xref: /aosp_15_r20/external/eigen/test/jacobi.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2009 Benoit Jacob <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/SVD>
13 
14 template<typename MatrixType, typename JacobiScalar>
jacobi(const MatrixType & m=MatrixType ())15 void jacobi(const MatrixType& m = MatrixType())
16 {
17   Index rows = m.rows();
18   Index cols = m.cols();
19 
20   enum {
21     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
22     ColsAtCompileTime = MatrixType::ColsAtCompileTime
23   };
24 
25   typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
26 
27   const MatrixType a(MatrixType::Random(rows, cols));
28 
29   JacobiVector v = JacobiVector::Random().normalized();
30   JacobiScalar c = v.x(), s = v.y();
31   JacobiRotation<JacobiScalar> rot(c, s);
32 
33   {
34     Index p = internal::random<Index>(0, rows-1);
35     Index q;
36     do {
37       q = internal::random<Index>(0, rows-1);
38     } while (q == p);
39 
40     MatrixType b = a;
41     b.applyOnTheLeft(p, q, rot);
42     VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
43     VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
44   }
45 
46   {
47     Index p = internal::random<Index>(0, cols-1);
48     Index q;
49     do {
50       q = internal::random<Index>(0, cols-1);
51     } while (q == p);
52 
53     MatrixType b = a;
54     b.applyOnTheRight(p, q, rot);
55     VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
56     VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
57   }
58 }
59 
EIGEN_DECLARE_TEST(jacobi)60 EIGEN_DECLARE_TEST(jacobi)
61 {
62   for(int i = 0; i < g_repeat; i++) {
63     CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
64     CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
65     CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
66     CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
67 
68     int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
69         c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
70     CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
71     CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
72     CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
73     // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
74     CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
75     CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
76 
77     TEST_SET_BUT_UNUSED_VARIABLE(r);
78     TEST_SET_BUT_UNUSED_VARIABLE(c);
79   }
80 }
81