xref: /aosp_15_r20/external/eigen/Eigen/src/Geometry/Homogeneous.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_HOMOGENEOUS_H
11 #define EIGEN_HOMOGENEOUS_H
12 
13 namespace Eigen {
14 
15 /** \geometry_module \ingroup Geometry_Module
16   *
17   * \class Homogeneous
18   *
19   * \brief Expression of one (or a set of) homogeneous vector(s)
20   *
21   * \param MatrixType the type of the object in which we are making homogeneous
22   *
23   * This class represents an expression of one (or a set of) homogeneous vector(s).
24   * It is the return type of MatrixBase::homogeneous() and most of the time
25   * this is the only way it is used.
26   *
27   * \sa MatrixBase::homogeneous()
28   */
29 
30 namespace internal {
31 
32 template<typename MatrixType,int Direction>
33 struct traits<Homogeneous<MatrixType,Direction> >
34  : traits<MatrixType>
35 {
36   typedef typename traits<MatrixType>::StorageKind StorageKind;
37   typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
38   typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
39   enum {
40     RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
41                   int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
42     ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
43                   int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
44     RowsAtCompileTime = Direction==Vertical  ?  RowsPlusOne : MatrixType::RowsAtCompileTime,
45     ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
46     MaxRowsAtCompileTime = RowsAtCompileTime,
47     MaxColsAtCompileTime = ColsAtCompileTime,
48     TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
49     Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
50           : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
51           : TmpFlags
52   };
53 };
54 
55 template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
56 template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
57 
58 } // end namespace internal
59 
60 template<typename MatrixType,int _Direction> class Homogeneous
61   : public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
62 {
63   public:
64 
65     typedef MatrixType NestedExpression;
66     enum { Direction = _Direction };
67 
68     typedef MatrixBase<Homogeneous> Base;
69     EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
70 
71     EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
72       : m_matrix(matrix)
73     {}
74 
75     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
76     inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows() + (int(Direction)==Vertical   ? 1 : 0); }
77     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
78     inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
79 
80     EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
81 
82     template<typename Rhs>
83     EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
84     operator* (const MatrixBase<Rhs>& rhs) const
85     {
86       eigen_assert(int(Direction)==Horizontal);
87       return Product<Homogeneous,Rhs>(*this,rhs.derived());
88     }
89 
90     template<typename Lhs> friend
91     EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
92     operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
93     {
94       eigen_assert(int(Direction)==Vertical);
95       return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
96     }
97 
98     template<typename Scalar, int Dim, int Mode, int Options> friend
99     EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
100     operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
101     {
102       eigen_assert(int(Direction)==Vertical);
103       return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
104     }
105 
106     template<typename Func>
107     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
108     redux(const Func& func) const
109     {
110       return func(m_matrix.redux(func), Scalar(1));
111     }
112 
113   protected:
114     typename MatrixType::Nested m_matrix;
115 };
116 
117 /** \geometry_module \ingroup Geometry_Module
118   *
119   * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
120   *
121   * This can be used to convert affine coordinates to homogeneous coordinates.
122   *
123   * \only_for_vectors
124   *
125   * Example: \include MatrixBase_homogeneous.cpp
126   * Output: \verbinclude MatrixBase_homogeneous.out
127   *
128   * \sa VectorwiseOp::homogeneous(), class Homogeneous
129   */
130 template<typename Derived>
131 EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
132 MatrixBase<Derived>::homogeneous() const
133 {
134   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
135   return HomogeneousReturnType(derived());
136 }
137 
138 /** \geometry_module \ingroup Geometry_Module
139   *
140   * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
141   *
142   * This can be used to convert affine coordinates to homogeneous coordinates.
143   *
144   * Example: \include VectorwiseOp_homogeneous.cpp
145   * Output: \verbinclude VectorwiseOp_homogeneous.out
146   *
147   * \sa MatrixBase::homogeneous(), class Homogeneous */
148 template<typename ExpressionType, int Direction>
149 EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
150 VectorwiseOp<ExpressionType,Direction>::homogeneous() const
151 {
152   return HomogeneousReturnType(_expression());
153 }
154 
155 /** \geometry_module \ingroup Geometry_Module
156   *
157   * \brief homogeneous normalization
158   *
159   * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
160   *
161   * This can be used to convert homogeneous coordinates to affine coordinates.
162   *
163   * It is essentially a shortcut for:
164   * \code
165     this->head(this->size()-1)/this->coeff(this->size()-1);
166     \endcode
167   *
168   * Example: \include MatrixBase_hnormalized.cpp
169   * Output: \verbinclude MatrixBase_hnormalized.out
170   *
171   * \sa VectorwiseOp::hnormalized() */
172 template<typename Derived>
173 EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
174 MatrixBase<Derived>::hnormalized() const
175 {
176   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
177   return ConstStartMinusOne(derived(),0,0,
178     ColsAtCompileTime==1?size()-1:1,
179     ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
180 }
181 
182 /** \geometry_module \ingroup Geometry_Module
183   *
184   * \brief column or row-wise homogeneous normalization
185   *
186   * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
187   *
188   * This can be used to convert homogeneous coordinates to affine coordinates.
