xref: /aosp_15_r20/external/eigen/Eigen/src/Geometry/AlignedBox.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 // Function void Eigen::AlignedBox::transform(const Transform& transform)
11 // is provided under the following license agreement:
12 //
13 // Software License Agreement (BSD License)
14 //
15 // Copyright (c) 2011-2014, Willow Garage, Inc.
16 // Copyright (c) 2014-2015, Open Source Robotics Foundation
17 // All rights reserved.
18 //
19 // Redistribution and use in source and binary forms, with or without
20 // modification, are permitted provided that the following conditions
21 // are met:
22 //
23 //  * Redistributions of source code must retain the above copyright
24 //    notice, this list of conditions and the following disclaimer.
25 //  * Redistributions in binary form must reproduce the above
26 //    copyright notice, this list of conditions and the following
27 //    disclaimer in the documentation and/or other materials provided
28 //    with the distribution.
29 //  * Neither the name of Open Source Robotics Foundation nor the names of its
30 //    contributors may be used to endorse or promote products derived
31 //    from this software without specific prior written permission.
32 //
33 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
36 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
37 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
38 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
39 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
40 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
41 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
43 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
44 // POSSIBILITY OF SUCH DAMAGE.
45 
46 #ifndef EIGEN_ALIGNEDBOX_H
47 #define EIGEN_ALIGNEDBOX_H
48 
49 namespace Eigen {
50 
51 /** \geometry_module \ingroup Geometry_Module
52   *
53   *
54   * \class AlignedBox
55   *
56   * \brief An axis aligned box
57   *
58   * \tparam _Scalar the type of the scalar coefficients
59   * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
60   *
61   * This class represents an axis aligned box as a pair of the minimal and maximal corners.
62   * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty().
63   * \sa alignedboxtypedefs
64   */
65 template <typename _Scalar, int _AmbientDim>
66 class AlignedBox
67 {
68 public:
69 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
70   enum { AmbientDimAtCompileTime = _AmbientDim };
71   typedef _Scalar                                   Scalar;
72   typedef NumTraits<Scalar>                         ScalarTraits;
73   typedef Eigen::Index                              Index; ///< \deprecated since Eigen 3.3
74   typedef typename ScalarTraits::Real               RealScalar;
75   typedef typename ScalarTraits::NonInteger         NonInteger;
76   typedef Matrix<Scalar,AmbientDimAtCompileTime,1>  VectorType;
77   typedef CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> VectorTypeSum;
78 
79   /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
80   enum CornerType
81   {
82     /** 1D names @{ */
83     Min=0, Max=1,
84     /** @} */
85 
86     /** Identifier for 2D corner @{ */
87     BottomLeft=0, BottomRight=1,
88     TopLeft=2, TopRight=3,
89     /** @} */
90 
91     /** Identifier for 3D corner  @{ */
92     BottomLeftFloor=0, BottomRightFloor=1,
93     TopLeftFloor=2, TopRightFloor=3,
94     BottomLeftCeil=4, BottomRightCeil=5,
95     TopLeftCeil=6, TopRightCeil=7
96     /** @} */
97   };
98 
99 
100   /** Default constructor initializing a null box. */
AlignedBox()101   EIGEN_DEVICE_FUNC inline AlignedBox()
102   { if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime!=Dynamic)) setEmpty(); }
103 
104   /** Constructs a null box with \a _dim the dimension of the ambient space. */
AlignedBox(Index _dim)105   EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
106   { setEmpty(); }
107 
108   /** Constructs a box with extremities \a _min and \a _max.
109    * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */
110   template<typename OtherVectorType1, typename OtherVectorType2>
AlignedBox(const OtherVectorType1 & _min,const OtherVectorType2 & _max)111   EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
112 
113   /** Constructs a box containing a single point \a p. */
114   template<typename Derived>
AlignedBox(const MatrixBase<Derived> & p)115   EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min)
116   { }
117 
~AlignedBox()118   EIGEN_DEVICE_FUNC ~AlignedBox() {}
119 
120   /** \returns the dimension in which the box holds */
dim()121   EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
122 
123   /** \deprecated use isEmpty() */
isNull()124   EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); }
125 
126   /** \deprecated use setEmpty() */
setNull()127   EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); }
128 
129   /** \returns true if the box is empty.
