xref: /aosp_15_r20/external/eigen/test/geo_quaternion.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2009 Mathieu Gautier <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/Geometry>
13 #include <Eigen/LU>
14 #include <Eigen/SVD>
15 #include "AnnoyingScalar.h"
16 
bounded_acos(T v)17 template<typename T> T bounded_acos(T v)
18 {
19   using std::acos;
20   using std::min;
21   using std::max;
22   return acos((max)(T(-1),(min)(v,T(1))));
23 }
24 
check_slerp(const QuatType & q0,const QuatType & q1)25 template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
26 {
27   using std::abs;
28   typedef typename QuatType::Scalar Scalar;
29   typedef AngleAxis<Scalar> AA;
30 
31   Scalar largeEps = test_precision<Scalar>();
32 
33   Scalar theta_tot = AA(q1*q0.inverse()).angle();
34   if(theta_tot>Scalar(EIGEN_PI))
35     theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot;
36   for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
37   {
38     QuatType q = q0.slerp(t,q1);
39     Scalar theta = AA(q*q0.inverse()).angle();
40     VERIFY(abs(q.norm() - 1) < largeEps);
41     if(theta_tot==0)  VERIFY(theta_tot==0);
42     else              VERIFY(abs(theta - t * theta_tot) < largeEps);
43   }
44 }
45 
quaternion(void)46 template<typename Scalar, int Options> void quaternion(void)
47 {
48   /* this test covers the following files:
49      Quaternion.h
50   */
51   using std::abs;
52   typedef Matrix<Scalar,3,1> Vector3;
53   typedef Matrix<Scalar,3,3> Matrix3;
54   typedef Quaternion<Scalar,Options> Quaternionx;
55   typedef AngleAxis<Scalar> AngleAxisx;
56 
57   Scalar largeEps = test_precision<Scalar>();
58   if (internal::is_same<Scalar,float>::value)
59     largeEps = Scalar(1e-3);
60 
61   Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
62 
63   Vector3 v0 = Vector3::Random(),
64           v1 = Vector3::Random(),
65           v2 = Vector3::Random(),
66           v3 = Vector3::Random();
67 
68   Scalar  a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)),
69           b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
70 
71   // Quaternion: Identity(), setIdentity();
72   Quaternionx q1, q2;
73   q2.setIdentity();
74   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
75   q1.coeffs().setRandom();
76   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
77 
78 #ifndef EIGEN_NO_IO
79   // Printing
80   std::ostringstream ss;
81   ss << q2;
82   VERIFY(ss.str() == "0i + 0j + 0k + 1");
83 #endif
84 
85   // concatenation
86   q1 *= q2;
87 
88   q1 = AngleAxisx(a, v0.normalized());
89   q2 = AngleAxisx(a, v1.normalized());
90 
91   // angular distance
92   Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
93   if (refangle>Scalar(EIGEN_PI))
94     refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle;
95 
96   if((q1.coeffs()-q2.coeffs()).norm() > Scalar(10)*largeEps)
97   {
98     VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
99   }
100 
101   // rotation matrix conversion
102   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
103   VERIFY_IS_APPROX(q1 * q2 * v2,
104     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
105 
106   VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
107         || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
108 
109   q2 = q1.toRotationMatrix();
110   VERIFY_IS_APPROX(q1*v1,q2*v1);
111 
112   Matrix3 rot1(q1);
113   VERIFY_IS_APPROX(q1*v1,rot1*v1);
114   Quaternionx q3(rot1.transpose()*rot1);
115   VERIFY_IS_APPROX(q3*v1,v1);
116 
117 
118   // angle-axis conversion
119   AngleAxisx aa = AngleAxisx(q1);
120   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
121 
122   // Do not execute the test if the rotation angle is almost zero, or
123   // the rotation axis and v1 are almost parallel.
124   if (abs(aa.angle()) > Scalar(5)*test_precision<Scalar>()
125       && (aa.axis() - v1.normalized()).norm() < Scalar(1.99)
126       && (aa.axis() + v1.normalized()).norm() < Scalar(1.99))
127   {
128     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
129   }
130 
131   // from two vector creation
132   VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
133   VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
134   VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
135   if (internal::is_same<Scalar,double>::value)
136   {
137     v3 = (v1.array()+eps).matrix();
138     VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
139     VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
140   }
141 
142   // from two vector creation static function
143   VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
144   VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
145   VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
146   if (internal::is_same<Scalar,double>::value)
147   {
148     v3 = (v1.array()+eps).matrix();
149     VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
150     VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
151   }
152 
153   // inverse and conjugate
154   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
155   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
156 
157   // test casting
158   Quaternion<float> q1f = q1.template cast<float>();
159   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
160   Quaternion<double> q1d = q1.template cast<double>();
161   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
162 
163   // test bug 369 - improper alignment.