189   *
190   * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
191   *
192   * Example: \include DirectionWise_hnormalized.cpp
193   * Output: \verbinclude DirectionWise_hnormalized.out
194   *
195   * \sa MatrixBase::hnormalized() */
196 template<typename ExpressionType, int Direction>
197 EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
198 VectorwiseOp<ExpressionType,Direction>::hnormalized() const
199 {
200   return HNormalized_Block(_expression(),0,0,
201       Direction==Vertical   ? _expression().rows()-1 : _expression().rows(),
202       Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
203       Replicate<HNormalized_Factors,
204                 Direction==Vertical   ? HNormalized_SizeMinusOne : 1,
205                 Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
206         (HNormalized_Factors(_expression(),
207           Direction==Vertical    ? _expression().rows()-1:0,
208           Direction==Horizontal  ? _expression().cols()-1:0,
209           Direction==Vertical    ? 1 : _expression().rows(),
210           Direction==Horizontal  ? 1 : _expression().cols()),
211          Direction==Vertical   ? _expression().rows()-1 : 1,
212          Direction==Horizontal ? _expression().cols()-1 : 1));
213 }
214 
215 namespace internal {
216 
217 template<typename MatrixOrTransformType>
218 struct take_matrix_for_product
219 {
220   typedef MatrixOrTransformType type;
221   EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
222 };
223 
224 template<typename Scalar, int Dim, int Mode,int Options>
225 struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
226 {
227   typedef Transform<Scalar, Dim, Mode, Options> TransformType;
228   typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
229   EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
230 };
231 
232 template<typename Scalar, int Dim, int Options>
233 struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
234 {
235   typedef Transform<Scalar, Dim, Projective, Options> TransformType;
236   typedef typename TransformType::MatrixType type;
237   EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
238 };
239 
240 template<typename MatrixType,typename Lhs>
241 struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
242 {
243   typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
244   typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
245   typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
246   typedef typename make_proper_matrix_type<
247                  typename traits<MatrixTypeCleaned>::Scalar,
248                  LhsMatrixTypeCleaned::RowsAtCompileTime,
249                  MatrixTypeCleaned::ColsAtCompileTime,
250                  MatrixTypeCleaned::PlainObject::Options,
251                  LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
252                  MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
253 };
254 
255 template<typename MatrixType,typename Lhs>
256 struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
257   : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
258 {
259   typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
260   typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
261   typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
262   EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
263     : m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
264       m_rhs(rhs)
265   {}
266 
267   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
268   inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
269   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
270   inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
271 
272   template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
273   {
274     // FIXME investigate how to allow lazy evaluation of this product when possible
275     dst = Block<const LhsMatrixTypeNested,
276               LhsMatrixTypeNested::RowsAtCompileTime,
277               LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
278             (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
279     dst += m_lhs.col(m_lhs.cols()-1).rowwise()
280             .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
281   }
282 
283   typename LhsMatrixTypeCleaned::Nested m_lhs;
284   typename MatrixType::Nested m_rhs;
285 };
286 
287 template<typename MatrixType,typename Rhs>
288 struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
289 {
290   typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
291                  MatrixType::RowsAtCompileTime,
292                  Rhs::ColsAtCompileTime,
293                  MatrixType::PlainObject::Options,
294                  MatrixType::MaxRowsAtCompileTime,
295                  Rhs::MaxColsAtCompileTime>::type ReturnType;
296 };
297 
298 template<typename MatrixType,typename Rhs>
299 struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
300   : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
301 {
302   typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
303   EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
304     : m_lhs(lhs), m_rhs(rhs)
305   {}
306 
307   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
308   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
309 
310   template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
311   {
312     // FIXME investigate how to allow lazy evaluation of this product when possible
313     dst = m_lhs * Block<const RhsNested,
314                         RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
315                         RhsNested::ColsAtCompileTime>
316             (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
317     dst += m_rhs.row(m_rhs.rows()-1).colwise()
318             .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
319   }
320 
321   typename MatrixType::Nested m_lhs;
322   typename Rhs::Nested m_rhs;
323 };
324 
325 template<typename ArgType,int Direction>
326 struct evaluator_traits<Homogeneous<ArgType,Direction> >
327 {
328   typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
329   typedef HomogeneousShape Shape;
330 };
331 
332 template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
333 
334 
335 template<typename ArgType,int Direction>