130    * \sa setEmpty */
isEmpty()131   EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
132 
133   /** Makes \c *this an empty box.
134    * \sa isEmpty */
setEmpty()135   EIGEN_DEVICE_FUNC inline void setEmpty()
136   {
137     m_min.setConstant( ScalarTraits::highest() );
138     m_max.setConstant( ScalarTraits::lowest() );
139   }
140 
141   /** \returns the minimal corner */
142   EIGEN_DEVICE_FUNC inline const VectorType& (min)() const { return m_min; }
143   /** \returns a non const reference to the minimal corner */
144   EIGEN_DEVICE_FUNC inline VectorType& (min)() { return m_min; }
145   /** \returns the maximal corner */
146   EIGEN_DEVICE_FUNC inline const VectorType& (max)() const { return m_max; }
147   /** \returns a non const reference to the maximal corner */
148   EIGEN_DEVICE_FUNC inline VectorType& (max)() { return m_max; }
149 
150   /** \returns the center of the box */
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum,RealScalar,quotient)151   EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient)
152   center() const
153   { return (m_min+m_max)/RealScalar(2); }
154 
155   /** \returns the lengths of the sides of the bounding box.
156     * Note that this function does not get the same
157     * result for integral or floating scalar types: see
158     */
sizes()159   EIGEN_DEVICE_FUNC inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar,Scalar>, const VectorType, const VectorType> sizes() const
160   { return m_max - m_min; }
161 
162   /** \returns the volume of the bounding box */
volume()163   EIGEN_DEVICE_FUNC inline Scalar volume() const
164   { return sizes().prod(); }
165 
166   /** \returns an expression for the bounding box diagonal vector
167     * if the length of the diagonal is needed: diagonal().norm()
168     * will provide it.
169     */
diagonal()170   EIGEN_DEVICE_FUNC inline CwiseBinaryOp< internal::scalar_difference_op<Scalar,Scalar>, const VectorType, const VectorType> diagonal() const
171   { return sizes(); }
172 
173   /** \returns the vertex of the bounding box at the corner defined by
174     * the corner-id corner. It works only for a 1D, 2D or 3D bounding box.
175     * For 1D bounding boxes corners are named by 2 enum constants:
176     * BottomLeft and BottomRight.
177     * For 2D bounding boxes, corners are named by 4 enum constants:
178     * BottomLeft, BottomRight, TopLeft, TopRight.
179     * For 3D bounding boxes, the following names are added:
180     * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil.
181     */
corner(CornerType corner)182   EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const
183   {
184     EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE);
185 
186     VectorType res;
187 
188     Index mult = 1;
189     for(Index d=0; d<dim(); ++d)
190     {
191       if( mult & corner ) res[d] = m_max[d];
192       else                res[d] = m_min[d];
193       mult *= 2;
194     }
195     return res;
196   }
197 
198   /** \returns a random point inside the bounding box sampled with
199    * a uniform distribution */
sample()200   EIGEN_DEVICE_FUNC inline VectorType sample() const
201   {
202     VectorType r(dim());
203     for(Index d=0; d<dim(); ++d)
204     {
205       if(!ScalarTraits::IsInteger)
206       {
207         r[d] = m_min[d] + (m_max[d]-m_min[d])
208              * internal::random<Scalar>(Scalar(0), Scalar(1));
209       }
210       else
211         r[d] = internal::random(m_min[d], m_max[d]);
212     }
213     return r;
214   }
215 
216   /** \returns true if the point \a p is inside the box \c *this. */
217   template<typename Derived>
contains(const MatrixBase<Derived> & p)218   EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase<Derived>& p) const
219   {
220     typename internal::nested_eval<Derived,2>::type p_n(p.derived());
221     return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all();
222   }
223 
224   /** \returns true if the box \a b is entirely inside the box \c *this. */
contains(const AlignedBox & b)225   EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const
226   { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); }
227 
228   /** \returns true if the box \a b is intersecting the box \c *this.