164   Quaternionx *q = new Quaternionx;
165   delete q;
166 
167   q1 = Quaternionx::UnitRandom();
168   q2 = Quaternionx::UnitRandom();
169   check_slerp(q1,q2);
170 
171   q1 = AngleAxisx(b, v1.normalized());
172   q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized());
173   check_slerp(q1,q2);
174 
175   q1 = AngleAxisx(b,  v1.normalized());
176   q2 = AngleAxisx(-b, -v1.normalized());
177   check_slerp(q1,q2);
178 
179   q1 = Quaternionx::UnitRandom();
180   q2.coeffs() = -q1.coeffs();
181   check_slerp(q1,q2);
182 }
183 
mapQuaternion(void)184 template<typename Scalar> void mapQuaternion(void){
185   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
186   typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
187   typedef Map<Quaternion<Scalar> > MQuaternionUA;
188   typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
189   typedef Quaternion<Scalar> Quaternionx;
190   typedef Matrix<Scalar,3,1> Vector3;
191   typedef AngleAxis<Scalar> AngleAxisx;
192 
193   Vector3 v0 = Vector3::Random(),
194           v1 = Vector3::Random();
195   Scalar  a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
196 
197   EIGEN_ALIGN_MAX Scalar array1[4];
198   EIGEN_ALIGN_MAX Scalar array2[4];
199   EIGEN_ALIGN_MAX Scalar array3[4+1];
200   Scalar* array3unaligned = array3+1;
201 
202   MQuaternionA    mq1(array1);
203   MCQuaternionA   mcq1(array1);
204   MQuaternionA    mq2(array2);
205   MQuaternionUA   mq3(array3unaligned);
206   MCQuaternionUA  mcq3(array3unaligned);
207 
208 //  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
209   mq1 = AngleAxisx(a, v0.normalized());
210   mq2 = mq1;
211   mq3 = mq1;
212 
213   Quaternionx q1 = mq1;
214   Quaternionx q2 = mq2;
215   Quaternionx q3 = mq3;
216   Quaternionx q4 = MCQuaternionUA(array3unaligned);
217 
218   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
219   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
220   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
221 
222   VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
223   VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
224 
225   VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
226   VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
227 
228   VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
229   VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
230 
231   VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
232   VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
233 
234   VERIFY_IS_APPROX(mq1*mq2, q1*q2);
235   VERIFY_IS_APPROX(mq3*mq2, q3*q2);
236   VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
237   VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
238 
239   // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks:
240   VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum());
241   VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum());
242   mq3.w() = 1;
243   const Quaternionx& cq3(q3);
244   VERIFY( &cq3.x() == &q3.x() );
245   const MQuaternionUA& cmq3(mq3);
246   VERIFY( &cmq3.x() == &mq3.x() );
247   // FIXME the following should be ok. The problem is that currently the LValueBit flag
248   // is used to determine whether we can return a coeff by reference or not, which is not enough for Map<const ...>.
249   //const MCQuaternionUA& cmcq3(mcq3);
250   //VERIFY( &cmcq3.x() == &mcq3.x() );
251 
252   // test cast
253   {
254     Quaternion<float> q1f = mq1.template cast<float>();
255     VERIFY_IS_APPROX(q1f.template cast<Scalar>(),mq1);
256     Quaternion<double> q1d = mq1.template cast<double>();
257     VERIFY_IS_APPROX(q1d.template cast<Scalar>(),mq1);
258   }
259 }
260 
quaternionAlignment(void)261 template<typename Scalar> void quaternionAlignment(void){
262   typedef Quaternion<Scalar,AutoAlign> QuaternionA;
263   typedef Quaternion<Scalar,DontAlign> QuaternionUA;
264 
265   EIGEN_ALIGN_MAX Scalar array1[4];
266   EIGEN_ALIGN_MAX Scalar array2[4];
267   EIGEN_ALIGN_MAX Scalar array3[4+1];
268   Scalar* arrayunaligned = array3+1;
269 
270   QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
271   QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
272   QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
273 
274   q1->coeffs().setRandom();
275   *q2 = *q1;
276   *q3 = *q1;
277 
278   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
279   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
280 }
281 
check_const_correctness(const PlainObjectType &)282 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
283 {
284   // there's a lot that we can't test here while still having this test compile!
285   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
286   // CMake can help with that.
287 
288   // verify that map-to-const don't have LvalueBit
289   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
290   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
291   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
292   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
293   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
294 }
295 
296 #if EIGEN_HAS_RVALUE_REFERENCES
297 
298 // Regression for bug 1573
299 struct MovableClass {
300   // The following line is a workaround for gcc 4.7 and 4.8 (see bug 1573 comments).
301   static_assert(std::is_nothrow_move_constructible<Quaternionf>::value,"");
302   MovableClass() = default;
303   MovableClass(const MovableClass&) = default;
304   MovableClass(MovableClass&&) noexcept = default;
305   MovableClass& operator=(const MovableClass&) = default;
306   MovableClass& operator=(MovableClass&&) = default;
307   Quaternionf m_quat;
308 };
309 
310 #endif
311 
EIGEN_DECLARE_TEST(geo_quaternion)312 EIGEN_DECLARE_TEST(geo_quaternion)
313 {
314   for(int i = 0; i < g_repeat; i++) {
315     CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
316     CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
317     CALL_SUBTEST_1(( quaternion<float,DontAlign>() ));
318     CALL_SUBTEST_1(( quaternionAlignment<float>() ));
319     CALL_SUBTEST_1( mapQuaternion<float>() );
320 
321     CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
322     CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
323     CALL_SUBTEST_2(( quaternion<double,DontAlign>() ));
324     CALL_SUBTEST_2(( quaternionAlignment<double>() ));
325     CALL_SUBTEST_2( mapQuaternion<double>() );
326 
327 #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW
328     AnnoyingScalar::dont_throw = true;
329 #endif
330     CALL_SUBTEST_3(( quaternion<AnnoyingScalar,AutoAlign>() ));
331   }
332 }
333