336 struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
337   : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
338 {
339   typedef Homogeneous<ArgType,Direction> XprType;
340   typedef typename XprType::PlainObject PlainObject;
341   typedef evaluator<PlainObject> Base;
342 
343   EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
344     : Base(), m_temp(op)
345   {
346     ::new (static_cast<Base*>(this)) Base(m_temp);
347   }
348 
349 protected:
350   PlainObject m_temp;
351 };
352 
353 // dense = homogeneous
354 template< typename DstXprType, typename ArgType, typename Scalar>
355 struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
356 {
357   typedef Homogeneous<ArgType,Vertical> SrcXprType;
358   EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
359   {
360     Index dstRows = src.rows();
361     Index dstCols = src.cols();
362     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
363       dst.resize(dstRows, dstCols);
364 
365     dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
366     dst.row(dst.rows()-1).setOnes();
367   }
368 };
369 
370 // dense = homogeneous
371 template< typename DstXprType, typename ArgType, typename Scalar>
372 struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
373 {
374   typedef Homogeneous<ArgType,Horizontal> SrcXprType;
375   EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
376   {
377     Index dstRows = src.rows();
378     Index dstCols = src.cols();
379     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
380       dst.resize(dstRows, dstCols);
381 
382     dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
383     dst.col(dst.cols()-1).setOnes();
384   }
385 };
386 
387 template<typename LhsArg, typename Rhs, int ProductTag>
388 struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
389 {
390   template<typename Dest>
391   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
392   {
393     homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
394   }
395 };
396 
397 template<typename Lhs,typename Rhs>
398 struct homogeneous_right_product_refactoring_helper
399 {
400   enum {
401     Dim  = Lhs::ColsAtCompileTime,
402     Rows = Lhs::RowsAtCompileTime
403   };
404   typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type          LinearBlockConst;
405   typedef typename remove_const<LinearBlockConst>::type                 LinearBlock;
406   typedef typename Rhs::ConstRowXpr                                     ConstantColumn;
407   typedef Replicate<const ConstantColumn,Rows,1>                        ConstantBlock;
408   typedef Product<Lhs,LinearBlock,LazyProduct>                          LinearProduct;
409   typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
410 };
411 
412 template<typename Lhs, typename Rhs, int ProductTag>
413 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
414  : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
415 {
416   typedef Product<Lhs, Rhs, LazyProduct> XprType;
417   typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
418   typedef typename helper::ConstantBlock ConstantBlock;
419   typedef typename helper::Xpr RefactoredXpr;
420   typedef evaluator<RefactoredXpr> Base;
421 
422   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
423     : Base(  xpr.lhs().nestedExpression() .lazyProduct(  xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
424             + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
425   {}
426 };
427 
428 template<typename Lhs, typename RhsArg, int ProductTag>
429 struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
430 {
431   template<typename Dest>
432   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
433   {
434     homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
435   }
436 };
437 
438 // TODO: the following specialization is to address a regression from 3.2 to 3.3
439 // In the future, this path should be optimized.
440 template<typename Lhs, typename RhsArg, int ProductTag>
441 struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
442 {
443   template<typename Dest>
444   static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
445   {
446     dst.noalias() = lhs * rhs.eval();
447   }
448 };
449 
450 template<typename Lhs,typename Rhs>
451 struct homogeneous_left_product_refactoring_helper
452 {
453   enum {
454     Dim = Rhs::RowsAtCompileTime,
455     Cols = Rhs::ColsAtCompileTime
456   };
457   typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type          LinearBlockConst;
458   typedef typename remove_const<LinearBlockConst>::type                 LinearBlock;
459   typedef typename Lhs::ConstColXpr                                     ConstantColumn;
460   typedef Replicate<const ConstantColumn,1,Cols>                        ConstantBlock;
461   typedef Product<LinearBlock,Rhs,LazyProduct>                          LinearProduct;
462   typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
463 };
464 
465 template<typename Lhs, typename Rhs, int ProductTag>
466 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
467  : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
468 {
469   typedef Product<Lhs, Rhs, LazyProduct> XprType;
470   typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
471   typedef typename helper::ConstantBlock ConstantBlock;
472   typedef typename helper::Xpr RefactoredXpr;
473   typedef evaluator<RefactoredXpr> Base;
474 
475   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
476     : Base(   xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
477             + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
478   {}
479 };
480 
481 template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
482 struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
483 {
484   typedef Transform<Scalar,Dim,Mode,Options> TransformType;
485   template<typename Dest>
486   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
487   {
488     homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
489   }
490 };
491 
492 template<typename ExpressionType, int Side, bool Transposed>
493 struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
494   : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
495 {};
496 
497 } // end namespace internal
498 
499 } // end namespace Eigen
500 
501 #endif // EIGEN_HOMOGENEOUS_H
502