229    * \sa intersection, clamp */
intersects(const AlignedBox & b)230   EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const
231   { return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); }
232 
233   /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this.
234    * \sa extend(const AlignedBox&) */
235   template<typename Derived>
extend(const MatrixBase<Derived> & p)236   EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase<Derived>& p)
237   {
238     typename internal::nested_eval<Derived,2>::type p_n(p.derived());
239     m_min = m_min.cwiseMin(p_n);
240     m_max = m_max.cwiseMax(p_n);
241     return *this;
242   }
243 
244   /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this.
245    * \sa merged, extend(const MatrixBase&) */
extend(const AlignedBox & b)246   EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b)
247   {
248     m_min = m_min.cwiseMin(b.m_min);
249     m_max = m_max.cwiseMax(b.m_max);
250     return *this;
251   }
252 
253   /** Clamps \c *this by the box \a b and returns a reference to \c *this.
254    * \note If the boxes don't intersect, the resulting box is empty.
255    * \sa intersection(), intersects() */
clamp(const AlignedBox & b)256   EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b)
257   {
258     m_min = m_min.cwiseMax(b.m_min);
259     m_max = m_max.cwiseMin(b.m_max);
260     return *this;
261   }
262 
263   /** Returns an AlignedBox that is the intersection of \a b and \c *this
264    * \note If the boxes don't intersect, the resulting box is empty.
265    * \sa intersects(), clamp, contains()  */
intersection(const AlignedBox & b)266   EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const
267   {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }
268 
269   /** Returns an AlignedBox that is the union of \a b and \c *this.
270    * \note Merging with an empty box may result in a box bigger than \c *this.
271    * \sa extend(const AlignedBox&) */
merged(const AlignedBox & b)272   EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const
273   { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
274 
275   /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
276   template<typename Derived>
translate(const MatrixBase<Derived> & a_t)277   EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase<Derived>& a_t)
278   {
279     const typename internal::nested_eval<Derived,2>::type t(a_t.derived());
280     m_min += t;
281     m_max += t;
282     return *this;
283   }
284 
285   /** \returns a copy of \c *this translated by the vector \a t. */
286   template<typename Derived>
translated(const MatrixBase<Derived> & a_t)287   EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase<Derived>& a_t) const
288   {
289     AlignedBox result(m_min, m_max);
290     result.translate(a_t);
291     return result;
292   }
293 
294   /** \returns the squared distance between the point \a p and the box \c *this,
295     * and zero if \a p is inside the box.
296     * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
297     */
298   template<typename Derived>
299   EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
300 
301   /** \returns the squared distance between the boxes \a b and \c *this,
302     * and zero if the boxes intersect.
303     * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&)
304     */
305   EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
306 
307   /** \returns the distance between the point \a p and the box \c *this,
308     * and zero if \a p is inside the box.
309     * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&)
310     */
311   template<typename Derived>
exteriorDistance(const MatrixBase<Derived> & p)312   EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
313   { EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); }
314 
315   /** \returns the distance between the boxes \a b and \c *this,
316     * and zero if the boxes intersect.
317     * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&)
318     */
exteriorDistance(const AlignedBox & b)319   EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const
320   { EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); }
321 
322   /**
323    * Specialization of transform for pure translation.
324    */
325   template<int Mode, int Options>
transform(const typename Transform<Scalar,AmbientDimAtCompileTime,Mode,Options>::TranslationType & translation)326   EIGEN_DEVICE_FUNC inline void transform(
327       const typename Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>::TranslationType& translation)
328   {
329     this->translate(translation);
330   }
331 
332   /**
333    * Transforms this box by \a transform and recomputes it to
334    * still be an axis-aligned box.
335    *
336    * \note This method is provided under BSD license (see the top of this file).
337    */
338   template<int Mode, int Options>
transform(const Transform<Scalar,AmbientDimAtCompileTime,Mode,Options> & transform)339   EIGEN_DEVICE_FUNC inline void transform(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform)
340   {
341     // Only Affine and Isometry transforms are currently supported.
