/Vertices", QP_KEY_TAG_NONE,
344 (float)numPixels / (float)numVertices)
345 << TestLog::Float("FragmentPerf", "Fragment performance", "MPix/s", QP_KEY_TAG_PERFORMANCE,
346 (float)mfragPerSecond)
347 << TestLog::Float("VertexPerf", "Vertex performance", "MVert/s", QP_KEY_TAG_PERFORMANCE, (float)mvertPerSecond);
348 }
349
setGridSize(int gridW,int gridH)350 void ShaderPerformanceMeasurer::setGridSize(int gridW, int gridH)
351 {
352 DE_ASSERT(m_state == STATE_UNINITIALIZED);
353 DE_ASSERT(de::inBounds(gridW, 1, 256) && de::inBounds(gridH, 1, 256));
354 m_gridSizeX = gridW;
355 m_gridSizeY = gridH;
356 }
357
setViewportSize(int width,int height)358 void ShaderPerformanceMeasurer::setViewportSize(int width, int height)
359 {
360 DE_ASSERT(m_state == STATE_UNINITIALIZED);
361 DE_ASSERT(de::inRange(width, 1, m_renderCtx.getRenderTarget().getWidth()) &&
362 de::inRange(height, 1, m_renderCtx.getRenderTarget().getHeight()));
363 m_viewportWidth = width;
364 m_viewportHeight = height;
365 }
366
367 } // namespace gls
368 } // namespace deqp
369