xref: /aosp_15_r20/external/eigen/test/adjoint.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT
11 
12 #include "main.h"
13 
14 template<bool IsInteger> struct adjoint_specific;
15 
16 template<> struct adjoint_specific<true> {
17   template<typename Vec, typename Mat, typename Scalar>
runadjoint_specific18   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
19     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
20     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), 0));
21 
22     // check compatibility of dot and adjoint
23     VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
24   }
25 };
26 
27 template<> struct adjoint_specific<false> {
28   template<typename Vec, typename Mat, typename Scalar>
runadjoint_specific29   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
30     typedef typename NumTraits<Scalar>::Real RealScalar;
31     using std::abs;
32 
33     RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
34     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
35     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
36 
37     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
38     // check normalized() and normalize()
39     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
40     v3 = v1;
41     v3.normalize();
42     VERIFY_IS_APPROX(v1, v1.norm() * v3);
43     VERIFY_IS_APPROX(v3, v1.normalized());
44     VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
45 
46     // check null inputs
47     VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
48 #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
49     RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
50     VERIFY( (v1*very_small).norm() == 0 );
51     VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
52     v3 = v1*very_small;
53     v3.normalize();
54     VERIFY_IS_APPROX(v3, (v1*very_small));
55 #endif
56 
57     // check compatibility of dot and adjoint
58     ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
59     VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
60 
61     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
62     // normalized() in order to produce a consistent result.
63     VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
64   }
65 };
66 
adjoint(const MatrixType & m)67 template<typename MatrixType> void adjoint(const MatrixType& m)
68 {
69   /* this test covers the following files:
70      Transpose.h Conjugate.h Dot.h
71   */
72   using std::abs;
73   typedef typename MatrixType::Scalar Scalar;
74   typedef typename NumTraits<Scalar>::Real RealScalar;
75   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
76   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
77   const Index PacketSize = internal::packet_traits<Scalar>::size;
78 
79   Index rows = m.rows();
80   Index cols = m.cols();
81 
82   MatrixType m1 = MatrixType::Random(rows, cols),
83              m2 = MatrixType::Random(rows, cols),
84              m3(rows, cols),
85              square = SquareMatrixType::Random(rows, rows);
86   VectorType v1 = VectorType::Random(rows),
87              v2 = VectorType::Random(rows),
88              v3 = VectorType::Random(rows),
89              vzero = VectorType::Zero(rows);
90 
91   Scalar s1 = internal::random<Scalar>(),
92          s2 = internal::random<Scalar>();
93 
94   // check basic compatibility of adjoint, transpose, conjugate
95   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
96   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
97 
98   // check multiplicative behavior
99   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
100   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     numext::conj(s1) * m1.adjoint());
101 
102   // check basic properties of dot, squaredNorm
103   VERIFY_IS_APPROX(numext::conj(v1.dot(v2)),               v2.dot(v1));
104   VERIFY_IS_APPROX(numext::real(v1.dot(v1)),               v1.squaredNorm());
105 
106   adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
107 
108   VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
109 
110   // like in testBasicStuff, test operator() to check const-qualification
111   Index r = internal::random<Index>(0, rows-1),
112       c = internal::random<Index>(0, cols-1);
113   VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
114   VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
115 
116   // check inplace transpose
117   m3 = m1;
118   m3.transposeInPlace();
119   VERIFY_IS_APPROX(m3,m1.transpose());
120   m3.transposeInPlace();
121   VERIFY_IS_APPROX(m3,m1);
122 
123   if(PacketSize<m3.rows() && PacketSize<m3.cols())
124   {
125     m3 = m1;
126     Index i = internal::random<Index>(0,m3.rows()-PacketSize);
127     Index j = internal::random<Index>(0,m3.cols()-PacketSize);
128     m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
129     VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
130     m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
131     VERIFY_IS_APPROX(m3,m1);
132   }
133 
134   // check inplace adjoint
135   m3 = m1;
136   m3.adjointInPlace();
137   VERIFY_IS_APPROX(m3,m1.adjoint());
138   m3.transposeInPlace();
139   VERIFY_IS_APPROX(m3,m1.conjugate());
140 
141   // check mixed dot product
142   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
143   RealVectorType rv1 = RealVectorType::Random(rows);
144   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
145   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
146 
147   VERIFY( is_same_type(m1,m1.template conjugateIf<false>()) );
148   VERIFY( is_same_type(m1.conjugate(),m1.template conjugateIf<true>()) );
149 }
150 
151 template<int>
adjoint_extra()152 void adjoint_extra()
153 {
154   MatrixXcf a(10,10), b(10,10);
155   VERIFY_RAISES_ASSERT(a = a.transpose());
156   VERIFY_RAISES_ASSERT(a = a.transpose() + b);
157   VERIFY_RAISES_ASSERT(a = b + a.transpose());
158   VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
159   VERIFY_RAISES_ASSERT(a = a.adjoint());
160   VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
161   VERIFY_RAISES_ASSERT(a = b + a.adjoint());
162 
163   // no assertion should be triggered for these cases:
164   a.transpose() = a.transpose();
165   a.transpose() += a.transpose();
166   a.transpose() += a.transpose() + b;
167   a.transpose() = a.adjoint();
168   a.transpose() += a.adjoint();
169   a.transpose() += a.adjoint() + b;
170 
171   // regression tests for check_for_aliasing
172   MatrixXd c(10,10);
173   c = 1.0 * MatrixXd::Ones(10,10) + c;
174   c = MatrixXd::Ones(10,10) * 1.0 + c;
175   c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
176   c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
177 
178   // regression for bug 1646
179   for (int j = 0; j < 10; ++j) {
180     c.col(j).head(j) = c.row(j).head(j);
181   }
182 
183   for (int j = 0; j < 10; ++j) {
184     c.col(j) = c.row(j);
185   }
186 
187   a.conservativeResize(1,1);
188   a = a.transpose();
189 
190   a.conservativeResize(0,0);
191   a = a.transpose();
192 }
193 
EIGEN_DECLARE_TEST(adjoint)194 EIGEN_DECLARE_TEST(adjoint)
195 {
196   for(int i = 0; i < g_repeat; i++) {
197     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
198     CALL_SUBTEST_2( adjoint(Matrix3d()) );
199     CALL_SUBTEST_3( adjoint(Matrix4f()) );
200 
201     CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
202     CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
203     CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
204 
205     // Complement for 128 bits vectorization:
206     CALL_SUBTEST_8( adjoint(Matrix2d()) );
207     CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
208 
209     // 256 bits vectorization:
210     CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
211     CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
212     CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
213   }
214   // test a large static matrix only once
215   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
216 
217   CALL_SUBTEST_13( adjoint_extra<0>() );
218 }
219 
220