342     EIGEN_STATIC_ASSERT(Mode == Affine || Mode == AffineCompact || Mode == Isometry, THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS);
343 
344     // Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV<AABB, Box>(...)
345     // https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292
346     //
347     // Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/
348 
349     // two times rotated extent
350     const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes();
351     // two times new center
352     const VectorType rotated_center_2 = transform.linear() * (this->m_max + this->m_min) +
353         Scalar(2) * transform.translation();
354 
355     this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2);
356     this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2);
357   }
358 
359   /**
360    * \returns a copy of \c *this transformed by \a transform and recomputed to
361    * still be an axis-aligned box.
362    */
363   template<int Mode, int Options>
transformed(const Transform<Scalar,AmbientDimAtCompileTime,Mode,Options> & transform)364   EIGEN_DEVICE_FUNC AlignedBox transformed(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) const
365   {
366     AlignedBox result(m_min, m_max);
367     result.transform(transform);
368     return result;
369   }
370 
371   /** \returns \c *this with scalar type casted to \a NewScalarType
372     *
373     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
374     * then this function smartly returns a const reference to \c *this.
375     */
376   template<typename NewScalarType>
377   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AlignedBox,
cast()378            AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
379   {
380     return typename internal::cast_return_type<AlignedBox,
381                     AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
382   }
383 
384   /** Copy constructor with scalar type conversion */
385   template<typename OtherScalarType>
AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime> & other)386   EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
387   {
388     m_min = (other.min)().template cast<Scalar>();
389     m_max = (other.max)().template cast<Scalar>();
390   }
391 
392   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
393     * determined by \a prec.
394     *
395     * \sa MatrixBase::isApprox() */
396   EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const
397   { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
398 
399 protected:
400 
401   VectorType m_min, m_max;
402 };
403 
404 
405 
406 template<typename Scalar,int AmbientDim>
407 template<typename Derived>
squaredExteriorDistance(const MatrixBase<Derived> & a_p)408 EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const
409 {
410   typename internal::nested_eval<Derived,2*AmbientDim>::type p(a_p.derived());
411   Scalar dist2(0);
412   Scalar aux;
413   for (Index k=0; k<dim(); ++k)
414   {
415     if( m_min[k] > p[k] )
416     {
417       aux = m_min[k] - p[k];
418       dist2 += aux*aux;
419     }
420     else if( p[k] > m_max[k] )
421     {
422       aux = p[k] - m_max[k];
423       dist2 += aux*aux;
424     }
425   }
426   return dist2;
427 }
428 
429 template<typename Scalar,int AmbientDim>
squaredExteriorDistance(const AlignedBox & b)430 EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const
431 {
432   Scalar dist2(0);
433   Scalar aux;
434   for (Index k=0; k<dim(); ++k)
435   {
436     if( m_min[k] > b.m_max[k] )
437     {
438       aux = m_min[k] - b.m_max[k];
439       dist2 += aux*aux;
440     }
441     else if( b.m_min[k] > m_max[k] )
442     {
443       aux = b.m_min[k] - m_max[k];
444       dist2 += aux*aux;
445     }
446   }
447   return dist2;
448 }
449 
450 /** \defgroup alignedboxtypedefs Global aligned box typedefs
451   *
452   * \ingroup Geometry_Module
453   *
454   * Eigen defines several typedef shortcuts for most common aligned box types.
455   *
456   * The general patterns are the following:
457   *
458   * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size,
459   * and where \c Type can be \c i for integer, \c f for float, \c d for double.
460   *
461   * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats.
462   *
463   * \sa class AlignedBox
464   */
465 
466 #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)    \
467 /** \ingroup alignedboxtypedefs */                                 \
468 typedef AlignedBox<Type, Size>   AlignedBox##SizeSuffix##TypeSuffix;
469 
470 #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
471 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \
472 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
473 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
474 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
475 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
476 
477 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int,                  i)
478 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float,                f)
479 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double,               d)
480 
481 #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
482 #undef EIGEN_MAKE_TYPEDEFS
483 
484 } // end namespace Eigen
485 
486 #endif // EIGEN_ALIGNEDBOX_H
487